MACHINE LEARNING

Some notes on Statistical Learning Theory

Corso di Laurea Magistrale in Informatica

Università di Roma Tor Vergata

Giorgio Gambosi

a.a. 2024–2025

LEARNING ALGORITHMS AND ERM

Learning Algorithm \mathcal{A} :

- Takes a dataset $\mathcal T$ with pairs from $\mathcal X\times\mathcal Y$
- Returns a predictor $A_{\mathcal{T}}$ computing a function $h_{\mathcal{T}}: \mathcal{X} \mapsto \mathcal{Y}$

Hypothesis Class \mathcal{H} :

- The search space for selecting $h_{\mathcal{T}}$
- Also known as the Inductive bias

EMPIRICAL RISK MINIMIZATION (ERM)

ERM Algorithm:

• Finds the predictor h_T minimizing the training error:

$$ERM(\mathcal{T}) = h_{\mathcal{T}} = \operatorname*{argmin}_{h} \overline{\mathcal{R}}_{\mathcal{T}}(h)$$

where

$$\overline{\mathcal{R}}_{\mathcal{T}}(h) = \frac{1}{|\mathcal{T}|} \sum_{(\mathbf{x},t)\in\mathcal{T}} L(h(\mathbf{x}),t) = 0$$

• Requires the specification of \mathcal{H} :

$$\textit{ERM}(\mathcal{T},\mathcal{H}) = h_{\mathcal{T},\mathcal{H}} = \operatorname*{argmin}_{h \in \mathcal{H}} \overline{\mathcal{R}}_{\mathcal{T}}(h)$$

Key Question in Learning Theory:

• Over which hypothesis classes will a learning algorithm (e.g., ERM) result in limited risk for various training sets?

SKETCH OF THE SITUATION

Finite Hypothesis Class \mathcal{H} , Realizability, and 0-1 loss

A bounded hypothesis class $\mathcal H$ ensures that overfitting does not occur if the dataset $\mathcal T$ is large enough.

• **Realizability Assumption**: There exists a predictor $h^* \in \mathcal{H}$ with no classification errors:

$$\mathcal{R}_{p_M,f}(h^*) = \mathop{\mathbb{E}}_{\mathbf{x} \sim p_M} \left[L(h^*(\mathbf{x}), f(\mathbf{x})) \right] = \mathop{\mathbb{E}}_{\mathbf{x} \sim p_M} \left[\left| \mathbf{x} \in \mathcal{X} : h^*(\mathbf{x}) \neq f(\mathbf{x}) \right| \right] = 0$$

• h^* correctly classifies all elements in \mathcal{T} :

$$\overline{\mathcal{R}}_{\mathcal{T}}(h^*) = \frac{1}{|\mathcal{T}|} \sum_{(\mathbf{x},t)\in\mathcal{T}} \mathcal{L}(h^*(\mathbf{x}),t) = \frac{|(\mathbf{x},t)\in\mathcal{T}:h^*(\mathbf{x})\neq t|}{|\mathcal{T}|} = 0$$

EMPIRICAL RISK MINIMIZATION (ERM) AND REALIZABILITY

Under the realizability assumption, ERM returns an optimal predictor h_T on T:

 $\overline{\mathcal{R}}_{\mathcal{T}}(\boldsymbol{h}_{\mathcal{T}}) = 0$

- ERM may return $h_T = h^*$, which would be optimal for all elements in \mathcal{X} .
- However, it is possible that $h_T \neq h^*$, meaning ERM performs optimally on T but may not generalize perfectly:

 $\mathcal{R}_{p_M,f}(h_{\mathcal{T}}) > 0$

DEFINITIONS: BAD PREDICTORS AND BAD SETS

• A predictor $h \in \mathcal{H}$ is **bad** if it makes too many (expected) errors on \mathcal{X} :

 $\mathcal{R}_{p_M,f}(h) > \varepsilon$

 A set X ⊂ X is bad if applying ERM on it could result in selecting a bad predictor, that is if there exists a predictor h_T such that:

 $\overline{\mathcal{R}}_{\mathcal{T}}(h) = 0$ but $\mathcal{R}_{p_M,f}(h_{\mathcal{T}}) > \varepsilon$

• If h_T is ideed the predictor returned by ERM, then \mathcal{X} is very bad.

STUDYING BAD SETS AND DATASET SIZE

We want to study how many examples are necessary to ensure that the probability of a bad dataset is small, for example less than a given $\delta \in (0, 1)$

$$\mathbb{P}_{\mathcal{T} \sim p^n} \left[\exists \tilde{h} \text{ bad} : \overline{\mathcal{R}}_{\mathcal{T}}(\tilde{h}) = 0 \right] \leq \delta$$

• This holds if:

$$\delta \geq |\mathcal{H}| e^{-\varepsilon n}$$

• Which implies:

$$n \geq \frac{1}{\varepsilon} \ln \frac{|\mathcal{H}|}{\delta}$$

That is, if *n* is greater than this bound, ERM returns with probability at least $1 - \delta$ a predictor with makes an expected fraction of errors smaller than ε .

IMPLICATIONS OF DATASET SIZE *n*

- The probability of a bad dataset decreases as *n* increases.
- *n* must increase (logarithmically) if:
 - The size of $\mathcal H$ increases.
 - The definition of a bad predictor is made stricter (smaller ε).

PAC LEARNING

Probably Approximately Correct (PAC) Learning applies to binary classification problems with 0-1 loss as a measure of error.

- A hypothesis class H is PAC learnable if there exists a learning algorithm A that, with high probability, returns a predictor with low risk, if it may access enough training examples.
- that is, given $\varepsilon, \delta \in (0, 1)$, \mathcal{A} returns a predictor with risk $R_{p_M, f}(h_T) \leq \varepsilon$, with probability at least 1δ , given enough training examples.

PAC LEARNABILITY DEFINITION

Definition (PAC Learnability)

A hypothesis class \mathcal{H} is PAC learnable if there exists a function $m_{\mathcal{H}}(\varepsilon, \delta)$ and a learning algorithm \mathcal{A} such that:

- For every distribution p_M over \mathcal{X} and every function f, under the realizability assumption $(\mathcal{R}_{p_M,f}(h^*) = 0)$,
- For a training set T of size $n \ge m_{\mathcal{H}}(\varepsilon, \delta)$,
- \mathcal{A} returns a predictor $h_{\mathcal{T}}$ with probability at least 1δ that has risk $R_{p_M,f}(h_{\mathcal{T}}) \leq \varepsilon$.

ACCURACY AND CONFIDENCE PARAMETERS

- Accuracy parameter ε: Determines how close the output predictor is to the optimal one ("approximately correct").
- **Confidence parameter** *δ*: Indicates the likelihood that the predictor meets the accuracy requirement ("probably correct").

The sample complexity $m_{\mathcal{H}}(\varepsilon, \delta)$ defines the minimum number of examples required to ensure that an approximately correct (with risk less than ε) predictor is probably (with probability greater than $1 - \delta$) selected.

• For finite \mathcal{H} , the sample complexity is upper bounded by the previously obtained value:

$$m_{\mathcal{H}}(\varepsilon,\delta) \leq \left\lceil \frac{1}{\varepsilon} \ln \frac{|\mathcal{H}|}{\delta}
ight
ceil$$

EXTENDING PAC LEARNABILITY: PROBABILISTIC FRAMEWORK

In the probabilistic setting, target values t and inputs x are related by a conditional distribution $p_c(\mathbf{x}, t)$. The goal is to minimize the expected risk, that is finding the predictor h^* such that:

$$h^{*}(\mathbf{x}) = \operatorname*{argmin}_{y \in \mathcal{Y}} \mathop{\mathbb{E}}_{t \sim p_{\mathcal{C}}(\cdot | \mathbf{x})} [L(y, t)] = \operatorname*{argmin}_{y \in \{0, 1\}} p_{\mathcal{C}}(t \neq y | \mathbf{x})$$

- h* is called the Bayes predictor, h_{Bayes}
- since h_{Bayes} is optimal, for any learning algorithm \mathcal{A} (including *ERM*) and for any training set \mathcal{T} , the risk of the predictor $h_{\mathcal{T}}$ returned by \mathcal{A} when applied on \mathcal{T} will be greater then (or equal at least) than the minimal possible risk, that of h_{Bayes} , that is $\mathcal{R}_p(h_{\mathcal{T}}) \geq \mathcal{R}_p(h_{\text{Bayes}})$
- however, h_{Bayes} requires knowledge of $p_{\text{C}}(t|\mathbf{x})$, which is unknown by hypothesis

The No Free Lunch theorem (later on this) states that if no prior assumptions about $p(\mathbf{x}, t)$ is made, then there exists no learning algorithm that guarantees that, for any \mathcal{T} , the predictor $h_{\mathcal{T}}$ returned is as good as the bayesian one.

We may then require that the learning algorithm for most datasets returns a predictor h_T with risk greater, but not too much greater, than $\mathcal{R}_p(h^*)$, the risk of the best predictor $h^* \in \mathcal{H}$, whose risk is in general itself greater than h_{Bayes} . In doing this, we also generalize to the case when the realizability assumption does not hold (called agnostic)

AGNOSTIC PAC LEARNING DEFINITION

In the agnostic setting, the goal is to return a predictor with risk close to the best possible within \mathcal{H} :

Definition (Agnostic PAC Learnability)

A hypothesis class \mathcal{H} is agnostic PAC learnable if for every $\varepsilon, \delta \in (0, 1)$, there exists a function $m_{\mathcal{H}}(\varepsilon, \delta)$ and an algorithm that, given $n \ge m_{\mathcal{H}}(\varepsilon, \delta)$ training examples, returns a predictor h such that:

 $\mathcal{R}_p(h^*) \leq \mathcal{R}_p(h) \leq \mathcal{R}_p(h^*) + \varepsilon$

with probability at least $1 - \delta$, where $\mathcal{R}_p(h) = \mathop{\mathbb{E}}_{(x,t)\sim p}[|h(x) \neq t|)]$ and h^* is the best predictor in \mathcal{H} .

Agnostic PAC Learnability can be extended to general loss functions:

Definition (Agnostic PAC Learnability for General Loss Functions)

A hypothesis class \mathcal{H} is agnostic PAC learnable with respect to a loss function l if, for every $\varepsilon, \delta \in (0, 1)$, the algorithm returns a predictor h such that:

 $\mathcal{R}_p(h^*) \leq \mathcal{R}_p(h) \leq \mathcal{R}_p(h^*) + \varepsilon$

with probability at least $1 - \delta$, where $\mathcal{R}_p(h) = \mathop{\mathbb{E}}_{(x,t) \sim p}[|h(x) \neq t|)]$ and h^* is the best predictor in \mathcal{H} .

EMPIRICAL RISK, TRUE RISK, AND REPRESENTATIVE SETS

ERM selects a predictor $h_{\mathcal{T}}$ that minimizes the empirical risk $\overline{\mathcal{R}}_{\mathcal{T}}(h)$ on the training set \mathcal{T} . It should closely approximate the true risk across the entire hypothesis class for ERM to be effective. This is a property of \mathcal{T} :

Definition (ε -representative sample)

A training set T is ε -representative if:

 $\forall h \in \mathcal{H}, |\overline{\mathcal{R}}_{\mathcal{T}}(h) - \mathcal{R}_p(h)| \leq \varepsilon$

ERM AND APPROXIMATION QUALITY

If \mathcal{T} is $\frac{\varepsilon}{2}$ -representative, the predictor returned by ERM satisfies:

 $\mathcal{R}_p(h_T) \leq \mathcal{R}_p(h^*) + \varepsilon$

This guarantees that the ERM predictor is close to the best predictor in \mathcal{H} , with only a small error margin.

ENSURING ERM'S EFFECTIVENESS: UNIFORM CONVERGENCE

Definition (Uniform Convergence)

A hypothesis class \mathcal{H} has the uniform convergence property if there exists a function $m_{\mathcal{H}}^{UC}(\varepsilon, \delta)$ such that for all $\varepsilon, \delta \in (0, 1)$, and any distribution $p(\mathbf{x}, t)$, a training set \mathcal{T} of size $n \ge m_{\mathcal{H}}^{UC}(\varepsilon, \delta)$ is ε -representative with probability $1 - \delta$.

SAMPLE COMPLEXITY FOR UNIFORM CONVERGENCE

The sample complexity $m_{\mathcal{H}}^{UC}(\varepsilon, \delta)$ for finite hypothesis classes is given by:

$$m_{\mathcal{H}}^{\mathsf{UC}}(\varepsilon,\delta) \leq \left\lceil \frac{1}{2\varepsilon^2} \ln \frac{2|\mathcal{H}|}{\delta} \right\rceil$$

Thus, \mathcal{H} is PAC learnable using the ERM algorithm with sample complexity:

$$m_{\mathcal{H}}(\varepsilon,\delta) \leq \left\lceil \frac{1}{\varepsilon^2} \ln \frac{2|\mathcal{H}|}{\delta} \right
chi$$

FINITE VS. INFINITE CLASSES

- Finite hypothesis classes are PAC learnable via ERM with logarithmic sample complexity.
- For infinite hypothesis classes, discretization can give a rough sample complexity estimate.

For a hypothesis class parameterized by *d* real-valued parameters, the effective size in practice is constrained by floating-point precision:

 $|\mathcal{H}| \approx 2^{64d}$

Thus, the sample complexity is approximately:

$$\frac{128d + 2\ln\frac{2}{\delta}}{\varepsilon^2}$$

What about if we do not rely on discretization?

INDUCTIVE BIAS AND HYPOTHESIS CLASS

- Choosing a hypothesis class $\mathcal H$ incorporates prior knowledge about the data.
- This prior knowledge reflects the belief that \mathcal{H} contains a low-risk predictor.

A universal learner would find a low-risk hypothesis for any distribution *p*.

No universal learner exists.

Theorem (No-Free-Lunch)

Let A be a learning algorithm over domain X, and $n < \frac{|X|}{2}$. There exists a distribution \overline{p}_A such that:

- 1. There exists a predictor $h^* : \mathcal{X} \mapsto \{0, 1\}$ with $R_{\overline{p}_{\mathcal{A}}}(h^*) = 0$ (that is the realizability assumption holds on $\mathcal{X} \mapsto \{0, 1\}$ if pairs are distributed according to $\overline{p}_{\mathcal{A}}$).
- 2. With probability at least 1/7 over the choice of a dataset T of size n of i.i.d. pairs, each sampled according to \overline{p}_{A} , we have that $R_{\overline{p}_{A}}(h_{A},\tau) \geq 1/8$, where $h_{A,T}$ is the predictor returned by A when applied on T.

IMPLICATIONS OF NO-FREE-LUNCH

- For every learner, there exists a task (a distribution on $\mathcal{X} \times \mathcal{Y}$) on which it fails, even though that task can be successfully learned by another learner.
- Let us consider the hypothesis class \mathcal{F} of all the functions f from an infinite-size \mathcal{X} to $\{0, 1\}$. This class represents lack of prior knowledge: every possible function from \mathcal{X} to $\mathcal{Y} = \{0, 1\}$ is considered. According to the No Free Lunch theorem, any learning algorithm that chooses a predictor from hypotheses in \mathcal{F} , and in particular the *ERM* algorithm, will fail on some learning task. Therefore, the absence of prior knowledge results in the class \mathcal{F} that is not PAC learnable.
- If we do not restrict ourselves to a subset of all functions from \mathcal{X} to $\{0,1\}$ (i.e. choose a hypothesis space), there will always be a probability distribution \overline{p} that makes any learning algorithm return a "bad" predictor with high probability, even though there exists one with zero error. This implies that no algorithm will be able to PAC-learn this target function.
- Choosing a suitable hypothesis class is crucial for learning a given function. This way we restrict ourselves to a subset of all possible functions from \mathcal{X} {0,1}, which helps us avoiding unfavourable distributions and might allow us to find a low-error hypothesis with high probability.

BIAS-COMPLEXITY TRADEOFF

- The chosen hypothesis class might exclude the best possible predictor.
- But we could find an approximation in the hypothesis class.
- However, this best approximation might be a poor predictor for the true target.
- This tradeoff is referred to as the Bias-Complexity Tradeoff.

RISK DECOMPOSITION

$$\mathcal{R}_{p}(h_{\mathcal{T}}) - \mathcal{R}_{p}(h_{\mathsf{Bayes}}) = \underbrace{(\mathcal{R}_{p}(h_{\mathcal{T}}) - \mathcal{R}_{p}(h^{*}))}_{\text{estimation error}} + \underbrace{(\mathcal{R}_{p}(h^{*}) - \mathcal{R}_{p}(h_{\mathsf{Bayes}}))}_{\text{approximation error}} = \varepsilon_{\mathsf{V}} + \varepsilon_{\mathsf{B}}$$

- h^* : Best predictor in \mathcal{H}
- *h*_{Bayes}: Absolute best predictor for the task

APPROXIMATION ERROR

- ϵ_B : it is a function of the minimum risk achievable by any $h \in \mathcal{H}$.
- It is a property of the hypothesis class $\mathcal H$ with respect to the prediction task.
- It is independent from the training set.
- This is referred to as bias.

ESTIMATION ERROR

- ϵ_{V} : it is the difference between the minimum risk achievable in \mathcal{H} and the risk of the best predictor in \mathcal{H} obtained by considering the training set.
- Related to how well ERM estimates the best predictor based on the given training set.
- Reflects how much a predictor from a random training set may perform worse than the best possible predictor.
- Its expectation with respect to all possible training sets is a measure of how much a predictor derived from a random training set may result in poorer performances with respect to the best possible one. This is called variance

BIAS-VARIANCE TRADEOFF IN HYPOTHESIS CLASS ${\mathcal H}$

- The choice of hypothesis class \mathcal{H} is subject to a bias-variance tradeoff.
- Higher bias tends to induce lower variance, and vice versa.

Estimation and approximation error illustration.

Some notes on Statistical Learning Theory

HIGH BIAS AND LOW VARIANCE: UNDERFITTING

- Predictors from different training sets behave similarly with low variance.
- All predictors perform poorly (high bias), as ${\mathcal H}$ is too poor for the task.
- This results in underfitting.

LOW BIAS AND HIGH VARIANCE: OVERFITTING

- \mathcal{H} contains many predictors, including a good one (low bias).
- Predictors can vary significantly across training sets (high variance).
- While a good performance may be achieved on the training set, the predictor might behave poorly on new data, leading to overfitting.

LARGE HYPOTHESIS SPACE AND OVERFITTING

- A large \mathcal{H} may contain complex functions, making the approximation error small.
- The Bayes classifier might even be contained in ${\mathcal H}$ or closely approximated.
- However, the estimation error increases, leading to overfitting.

Bias and variance illustration.

SMALL HYPOTHESIS SPACE AND UNDERFITTING

- \bullet A small hypothesis class ${\cal H}$ results in a large approximation error.
- However, the estimation error is small, leading to underfitting.

Bias and variance vs model complexity.

Learning Theory: Balancing ${\cal H}$

- $\bullet\,$ Learning theory studies how rich we can make ${\cal H}$ while maintaining a reasonable estimation error.
- Good predictor classes should have low approximation error and moderate estimation error.
- Practical approaches focus on balancing bias and variance.

MODEL SELECTION

- In practice, predictors are defined by specific hyper-parameters and types.
- The process of selecting the right type of predictor and hyper-parameters is called model selection.
- Learning algorithms like ERM help select the best predictor from the defined class.

Finiteness is sufficient but not necessary for learnability. We wish to define a more general and useful measure of complexity,

Given a subset $C = \{c_1, ..., c_m\} \subset \mathcal{X}$ of \mathcal{X} , we define the *restriction* of \mathcal{H} to C as the set of functions $f: C \mapsto \{0, 1\}$ that can be derived from predictors in \mathcal{H} (i.e., such that for each $f \in C$ there exists a predictor $h \in \mathcal{H}$ for which $f(c_i) = h(c_i), i = 1, ..., m$). If we describe each function from C to $\{0, 1\}$ as a vector in $\{0, 1\}^{|C|}$, we can formally write it as

$$\mathcal{H}_{\mathsf{C}} = \{(h(\mathsf{c}_1), ..., h(\mathsf{c}_m)) : h \in \mathcal{H}\}.$$

This means that for every binary labeling of the elements of *C* (and thus for every possible binary classification task on *C*), there exists a predictor in \mathcal{H} that separates the two classes, in the sense that it correctly predicts the target values of each element c_i . In this case, we say that \mathcal{H} shatters *C*.

The VC-Dimension VCdim(H) of a class H is the size of the largest subset of X which is shattered by H.

From the No-Free-Lunch theorem, we know that the set of all functions from a domain to $\{0, 1\}$ is not PAC-learnable. However, the proof of this statement is based on the assumption that we are considering all possible functions: it is reasonable to assume that introducing limitations on the hypothesis class might bring advantages

VC-Dimension makes it possible to characterize "good" limitations (at least in a theoretical framework)

Example: Threshold Functions \mathcal{H}^{thr}

Threshold function with threshold θ :

$$\mathcal{H}_{\theta} = \{\mathbb{1}[\mathsf{x} < \theta]; \theta \in \mathbb{R}\}.$$

- $\operatorname{VCdim}(\mathcal{H}^{\operatorname{thr}}) = 1$
- For 1 point set, $C = \{c_1\}$ can be shattered by $\theta = c_1 + 1$ which implies $h_{\theta}(c_1) = 1$, or $\theta = c_1 1$, which results into $h_{\theta}(c_1) = 0$
- For 2 point set, $C = \{c_1, c_2\}$ with $c_1 > c_2$ with labeling $c_1 = 1, c_2 = 0$ cannot be shattered

Example: Axis-Aligned Rectangles $\mathcal{H}^{\text{rect}}$

• $VCdim(\mathcal{H}^{rect}) = 4$: 4 points can be shattered.

Shattering a set of 4 points with axis-aligned rectangles.

Example: Axis-Aligned Rectangles $\mathcal{H}^{\text{rect}}$

• For any set of 5 points, there is always one point inside the bounding box, so 5 points cannot be shattered.

The impossibility of shattering a set of 5 elements using axis-aligned rectangles.

Example: Intervals on $\mathbb{R} \ \mathcal{H}^{\text{int}}$

- $VCdim(\mathcal{H}^{int}) = 2$: Only sets of 2 points can be shattered.
- For $C = \{c_1, c_2, c_3\}$, the labeling (1, 0, 1) cannot be obtained.

Shattering a 2-element set using intervals.

Finite Hypothesis Classes \mathcal{H}^{fin}

- In general, in order to shatter a set C we need $2^{|C|}$ predictors.
- For a finite class \mathcal{H}^{fin} , $|\mathcal{H}_{C}^{fin}| \leq |\mathcal{H}^{fin}|$
- C cannot be shattered by \mathcal{H}^{fin} if $|\mathcal{H}^{\text{fin}}| < 2^{|\mathcal{C}|}$
- Then, $\text{VCdim}(\mathcal{H}^{\text{fin}}) \leq \log_2 |\mathcal{H}|$

The PAC learnability of finite classes then derives from the more general property PAC learnability of classes with finite VC-dimension.

However, note that the VC-dimension of a finite class \mathcal{H}^{fin} can be significantly smaller than $\log_2(|\mathcal{H}^{\text{fin}}|)$. For example, let $\mathcal{X} = \{1, \ldots, k\}$ for some integer k, and consider the class of threshold functions on \mathcal{H} . Then, $|\mathcal{H}| = k$ but $\text{VCdim}(\mathcal{H}) = 1$. Since k can be arbitrarily large, the difference between $\log_2(|\mathcal{H}|)$ and $\text{VCdim}(\mathcal{H})$ can be arbitrarily large.

FUNDAMENTAL THEOREM OF STATISTICAL LEARNING

Let \mathcal{H} be a class of hypotheses $h : \mathcal{X} \to \{0, 1\}$ for binary classification, and let the 0 - 1 loss be the considered cost function. Then, the following statements are equivalent:

- 1. \mathcal{H} has a finite VC-dimension.
- 2. \mathcal{H} is agnostic PAC-learnable, and there exist constants $c_1 < c_2$ such that its sample complexity $m_{\mathcal{H}}(\varepsilon, \delta)$ is upper and lower bounded as

$$\frac{\mathsf{c}_1}{\varepsilon^2}\left(\mathsf{d}+\ln\frac{1}{\delta}\right) \leq \mathsf{m}_{\mathcal{H}}(\varepsilon,\delta) \leq \frac{\mathsf{c}_2}{\varepsilon^2}\left(\mathsf{d}+\ln\frac{1}{\delta}\right)$$

Moreover, this property holds also when ERM is applied (that is, it is a successful agnostic PAC-learning algorithm for \mathcal{H}).

3. \mathcal{H} is PAC-learnable, and its sample complexity $m_{\mathcal{H}}(\varepsilon, \delta)$ is upper and lower bounded as

$$\frac{\mathsf{c}_1}{\varepsilon}\left(\mathsf{d}+\ln\frac{1}{\delta}\right) \leq \mathsf{m}_{\mathcal{H}}(\varepsilon,\delta) \leq \frac{\mathsf{c}_2}{\varepsilon}\left(\mathsf{d}+\ln\frac{1}{\delta}\right)$$

Moreover, this property holds also when ERM is applied (that is, it is a successful PAC-learner for \mathcal{H}).