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LINEAR MODELS

Linear models are based on a linear combination of input features

h(x,w) = w0 + w1x1 + w2x2 + . . .+ wdxd

More compactly,
h(x,w) = wTx

where x = (1, x1, . . . , xd)

• Linear function of parameters w
• Linear function of features x
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BASE FUNCTIONS

• Extension to linear combination of base functions ϕ1, . . . , ϕm defined on IRd

h(ϕ(x),w) =
m∑
j=1

wjϕj(x)

• Each vector x in IRd is mapped to a new vector in IRm, ϕ(x) = (ϕ1(x), . . . , ϕm(x))
• the problem is mapped from a d-dimensional to an m-dimensional space (usually with
m > d)
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BASE FUNCTIONS
• Many types:

• Polynomial (global functions)
ϕj(x) = xj

• Gaussian (local)

ϕj(x) = exp
(
−
(x− µj)

2

2s2

)
• Sigmoid (local)

ϕj(x) = σ

( x− µj
s

)
=

1

1 + e−
x−µj
s

• Hyperbolic tangent (local)

ϕj(x) = tanh(x) = 2σ(x)− 1 =
1− e−

x−µj
s

1 + e−
x−µj
s
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BASE FUNCTIONS

Observe that a set of items

X =

 – x1 –
...

– xn –

 =


x11 · · · x1d
x21 · · · x2d
...

. . .
...

xn1 · · · xnd


is transformed into

Φ =


ϕ1(x1) ϕ2(x1) · · · ϕm(x1)
ϕ1(x2) ϕ2(x2) · · · ϕm(x2)
...

...
. . .

...
ϕ1(xn) ϕ2(xn) · · · ϕm(xn)


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EXAMPLE

Problem
• A set of n observations of two variables x, t ∈ IR: (x1, t1), . . . , (xn, tn)) is available. We wish to
exploit these observations to predict, for any value x̃ of x, the corresponding unknown value
of the target variable t

• The training set is a pair of vectors x = (x1, . . . , xn)T and t = (t1, . . . , tn)T, related through an
unknown rule (function)

Example of a training set.
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EXAMPLE
Training set

In this case, we assume that the (unknown) relation between x and t in the training set is
provided by the function t = sin(2πx), with an additional gaussian noise with mean 0 and given
variance σ2. Hence, ti = sin(2πxi) + εi, with εi ∼ N (0, σ2).

x

t

0 1

−1

0

1

Purpose

Guessing, or approximating as well as possible, the deterministic relation t = sin(2πx), on the
basis of the analysis of data in the training set.
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EXAMPLE: POLYNOMIAL REGRESSION

Approach

Let us approximate the unknown function through a suitable polynomial of given degree m > 0

h(x,w) = w0 + w1x+ w2x2 + . . .+ wmxm =

m∑
j=0

wjxj

whose coefficients w = (w0,w1, . . . ,wm)T are to be computed.

Base functions

This corresponds to applying a set of m+ 1 base functions ϕj(x) = xj, j = 0, . . . ,m to the unique
feature x

h(x,w) =

m∑
j=0

wjϕj(x)
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REGRESSION LOSS

Base functions and linear models

When base functions are applied, h(x,w) is a nonlinear function of x, but it is still a linear
function (model) of w.

Parameter estimation

The values assigned to coefficients should minimize the empirical risk computed wrt some error
function (a.k.a. cost function)
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REGRESSION LOSS
Least squares

A most widely adopted error
function is the quadratic loss
(h(ϕ(xi))− ti)2, which results
into the least quares approach

t

x

y(xn,w)

tn

xn

E(w) =
1

2

n∑
i=1

ri(w)2

where

ri(w) = h(ϕ(xi),w)− ti =
m∑
j=1

wjϕj(xi)− ti

is the residue.

Equivalent to minimizing the empirical risk R(w)
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REGRESSION LOSS

Error minimization
• To minimize E(w), set its derivative w.r.t. w to 0
• the quadratic loss is a convex function, which implies that only one (global) minimum is
defined

• E(w) = 1
2

∑n
i=1(y(xi,w)− ti)2 is convex itself, being the sum of n convex functions

(y(xk,w)− tk)2

• in particular, E(w) quadratic implies that its derivative is linear, hence that it is zero in one
point w∗

• The resulting function is h(x,w∗) = ϕ(x)Tw∗
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REGRESSION LOSS

Derivative with respect to w

The derivative w.r.t. w is indeed a collection of derivatives. A linear system is obtained:

∂E(w)

∂wk
= 2

n∑
i=1

ri(w)
∂

∂wk
ri(w) = 2

n∑
i=1

ri(w)ϕk(xi) = 2

n∑
i=1

 m∑
j=1

wjϕj(xi)− ti

ϕk(xi)

Each of the m equations is linear w.r.t. each coefficient in w. A linear system results, with m
equations and m unknowns w1, . . . ,wm, which, in general and with the exceptions of degenerate
cases, has precisely one solution.

Closed form solution

In this case, the solution is defined in closed form by the normal equations for least squares

w∗ = (ΦTΦ)−1ΦTt
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GRADIENT DESCENT

• The minimum of E(w) can be computed numerically, by means of gradient descent methods
• Initial assignment w(0) = (w(0)

1 ,w(0)
2 , . . . ,w(0)

m ), with a corresponding error value

E(w(0)) =
1

2

n∑
i=1

ri(w(0))2

• Iteratively, the current value w(s−1) is modified in the direction of steepest descent of E(w),
that is the one corresponding to the negative of the gradient evaluated at w(s−1)

• At step s, w(s−1)

k is updated as follows:

w(s)
k := w(s−1)

k − η
∂E(w)

∂wk

∣∣∣∣∣
w(s−1)

= w(s−1)

k − 2η

n∑
i=1

ri(w(s−1))ϕk(xi)
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GRADIENT DESCENT

• In matrix notation:
w(s) := w(s−1) − η∇E(w)

∣∣∣
w(s−1)

• By definition of E(w):

w(s) := w(s−1) − 2η
n∑
i=1

ri(w(s−1))ϕ(xi)

Giorgio Gambosi Linear regression Slide 14 / 55



EXAMPLE: FITTING OF POLYNOMIALS
Polynomial degree
• Example of model selection: assigning a value to M determines the model to be used, the
choice of M implies the number of coefficients to be estimated

• increasing M allows to better approximate the training set items, decreasing the error
• if M+ 1 = n the model allows to obtain a null error (overfitting)
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EXAMPLE: POLYNOMIAL REGRESSION

Overfitting
• The function h(ϕ(x),w) is derived from items in the training set, but should provide good
predictions for other items.

• It should provide a suitable generalization to all items in the whole domain.
• If h(ϕ(x),w) is derived as a too much accurate depiction of the training set, it results into an
unsuitable generalization to items not in the training set
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EXAMPLE: POLYNOMIAL REGRESSION

Evaluation of the generalization
• Training set Ttrain of 1-dimensional items, generated by uniformly sampling x in [0, 1, ] and ε
from N (0, σ2), and computing t = sin 2πx+ ε

• Test set Ttest of 1-dimensional items, generated in the same way as the training set
• For each M:

• derives w∗ by minimizing the empirical risk on the training setRTtrain (w)

• compute the empirical riskRTtest (w∗) on the test set: the square root of such value is considered
here

ERMS(w∗, Ttest) =
√

RTtest (w∗) =

√√√√ 1

|Ttest|
∑

(x,t)∈Ttest

(h(ϕ(x),w∗)− t)2

• a lower value of ERMS(w∗, Ttest) denotes a good generalization
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EXAMPLE: POLYNOMIAL REGRESSION
Plot of ERMS w.r.t. M, on the training set and on the test set.

M

E
R

M
S

 

 

0 3 6 9
0

0.5

1
Training
Test

• As M increases, the error on the training set tends to 0.
• On the test set, the error initially decreases, since the higher complexity of the model allows
to better represent the characteristics of the data set. Next, the error increases, since the
model becomes too dependent from the training set.
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EXAMPLE: POLYNOMIAL REGRESSION

For a given model complexity (such as the degree in our example), overfitting decreases as the
dimension of the dataset increases.

x

t

N = 15

0 1

−1

0

1

x

t

N = 100

0 1

−1

0

1

The larger the dataset, the higher the acceptable complexity of the model.
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HOW TO LIMIT THE COMPLEXITY OF THE MODEL?

• Regularization term in the cost function

ED(w) + λEW(w)

ED(w) dependent from the dataset (and the parameters), EW(w) dependent from the
parameters alone.

• The regularization coefficient controls the relative importance of the two terms.
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REGULARIZED LEAST SQUARES

• Simple form

EW(w) =
1

2
wTw =

1

2

m∑
i=1

w2
i

• The resulting overall loss to be minimized is then

E(w) =
1

2

n∑
i=1

ri(w)2 +
λ

2
wTw =

1

2
r(w)Tr(w) +

λ

2
wTw

where r(w) is the vector of residues, which can be expressed in terms of Φ,w and t as
r(w) = Φw − t

• this is called ridge regression: its solution can be expressed in closed form as

w = (λI +ΦTΦ)−1ΦTt
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REGULARIZATION

• A more general form is obtained by considering the degree of the summed coefficients as a
parameter

E(w) =
1

2

n∑
i=1

ri(w)2 +
λ

2

m∑
j=1

|wj|q

• The case q = 1 is denoted as lasso. Lasso regression has the property of favor sparse models
(that is returning parameter vectors with many null values).
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EXAMPLE: POLYNOMIAL REGRESSION
Use of regularization to limit complexity and overfitting.
• inclusion of a penalty term in the error function
• purpose: limiting the possible values of coefficients
• usually: limiting the absolute value of the coefficients

Ẽ(w) =
1

2

n∑
i=1

ri(w)2 +
λ

2

M∑
k=0

w2
k =

1

2

n∑
i=1

ri(w)2 +
λ

2
||w||2

Dependance from the value of the hyperparameter λ.
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EXAMPLE: POLYNOMIAL REGRESSION
Plot of the error w.r.t λ, ridge regression.

E
R

M
S

 

 

ln λ
−35 −30 −25 −20

0

0.5

1
Training
Test

• Small λ: overfitting. Small error on the training set, large error on the test set.
• Large λ: the effect of data values decreases. Large error on both test and training sets.
• Intermediate λ. Intermediate error on training set, small error on test set.
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EXAMPLE: POLYNOMIAL REGRESSION

• Consider the case of function y = sin 2πx and assume L = 100 training sets T1, . . . , TL are
available, each of size n = 25.

• Given m = 24 gaussian basis functions ϕ1(x), . . . , ϕm(x), from each training set Ti a prediction
function yi(x) is derived by minimizing the regularized cost function

E(w) =
1

2

n∑
i=1

ri(w)2 +
λ

2

m∑
k=1

w2
k

=
1

2
(Φw − t)T(Φw − t) + λ

2
wTw
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EXAMPLE: POLYNOMIAL REGRESSION

x

t

ln λ = 2.6
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Left, a possible plot of prediction functions hi(x) (i = 1, . . . , 100), as derived, respectively, by
training sets Ti, i = 1, . . . , 100 setting lnλ = 2.6. Right, their expectation, with the unknown
function f(x) = sin 2πx.

The prediction functions hi(ϕ(x)) do not differ much between them (small variance), but their
expectation is a bad approximation of the unknown function (large bias).

Giorgio Gambosi Linear regression Slide 26 / 55



EXAMPLE: POLYNOMIAL REGRESSION

x
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Plot of the prediction functions obtained with lnλ = −0.31.
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EXAMPLE: POLYNOMIAL REGRESSION
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t

ln λ = −2.4
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Plot of the prediction functions obtained with lnλ = −2.4. As λ decreases, the variance increases
(prediction functions hi(ϕ(x)) are more different each other), while bias decreases (their
expectation is a better approximation of f(x) = sin 2πx).
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EXAMPLE: POLYNOMIAL REGRESSION

• Plot of (bias)2, variance and their sum as functions of λ: las λ increases, bias increases and
variance decreases. Their sum has a minimum in correspondance to the optimal value of λ.
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PROBABILISTIC MODEL FOR REGRESSION
Assume that, given an item x, the corresponding unknown target t is normally distributed around
the value returned by the model wTx, with a given variance σ2 = β−1:

L(w, β|Φ, t) = p(t|Φ,w, β) =
n∏
i=1

N (ti|y(ϕ(xi),w), β−1) =
n∏
i=1

√
β√
2π
e

β
2
ri(w)2

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w, β)
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PROBABILISTIC MODEL FOR REGRESSION

An estimate of both βML and the coefficients wML can be performed on the basis of the likelihood
w.r.t. the assumed normal distribution:

L(t|X,w, β) = p(t|X,w, β) =
n∏
i=1

N (ti|y(xi,w), β−1)

Parameters w and β can be estimated as the values which maximize the data likelihood, or its
logarithm

l(w, β|Φ, t) = logp(t|Φ,w, β) =
n∑
i=1

logN (ti|y(ϕ(xi),w), β−1)

which results into

p(t|Φ,w, β) = −β

2

n∑
i=1

ri(w)2 +
n
2

logβ + c

Giorgio Gambosi Linear regression Slide 31 / 55



PROBABILISTIC MODEL FOR REGRESSION

The maximization w.r.t. w is performed by determining a maximum w.r.t. w of the function

−1

2

n∑
i=1

(ti − y(xi,w))2

this is equivalent to minimizing the least squares sum.
The maximization w.r.t. the precision β is done by setting to 0 the corresponding derivative

∂l(t|Φ,w, β)

∂β
= −1

2

n∑
i=1

ri(w)2 +
n
2β

which results into

β−1
ML =

1

n

n∑
i=1

ri(w)2
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PROBABILISTIC MODEL FOR REGRESSION

As a side result, the parameter estimate provides a predictive distribution of t given x, that is the
(gaussian) distribution of the target value for a given item x.

p(t|x;w, β) = N (t|h(ϕ(x),w), β−1) =

√
βML
2π

e−
βML
2

(h(ϕ(x),wML)−t)2
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PROBABILISTIC MODEL FOR REGRESSION

• In the maximum likelihood framework parameters are considered as (unknown) values to
determine with the best possible precision (frequentist approach).

• Applying maximum likelihood to determine the values of model parameters is prone to
overfitting: need of a regularization term E(w).

• In order control model complexity, a bayesian approach assumes a prior distribution of
parameter values.

• The bayesian framework looks at parameters as random variables, whose probability
distribution has to be derived.
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PROBABILISTIC MODEL FOR REGRESSION

Prior distribution of parameters: gaussian with mean 0 and diagonal covariance matrix with
variance equal to the inverse of hyperparameter α

p(w|α) = N (w|0, α−1I) =
( α

2π

)m
2 e−

α
2

wTw

w0

w
1
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WHY A GAUSSIAN PRIOR?

Why a gaussian prior? Because the gaussian distribution is conjugated to itself. This means that
the posterior distribution, being proportional to prior times likelihood, is gaussian if the
likelihood is gaussian.

p(t|Φ,w, β) =
n∏
i=1

N (ti|h(ϕ(xi),w), β−1) =

n∏
i=1

e−
β
2
ri(w)2

Given the prior p(w|α), the posterior distribution for w derives from Bayes’ rule

p(w|t,Φ, α, σ) =
p(t|Φ,w, σ)p(w|α)

p(t|Φ, α, σ)
∝ p(t|Φ,w, σ)p(w|α)
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WHY A GAUSSIAN PRIOR?

Given the above likelihood, if the prior of w is a gaussian

p(w) = N (w|m0,Σ0)

than the posterior distribution is itself gaussian

p(w|Φ, t) = N (w|mp,Σp)

with

Σp = (Σ−1
0 + βΦTΦ)−1

mp = Σp(Σ
−1
0 m0 + βΦTt)
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WHY A GAUSSIAN PRIOR?

In the case we are considering here, we have

p(w|α) = N (w|0, α−1I) =
m∏
j=1

√
α√
2π
e−

α
2
w2
i

The posterior distribution is then a gaussian itself

p(w|t,Φ, α, σ) = N (w|mp,Σp)

with

Σp = (αI + βΦTΦ)−1

mp = βΣpΦ
Tt
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MAXIMUM A POSTERIORI

• Given the posterior distribution p(w|Φ, t, α, β), we may derive the value of wMAP which makes
it maximum (the mode of the distribution)

• This is equivalent to maximizing its logarithm

logp(w|Φ, t, α, β) = logp(t|w,Φ, β) + logp(w|α)− logp(t|Φ, β)

and, since p(t|Φ, β) is a constant wrt w

wMAP = argmax
w

logp(w|Φ, t, α, β) = argmax
w

(logp(t|w,Φ, β) + logp(w|α))

that is,
wMAP = argmin

w
(− logp(t|Φ,w, β)− logp(w|α))
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MAXIMUM A POSTERIORI
In this case

logp(t|Φ,w, β) = log
n∏
i=1

√
β√
2π
e−

β
2
ri(w)2 =

n
2

logβ − n
2

log(2π)− β

2

n∑
i=1

ri(w)2

and

logp(w|α) = log
m∏
j=1

√
α√
2π
e−

α
2
w2
i =

m
2

logα− n
2

log(2π)− α

2

m∑
j=1

w2
j

The value wMAP which maximize the probability (mode of the distribution) minimizes

−β

2

n∑
i=1

ri(w)2 − α

2

m∑
j=1

w2
j +

n
2

logβ +
m
2

logα− n+m
2

log(2π)

this is equivalent to maximizing

β

2

n∑
i=1

ri(w)2 +
α

2

m∑
j=1

w2
j ∝ 1

2

n∑
i=1

ri(w)2 +
α

2β

m∑
j=1

w2
j

This corresponds to a ridge regression with regularization hyperparameter λ = α
β
.
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MAXIMUM A POSTERIORI

The same considerations of ML appy here for what concerns deriving the predictive distribution
of t given x, which results now

p(t|x;wMAP, βMAP) = N (t|h(ϕ(x),wMAP), β
−1
MAP) =

√
βMAP
2π

e−
βMAP

2
(h(ϕ(x),wMAP)−t)2

where, as it is easy to see, βMAP = βML
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SEQUENTIAL LEARNING

• The posterior after observing T1 can be used as a prior for the next training set acquired.
• In general, for a sequence T1, . . . , Tn of training sets,

p(w|T1, . . . Tn) ∝ p(Tn|w)p(w|T1, . . . Tn−1)

p(w|T1, . . . Tn−1) ∝ p(Tn−1|w)p(w|T1, . . . Tn−2)

. . .

p(w|T1) ∝ p(T1|w)p(w)
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EXAMPLE
• Input variable x, target variable t, linear regression y(x,w0,w1) = w0 + w1x.
• Dataset generated by applying function y = a0 + a1x (with a0 = −0.3, a1 = 0.5) to values
uniformly sampled in [−1, 1], with added gaussian noise (µ = 0, σ = 0.2).

• Assume the prior distribution p(w0,w1) is a bivariate gaussian with µ = 0 and
Σ = σ2I = 0.04I

Left, prior distribution of w0,w1; right, 6 lines sampled from the distribution.
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EXAMPLE

After observing item (x1, y1) (circle in right figure).

Left, posterior distribution p(w0,w1|x1, y1); right, 6 lines sampled from the distribution.
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EXAMPLE

After observing items (x1, y1), (x2, y2) (circles in right figure).

Left, posterior distribution p(w0,w1|x1, y1, x2, y2); right, 6 lines sampled from the distribution.
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EXAMPLE

After observing a set of n items (x1, y1), . . . , (xn, yn) (circles in right figure).

Left, posterior distribution p(w0,w1|xi, yi, i = 1, . . . ,n); right, 6 lines sampled from the distribution.
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EXAMPLE

• As the number of observed items increases, the distribution of parameters w0,w1 tends to
concentrate (variance decreases to 0) around a mean point a0, a1.

• As a consequence, sampled lines are concentrated around y = a0 + a1x.
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APPROACHES TO PREDICTION IN LINEAR REGRESSION

Classical
• A value wLS for w is learned through a point estimate, performed by minimizing a quadratic
cost function, or equivalently by maximizing likelihood (ML) under the hypothesis of gaussian
noise; regularization can be applied to modify the cost function to limit overfitting

• Given any x, the obtained value wLS is used to predict the corresponding t as y = xTwLS,
where xT = (1, x)T, or, in general, as t = ϕ(x)TwLS
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APPROACHES TO PREDICTION IN LINEAR REGRESSION

Bayesian point estimation
• The posterior distribution p(w|t,Φ, α, β) is derived and a point estimate is performed from it,
computing the mode wMAP of the distribution (MAP)

• Equivalent to the classical approach, as wMAP corresponds to wLS if λ =
α

β

• The prediction, for a value x, is a gaussian distribution p(t|ϕ(x)TwMAP, β) for y, with mean
ϕ(x)TwMAP and variance β−1

• The distribution is not derived directly from the posterior p(w|t,Φ, α, β): it is built, instead,
as a gaussian with mean depending from the expectation of the posterior, and variance given
by the assumed noise.
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APPROACHES TO PREDICTION IN LINEAR REGRESSION

Fully bayesian
• The real interest is not in estimating w or its distribution p(w|t,Φ, α, β), but in deriving the
predictive distribution p(y|x). This can be done through expectation of the probability
p(y|x,w, β) predicted by a model instance wrt model instance distribution p(w|t,Φ, α, β),
that is

p(t|x, t,Φ, α, β) =

∫
p(t|x,w, β)p(w|t,Φ, α, β)dw

• p(t|x,w, β) is assumed gaussian, and p(w|t,Φ, α, β) is gaussian by the assumption that the
likelihood p(t|w,Φ, β) and the prior p(w|α) are gaussian themselves and by their being
conjugate

p(t|x,w, β) = N (t|wTϕ(x), β)
p(w|t,Φ, α, β) = N (w|βSNΦTt, SN)

where SN = (αI + βΦTΦ)−1
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APPROACHES TO PREDICTION IN LINEAR REGRESSION

Fully bayesian

Under such hypothesis, p(t|x) is gaussian

p(t|x, t,Φ, α, β) = N (t|m(x), σ2(x))

with mean
m(x) = βϕ(x)TSNΦTt

and variance
σ2(x) = 1

β
+ ϕ(x)TSNϕ(x)

• 1

β
is a measure of the uncertainty intrinsic to observed data (noise)

• ϕ(x)TSNϕ(x) is the uncertainty wrt the values derived for the parameters w
• as the noise distribution and the distribution of w are independent gaussians, their
variances add
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EXAMPLE

• predictive distribution for f(x) = sin 2πx, applying a model with 9 gaussian base functions
and training sets of 1, 2, 4, 25 items, respectively

• left: items in training sets (sampled uniformly, with added gaussian noise); expectation of
the predictive distribution (red), as function of x; variance of such distribution (pink shade
within 1 standard deviation from mean), as a function of x

• right: items in training sets, 5 possible curves approximating f(x) = sin 2πx, derived through
sampling from the posterior distribution p(w|t,Φ, α, β)
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EXAMPLE
n = 1

n = 2
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EXAMPLE
n = 4

n = 25
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FULLY BAYESIAN REGRESSION AND HYPERPARAMETER MARGINALIZATION

• In a fully bayesian approach, also the hyper-parameters α, β are marginalized

p(t|x, t,Φ) =

∫
p(t|x,w, β)p(w|t,Φ, α, β)p(α, β|t,Φ)dwdαdβ

where, as seen before,
• p(t|x,w, β) = N (t|wTϕ(x), β)
• p(w|t,Φ, α, β) = N (w|mN, SN), with SN = (αI + βΦTΦ)−1 e mN = βSNΦTt

this marginalization wrt w, α, β is analytically intractable
• we may consider approximation methods
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