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LEARNING ALGORITHMS AND ERM

Learning Algorithm A:
• Takes a dataset T with pairs from X × Y
• Returns a predictor AT computing a function hT : X 7→ Y

Hypothesis Class H:
• The search space for selecting hT
• Also known as the Inductive bias
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EMPIRICAL RISK MINIMIZATION (ERM)

ERM Algorithm:
• Finds the predictor hT minimizing the training error:

ERM(T ) = hT = argmin
h

RT (h)

where
RT (h) = 1

|T |
∑

(x,t)∈T

L(h(x), t) = 0

• Requires the specification of H:

ERM(T ,H) = hT ,H = argmin
h∈H

RT (h)

Key Question in Learning Theory:
• Over which hypothesis classes will a learning algorithm (e.g., ERM) result in limited risk for
various training sets?

Giorgio Gambosi Some notes on Statistical Learning Theory Slide 3 / 46



SKETCH OF THE SITUATION
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FINITE HYPOTHESIS CLASSH, REALIZABILITY, AND 0-1 LOSS

A bounded hypothesis class H ensures that overfitting does not occur if the dataset T is large
enough.
• Realizability Assumption: There exists a predictor h∗ ∈ H with no classification errors:

RpM,f(h
∗) = E

x∼pM
[ L(h∗(x), f(x)) ] = E

x∼pM
[ |x ∈ X : h∗(x) 6= f(x)| ] = 0

• h∗ correctly classifies all elements in T :

RT (h∗) = 1

|T |
∑

(x,t)∈T

L(h∗(x), t) = |(x, t) ∈ T : h∗(x) 6= t|
|T | = 0
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EMPIRICAL RISK MINIMIZATION (ERM) AND REALIZABILITY

Under the realizability assumption, ERM returns an optimal predictor hT on T :

RT (hT ) = 0

• ERM may return hT = h∗, which would be optimal for all elements in X .
• However, it is possible that hT 6= h∗, meaning ERM performs optimally on T but may not
generalize perfectly:

RpM,f(hT ) > 0
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DEFINITIONS: BAD PREDICTORS AND BAD SETS

• A predictor h ∈ H is bad if it makes too many (expected) errors on X :

RpM,f(h) > ε

• A set X ⊂ X is bad if applying ERM on it could result in selecting a bad predictor, that is if
there exists a predictor hT such that:

RT (h) = 0 but RpM,f(hT ) > ε

• If hT is ideed the predictor returned by ERM, then X is very bad.
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STUDYING BAD SETS AND DATASET SIZE

We want to study how many examples are necessary to ensure that the probability of a bad
dataset is small, for example less than a given δ ∈ (0, 1)

P
T ∼pn

[
∃h̃ bad : RT (h̃) = 0

]
≤ δ

• This holds if:
δ ≥ |H|e−εn

• Which implies:
n ≥ 1

ε
ln |H|

δ

That is, if n is greater than this bound, ERM returns with probability at least 1− δ a predictor with
makes an expected fraction of errors smaller than ε.
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IMPLICATIONS OF DATASET SIZE n

• The probability of a bad dataset decreases as n increases.
• n must increase (logarithmically) if:

• The size ofH increases.
• The definition of a bad predictor is made stricter (smaller ε).
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PAC LEARNING

Probably Approximately Correct (PAC) Learning applies to binary classification problems with 0-1
loss as a measure of error.
• A hypothesis class H is PAC learnable if there exists a learning algorithm A that, with high
probability, returns a predictor with low risk, if it may access enough training examples.

• that is, given ε, δ ∈ (0, 1), A returns a predictor with risk RpM,f(hT ) ≤ ε, with probability at
least 1− δ, given enough training examples.
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PAC LEARNABILITY DEFINITION

Definition (PAC Learnability)

A hypothesis class H is PAC learnable if there exists a function mH(ε, δ) and a learning algorithm
A such that:
• For every distribution pM over X and every function f, under the realizability assumption
(RpM,f(h

∗) = 0),
• For a training set T of size n ≥ mH(ε, δ),
• A returns a predictor hT with probability at least 1− δ that has risk RpM,f(hT ) ≤ ε.
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ACCURACY AND CONFIDENCE PARAMETERS

• Accuracy parameter ε: Determines how close the output predictor is to the optimal one
(“approximately correct”).

• Confidence parameter δ: Indicates the likelihood that the predictor meets the accuracy
requirement (“probably correct”).
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SAMPLE COMPLEXITY IN PAC LEARNING

The sample complexity mH(ε, δ) defines the minimum number of examples required to ensure
that an approximately correct (with risk less than ε) predictor is probably (with probability
greater than 1− δ) selected.
• For finite H, the sample complexity is upper bounded by the previously obtained value:

mH(ε, δ) ≤
⌈
1

ε
ln |H|

δ

⌉
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EXTENDING PAC LEARNABILITY: PROBABILISTIC FRAMEWORK

In the probabilistic setting, target values t and inputs x are related by a conditional distribution
pC(x, t). The goal is to minimize the expected risk, that is finding the predictor h∗ such that:

h∗(x) = argmin
y∈Y

E
t∼pC(·|x)

[ L(y, t) ] = argmin
y∈{0,1}

pC(t 6= y|x)

• h∗ is called the Bayes predictor, hBayes
• since hBayes is optimal, for any learning algorithm A (including ERM) and for any training set

T , the risk of the predictor hT returned by A when applied on T will be greater then (or
equal at least) than the minimal possible risk, that of hBayes, that is Rp(hT ) ≥ Rp(hBayes)

• however, hBayes requires knowledge of pC(t|x), which is unknown by hypothesis

Giorgio Gambosi Some notes on Statistical Learning Theory Slide 14 / 46



AGNOSTIC PAC LEARNING DEFINITION

The No Free Lunch theorem (later on this) states that if no prior assumptions about p(x, t) is
made, then there exists no learning algorithm that guarantees that, for any T , the predictor hT
returned is as good as the bayesian one.

We may then require that the learning algorithm for most datasets returns a predictor hT with
risk greater, but not too much greater, than Rp(h∗), the risk of the best predictor h∗ ∈ H, whose
risk is in general itself greater than hBayes. In doing this, we also generalize to the case when the
realizability assumption does not hold (called agnostic)
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AGNOSTIC PAC LEARNING DEFINITION

In the agnostic setting, the goal is to return a predictor with risk close to the best possible within
H:

Definition (Agnostic PAC Learnability)

A hypothesis class H is agnostic PAC learnable if for every ε, δ ∈ (0, 1), there exists a function
mH(ε, δ) and an algorithm that, given n ≥ mH(ε, δ) training examples, returns a predictor h such
that:

Rp(h∗) ≤ Rp(h) ≤ Rp(h∗) + ε

with probability at least 1− δ, where Rp(h) = E
(x,t)∼p

[ |h(x) 6= t|) ] and h∗ is the best predictor in H.
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GENERALIZING TO GENERAL LOSS FUNCTIONS

Agnostic PAC Learnability can be extended to general loss functions:

Definition (Agnostic PAC Learnability for General Loss Functions)

A hypothesis class H is agnostic PAC learnable with respect to a loss function l if, for every
ε, δ ∈ (0, 1), the algorithm returns a predictor h such that:

Rp(h∗) ≤ Rp(h) ≤ Rp(h∗) + ε

with probability at least 1− δ, where Rp(h) = E
(x,t)∼p

[ |h(x) 6= t|) ] and h∗ is the best predictor in H.
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EMPIRICAL RISK, TRUE RISK, AND REPRESENTATIVE SETS

ERM selects a predictor hT that minimizes the empirical risk RT (h) on the training set T . It
should closely approximate the true risk across the entire hypothesis class for ERM to be
effective. This is a property of T :

Definition (ε-representative sample)

A training set T is ε-representative if:

∀h ∈ H, |RT (h)−Rp(h)| ≤ ε
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ERM AND APPROXIMATION QUALITY

If T is ε
2
-representative, the predictor returned by ERM satisfies:

Rp(hT ) ≤ Rp(h∗) + ε

This guarantees that the ERM predictor is close to the best predictor in H, with only a small error
margin.
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ENSURING ERM’S EFFECTIVENESS: UNIFORM CONVERGENCE

Definition (Uniform Convergence)

A hypothesis class H has the uniform convergence property if there exists a function mUC
H (ε, δ)

such that for all ε, δ ∈ (0, 1), and any distribution p(x, t), a training set T of size n ≥ mUC
H (ε, δ) is

ε-representative with probability 1− δ.
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SAMPLE COMPLEXITY FOR UNIFORM CONVERGENCE

The sample complexity mUC
H (ε, δ) for finite hypothesis classes is given by:

mUC
H (ε, δ) ≤

⌈
1

2ε2
ln 2|H|

δ

⌉
Thus, H is PAC learnable using the ERM algorithm with sample complexity:

mH(ε, δ) ≤
⌈
1

ε2
ln 2|H|

δ

⌉
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FINITE VS. INFINITE CLASSES

• Finite hypothesis classes are PAC learnable via ERM with logarithmic sample complexity.
• For infinite hypothesis classes, discretization can give a rough sample complexity estimate.
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GENERALIZING TO INFINITE HYPOTHESIS CLASSES

For a hypothesis class parameterized by d real-valued parameters, the effective size in practice is
constrained by floating-point precision:

|H| ≈ 264d

Thus, the sample complexity is approximately:

128d+ 2 ln 2
δ

ε2

What about if we do not rely on discretization?
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INDUCTIVE BIAS AND HYPOTHESIS CLASS

• Choosing a hypothesis class H incorporates prior knowledge about the data.
• This prior knowledge reflects the belief that H contains a low-risk predictor.

A universal learner would find a low-risk hypothesis for any distribution p.
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NO-FREE-LUNCH THEOREM

No universal learner exists.

Theorem (No-Free-Lunch)

Let A be a learning algorithm over domain X , and n < |X|
2
. There exists a distribution pA such

that:
1. There exists a predictor h∗ : X 7→ {0, 1} with RpA(h∗) = 0 (that is the realizability assumption
holds on X 7→ {0, 1} if pairs are distributed according to pA).

2. With probability at least 1/7 over the choice of a dataset T of size n of i.i.d. pairs, each
sampled according to pA, we have that RpA(hA,T ) ≥ 1/8, where hA,T is the predictor returned
by A when applied on T .
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IMPLICATIONS OF NO-FREE-LUNCH

• For every learner, there exists a task (a distribution on X × Y) on which it fails, even though
that task can be successfully learned by another learner.

• Let us consider the hypothesis class F of all the functions f from an infinite-size X to {0, 1}.
This class represents lack of prior knowledge: every possible function from X to Y = {0, 1} is
considered. According to the No Free Lunch theorem, any learning algorithm that chooses a
predictor from hypotheses in F , and in particular the ERM algorithm, will fail on some
learning task. Therefore, the absence of prior knowledge results in the class F that is not PAC
learnable.

• If we do not restrict ourselves to a subset of all functions from X to {0, 1} (i.e. choose a
hypothesis space), there will always be a probability distribution p that makes any learning
algorithm return a “bad” predictor with high probability, even though there exists one with
zero error. This implies that no algorithm will be able to PAC-learn this target function.

• Choosing a suitable hypothesis class is crucial for learning a given function. This way we
restrict ourselves to a subset of all possible functions from X {0, 1}, which helps us avoiding
unfavourable distributions and might allow us to find a low-error hypothesis with high
probability.
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BIAS-COMPLEXITY TRADEOFF

• The chosen hypothesis class might exclude the best possible predictor.
• But we could find an approximation in the hypothesis class.
• However, this best approximation might be a poor predictor for the true target.
• This tradeoff is referred to as the Bias-Complexity Tradeoff.
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RISK DECOMPOSITION

Rp(hT )−Rp(hBayes) = (Rp(hT )−Rp(h∗)︸ ︷︷ ︸
estimation error

+(Rp(h∗)−Rp(hBayes))︸ ︷︷ ︸
approximation error

= εV + εB

• h∗: Best predictor in H
• hBayes: Absolute best predictor for the task
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APPROXIMATION ERROR

• ϵB: it is a function of the minimum risk achievable by any h ∈ H.
• It is a property of the hypothesis class H with respect to the prediction task.
• It is independent from the training set.
• This is referred to as bias.
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ESTIMATION ERROR

• ϵV: it is the difference between the minimum risk achievable in H and the risk of the best
predictor in H obtained by considering the training set.

• Related to how well ERM estimates the best predictor based on the given training set.
• Reflects how much a predictor from a random training set may perform worse than the best
possible predictor.

• Its expectation with respect to all possible training sets is a measure of how much a
predictor derived from a random training set may result in poorer performances with respect
to the best possible one. This is called variance
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BIAS-VARIANCE TRADEOFF IN HYPOTHESIS CLASSH
• The choice of hypothesis class H is subject to a bias-variance tradeoff.
• Higher bias tends to induce lower variance, and vice versa.

Estimation and approximation error illustration.
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HIGH BIAS AND LOW VARIANCE: UNDERFITTING

• Predictors from different training sets behave similarly with low variance.
• All predictors perform poorly (high bias), as H is too poor for the task.
• This results in underfitting.
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LOW BIAS AND HIGH VARIANCE: OVERFITTING

• H contains many predictors, including a good one (low bias).
• Predictors can vary significantly across training sets (high variance).
• While a good performance may be achieved on the training set, the predictor might behave
poorly on new data, leading to overfitting.
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LARGE HYPOTHESIS SPACE AND OVERFITTING
• A large H may contain complex functions, making the approximation error small.
• The Bayes classifier might even be contained in H or closely approximated.
• However, the estimation error increases, leading to overfitting.

Bias and variance illustration.
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SMALL HYPOTHESIS SPACE AND UNDERFITTING

• A small hypothesis class H results in a large approximation error.
• However, the estimation error is small, leading to underfitting.

Bias and variance vs model complexity.
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LEARNING THEORY: BALANCINGH

• Learning theory studies how rich we can make H while maintaining a reasonable estimation
error.

• Good predictor classes should have low approximation error and moderate estimation error.
• Practical approaches focus on balancing bias and variance.
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MODEL SELECTION

• In practice, predictors are defined by specific hyper-parameters and types.
• The process of selecting the right type of predictor and hyper-parameters is called model
selection.

• Learning algorithms like ERM help select the best predictor from the defined class.
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HYPOTHESIS CLASSES AND SET SHATTERING

Finiteness is sufficient but not necessary for learnability. We wish to define a more general and
useful measure of complexity,

Given a subset C = {c1, ..., cm} ⊂ X of X , we define the restriction ofH to C as the set of functions
f : C 7→ {0, 1} that can be derived from predictors in H (i.e., such that for each f ∈ C there exists a
predictor h ∈ H for which f(ci) = h(ci), i = 1, . . . ,m). If we describe each function from C to {0, 1}
as a vector in {0, 1}|C|, we can formally write it as

HC = {(h(c1), ...h(cm)) : h ∈ H}.

This means that for every binary labeling of the elements of C (and thus for every possible binary
classification task on C), there exists a predictor in H that separates the two classes, in the sense
that it correctly predicts the target values of each element ci. In this case, we say that H shatters
C.
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THE VAPNIK-ČERVONENKIS DIMENSION

The VC-Dimension VCdim(H) of a class H is the size of the largest subset of X which is shattered
by H.

From the No-Free-Lunch theorem, we know that the set of all functions from a domain to {0, 1} is
not PAC-learnable. However, the proof of this statement is based on the assumption that we are
considering all possible functions: it is reasonable to assume that introducing limitations on the
hypothesis class might bring advantages

VC-Dimension makes it possible to characterize “good” limitations (at least in a theoretical
framework)
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EXAMPLE: THRESHOLD FUNCTIONSHTHR

Threshold function with threshold θ:

Hθ = {1[x < θ]; θ ∈ IR}.

• VCdim(Hthr) = 1

• For 1 point set, C = {c1} can be shattered by θ = c1 + 1 which implies hθ(c1) = 1, or
θ = c1 − 1, which results into hθ(c1) = 0

• For 2 point set, C = {c1, c2} with c1 > c2 with labeling c1 = 1, c2 = 0 cannot be shattered
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EXAMPLE: AXIS-ALIGNED RECTANGLESHRECT

• VCdim(Hrect) = 4: 4 points can be shattered.

1 2

Shattering a set of 4 points with axis-aligned rectangles.
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EXAMPLE: AXIS-ALIGNED RECTANGLESHRECT

• For any set of 5 points, there is always one point inside the bounding box, so 5 points cannot
be shattered.

The impossibility of shattering a set of 5 elements using axis-aligned rectangles.
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EXAMPLE: INTERVALS ON R HINT

• VCdim(Hint) = 2: Only sets of 2 points can be shattered.
• For C = {c1, c2, c3}, the labeling (1, 0, 1) cannot be obtained.

Shattering a 2-element set using intervals.
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FINITE HYPOTHESIS CLASSESHFIN

• In general, in order to shatter a set C we need 2|C| predictors.
• For a finite class Hfin, |Hfin

C | ≤ |Hfin|
• C cannot be shattered by Hfin if |Hfin| < 2|C|

• Then, VCdim(Hfin) ≤ log2|H|

The PAC learnability of finite classes then derives from the more general property PAC learnability
of classes with finite VC-dimension.
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FINITE HYPOTHESIS CLASSESHFIN

However, note that the VC-dimension of a finite class Hfin can be significantly smaller than
log2(|H

fin|). For example, let X = {1, . . . , k} for some integer k, and consider the class of
threshold functions on H. Then, |H| = k but VCdim(H) = 1. Since k can be arbitrarily large, the
difference between log2(|H|) and VCdim(H) can be arbitrarily large.
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FUNDAMENTAL THEOREM OF STATISTICAL LEARNING
Let H be a class of hypotheses h : X → {0, 1} for binary classification, and let the 0− 1 loss be
the considered cost function. Then, the following statements are equivalent:
1. H has a finite VC-dimension.
2. H is agnostic PAC-learnable, and there exist constants c1 < c2 such that its sample
complexity mH(ε, δ) is upper and lower bounded as

c1
ε2

(
d+ ln 1

δ

)
≤ mH(ε, δ) ≤ c2

ε2

(
d+ ln 1

δ

)
Moreover, this property holds also when ERM is applied (that is, it is a successful agnostic
PAC-learning algorithm for H).

3. H is PAC-learnable, and its sample complexity mH(ε, δ) is upper and lower bounded as

c1
ε

(
d+ ln 1

δ

)
≤ mH(ε, δ) ≤ c2

ε

(
d+ ln 1

δ

)
Moreover, this property holds also when ERM is applied (that is, it is a successful PAC-learner
for H).
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