
MACHINE LEARNING
Foundations

Corso di Laurea Magistrale in Informatica
Università di Roma Tor Vergata

Giorgio Gambosi

a.a. 2024–2025



CORNERSTONE OF MACHINE LEARNING

Access to a collection of data points, each representing the observation of the values of a set of
predefined variables, as generated by an unknown process.
Fundamental assumption: these data, far from being random, possess an intrinsic
structure—albeit one that often proves elusive to identify.
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UNSUPERVISED LEARNING

We want to extract insights into the underlying structure of the data, deepening our
understanding of its inherent nature.
• involves techniques such as clustering, dimensionality reduction, or generative modeling.
• particularly compelling application of unsupervised learning: generate new data points that
are, to a high degree, indistinguishable from the original dataset. These synthetic data
points appear to be produced by the same unknown process,
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SUPERVISED LEARNING

We want to predict additional information for each data item based on existing knowledge. This
typically involves training models on labeled data to make predictions on unseen instances.
Supervised learning encompasses a wide array of tasks, including classification, regression, and
sequence prediction.

n both these scenarios, we start with a set of observations already produced by the unknown
process.

Giorgio Gambosi Foundations Slide 4 / 39



REINFORCEMENT LEARNING

Interactive relationship with the underlying process. Rather than working with a static dataset,
we engage in a dynamic, iterative procedure:
1. At each step, we interact with the process by choosing and performing an action from a set of
options

2. as a consequence, we obtain a response under the form of a reward
3. the overarching aim is to identify an optimal strategy for interacting with the unknown
process, one that maximizes the cumulative reward.

This framework finds applications in areas such as game playing, robotics, and autonomous
systems, where the ability to learn and adapt through trial and error is paramount.
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COMMON SCENARIO IN SUPERVISED AND UNSUPERVISED LEARNING

• A training set of n items is represented as a set of input vectors x1, . . . , xn. These vectors
encapsulate the features or attributes of each data point and serve as the raw material from
which we derive our model. The dimensionality and nature of these vectors can vary widely
depending on the specific problem domain.

• In the case of supervised learning, the training set is augmented with a target vector
t = {t1, . . . , tn}, where each ti specifies the value to be predicted on the basis of the
corresponding input vector xi.
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REPRESENTATIONS

Vectors in the training set are in general a specific representation of items (which are real-world
entities), just like tuples in a database are just models (according to a predefined data model) of
entities.
The set of features used in the learning process is a fundamental component in such a process
and may have an important effect on the quality and efficiency of the predictions.
Adjusting the set of features (by both defining new features from suitable functional
compositions of given ones and identifying features which are significant for the task to be
performed) is a fundamental issue in Machine learning.
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SUPERVISED LEARNING

Task: predict the unknown value of an additional feature, termed the target, for a given item x,
based on the values of a set of features. This prediction task takes two primary forms:
Regression When the target is a real t ∈ IR
Classification When the target is a discrete value, from a predefined set t ∈ {1, . . . ,K}
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SUPERVISED LEARNING

To achieve this, we employ a general approach that involves defining a (functional or
probabilistic) model of the relationship between feature and target values. This model is derived
through a learning process from a set of examples, illustrating the relationship between the set
of features and the target. The examples are collected in a training set T = (X, t), and each
example comprises:
• A feature vector xi = {xi1, . . . , xim}
• The corresponding target value ti
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SUPERVISED LEARNING

The model we construct can take one of two forms:
1. A function y(·) which, for any item x, returns a value y(x) as an estimate of t. This function
acts as a direct predictor, mapping the input features to the target space.

2. A probability distribution that associates each possible value y in the target domain with its
corresponding probability p(y = y|x). This probabilistic approach provides a more nuanced
view, capturing the uncertainty inherent in the prediction task.
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UNSUPERVISED LEARNING
The objective here is to detect inherent patterns and structures within a given collection of items,
known as the dataset X = {x1, . . . , xn}, where no target values are associated with the items, in
order to extract synthetic information such data. The synthetic information we seek to extract
can take several forms:
Clustering Identifying subsets of similar items within the dataset. This process involves grouping

data points based on their intrinsic similarities, revealing natural structures or segments in
the data.

Density Estimation Determining the distribution of items in their domain. This approach aims to
model the underlying probability density function that generated the observed data,
providing insights into the data’s statistical properties and potential generative processes.

Dimensionality Reduction Projecting items onto lower-dimensional subspaces while preserving
as much information as possible. This can be achieved through two main approaches:
• Feature Selection: Identifying and retaining the most informative subset of original
features.

• Feature Extraction: Creating new, lower-dimensional representations of the data that
capture its essential characteristics.

These dimensionality reduction techniques aim to characterize the items using a smaller set
of features, potentially revealing latent structures and reducing computational complexity
for subsequent analyses.
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UNSUPERVISED LEARNING

Even in the context of unsupervised learning, where we lack explicit target variables, it is
common practice to define and apply a suitable model that captures the relationships and
patterns among the data features. This model serves several purposes:
1. It provides a compact representation of the data’s underlying structure.
2. It can be used to generate new, synthetic data points that share characteristics with the
original dataset.

3. It enables anomaly detection by identifying data points that deviate significantly from the
learned patterns.

4. It facilitates interpretation and visualization of high-dimensional data.
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UNSUPERVISED LEARNING

By applying unsupervised learning techniques and models, we can gain valuable insights into the
inherent structure of our data, even in the absence of predefined target variables. This approach
is particularly valuable for defining generative models (such as LLM and all generative AI
systems), exploratory data analysis, feature engineering, and as a preprocessing step for
subsequent supervised learning tasks.
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REINFORCEMENT LEARNING
Primary objective is to identify an optimal sequence of actions within a given framework or
environment. This sequence is designed to maximize a certain metric, typically referred to as
reward or profit. Unlike supervised learning, where we have a dataset of labeled examples,
reinforcement learning operates in a more dynamic, interactive setting:
Environment Interaction An environment is available which responds to actions taken by an

agent. This environment can be represented as a function E : A× S 7→ R× S, where:
• A is the set of possible actions
• S is the set of possible states
• R is the set of possible rewards

Reward Mechanism In response to each action a ∈ A taken by the agent in state s ∈ S, the
environment returns: - A reward r ∈ IR, which quantifies the immediate benefit of the action -
A new state s′ ∈ S, representing the updated condition of the environment

Policy Optimization The goal is to learn a policy π : S→ A that maps states to actions in a way
that maximizes the expected cumulative reward over time. This can be expressed
mathematically as:

π∗ = argmax
π

Eπ

[
∞∑
t=0

γtrt|π
]

where γ ∈ [0, 1] is a discount factor that balances immediate and future rewards and rt|π is
the reward obtained at step t is policy π is applied.
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REINFORCEMENT LEARNING

In summary, reinforcement learning provides a framework for solving sequential decision-making
problems in complex, uncertain environments. In this framework, it represents a versatile
approach for a wide range of real-world dynamic optimization tasks.
Observe that the framework in which reinforcement learning is defined is quite different than the
ones of supervised and unsupervised learning, which results in the adoption of quite different
mathematical and algorithmic techniques. For this reason, reinforcement learning will not be
further considered here.
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SUPERVISED LEARNING FRAMEWORK: DOMAINS

Domain set X : Set of objects we may wish to label. Each object is modeled as a vector of
features. The number of features is the dimensionality of the problem

Label set Y : Set of possible label values associated to objects in X .
• Y continuous: regression
• Y discrete: classification
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SUPERVISED LEARNING FRAMEWORK: INPUT DATA

Training set T : A set of object-label pairs: T = {(x1, t1), . . . , (xn, tn)}. We shall usually denote as
X the matrix of objects (feature matrix), that is

X =

 – x1 –
...

– xn –


and as t the vector of labels (target vector), that is

t =

 t1
...
tn


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SUPERVISED LEARNING FRAMEWORK: DERIVING A PREDICTOR

• A predictor algorithm A must be derived from T , which returns a prediction y for any item
x ∈ X

• This can be done according to different approaches.
• This depends from what is the “prediction” we wish to obtain:

1. the prediction is a target value: in this case, A predicts a value y which is a guess of the target of x.
That is, it computes a function h : X 7→ Y

2. the prediction is a probability distribution on Y : in this case, A returns, for any y ∈ Y , an estimate
probability p(y|x) that y is the target value of x
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SUPERVISED LEARNING FRAMEWORK: DERIVING A FUNCTIONAL PREDICTOR

First approach: apply a given algorithm A computing a function h : X × (X × Y)n 7→ Y
• A predicts y from x by computing h(x,X, t)
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SUPERVISED LEARNING FRAMEWORK: DERIVING A FUNCTIONAL PREDICTOR

x A

T

y
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SUPERVISED LEARNING FRAMEWORK: DERIVING A FUNCTIONAL PREDICTOR

Example of first approach: k-nearest neighbors algorithm for classification

The class predicted for item x is the majority class in the set of k elements of X which are nearest
to x according to a predefined measure
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SUPERVISED LEARNING FRAMEWORK: DERIVING A FUNCTIONAL PREDICTOR

Second approach: derive from T an algorithm AT computing a function hT : X 7→ Y in a given
class
• A is the algorithm in a predefined class which “best” predicts y from x when applied to the
set of examples in T

• this can be done by means of a learning algorithm A which derives A from T
• AT = h : X 7→ Y
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SUPERVISED LEARNING FRAMEWORK: DERIVING A FUNCTIONAL PREDICTOR

Tlearning A AT

xpredicting AT y
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SUPERVISED LEARNING FRAMEWORK: DERIVING A FUNCTIONAL PREDICTOR

Example of second approach: linear regression

The target value predicted for item x is the linear combination of its feature values x1, x2, . . . , xd,
each weighted by a suitable value w1,w2, . . . ,wd, plus a bias value w0. That is,

y =
d∑
i=1

wixi + w0

The d+ 1 values w0,w1, . . . ,wd are learned in dependance of the training set T .
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SUPERVISED LEARNING FRAMEWORK: DERIVING A FUNCTIONAL PREDICTOR

Third approach: derive from T a set of algorithms A(1)T , . . . , A(s)T each computing a different
function h(i)T : X 7→ Y in a given class, and a set of corresponding weights w(1), . . . ,w(s).

Compute the predicted value combining the values y(1), . . . , y(s) predicted by the algorithms,
weighted by the weights w(1), . . . ,w(s)

• each A(i)T is a predictor of y from x derived from the set of examples in T
• the estimated quality of the predictions provided by A(i)T is represented by the weight w(i)
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SUPERVISED LEARNING FRAMEWORK: DERIVING A FUNCTIONAL PREDICTOR

Tlearning A

A(s)T w(s)

A(1)T w(1)

...

x

predicting A(1)T

...

A(s)T

y(1) × w(1)

...

y(s) × w(s)

... + y
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SUPERVISED LEARNING FRAMEWORK: DERIVING A FUNCTIONAL PREDICTOR

Example of third approach: ensemble methods

The target value predicted for item x is the linear combination of the values y(1), y(2), . . . , y(s),
predicted by predictors A(1), A(2), , . . . , A(s), each weighted by the corresponding weight
w(1),w(2), . . . ,w(s).

Each A(i) is a simple predictor derived from T

An important variant of this approach is represented by fully bayesian prediction, where the set
of different predictors is a continuous one, each corresponding to a different value of a set of
parameters (w1, . . . ,wd) ∈ IRd. In this case, clearly, the sum is substituted by a (usually
multidimensional) integral
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SUPERVISED LEARNING FRAMEWORK: DERIVING A FUNCTIONAL PREDICTOR

The three approaches differ since:
• in the first case, a predefined algorithm is applied to input data comprising both the item x
and the whole training set X, t

• in the second case, an algorithm to be applied to any item x is derived in dependance from
the training set X, t

• in the third case, no single algorithm is applied to x; the prediction is instead computed from
the predictions returned by a set of predictors
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SUPERVISED LEARNING FRAMEWORK: LEARNING FRAMEWORK

Training objects generation model: Items in the training set are assumed sampled from X
according to a probability distribution pM. That is, for any x ∈ X , pM(x) is the probability that
x is the next item sampled in the training set

Training targets generation model: In the general case, we assume the labels associated to the
items in the training set are generated according to a probability distribution pC conditional
on X . That is, for any t ∈ Y , pC(t|x) is the probability that the observed label of object x in
the training set is t. For the moment, we shall assume that the relation between object and
label is deterministic, that is there exists an unknown function f such that t = f(x)
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SUPERVISED LEARNING FRAMEWORK: PREDICTION RISK
Let us restrict ourselves, in the following, to the second approach described above. Then, some
concepts are relevant. Given any element x ∈ X :
Error: The error of a predictor h derives from the comparison of its prediction h(x) and the

correct target label t.
Loss: The comparison is performed by applying a predefined loss function L : Y × Y 7→ IR.
Risk of prediction: The error of a prediction y is defined in terms of prediction risk as given by

applying the loss
Rf(y, x) = L(y, f(x))

In the general case when only a probabilistic relation pC(t|x) is assumed between label and
target, this corresponds to the loss expection given the prediction y, with the target t varying
according to pC(t|x)

RpC(y, x) = E
t∼pC(·|x)

[ L(y, t) ] =
∫
Y
L(y, t) · pC(t|x)dt

or, in the case of classification

RpC(y, x) = E
t∼pC(·|x)

[ L(y, t) ] =
∑
t∈Y

L(y, t) · pC(t|x)
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BAYES ESTIMATOR

In this framework, the optimal prediction is the one which minimizes the risk,

h∗(x) = argmin
y

RpC(y, x) = argmin
y

EpC [L(y, t)]

that is,

h∗(x) = argmin
y

Rf(y, x) = argmin
y

L(y, f(x)) in the simpler case

h∗(x) = argmin
y

RpC(y, x) = argmin
y

∫
Y
L(y, t) · pC(t|x)dt in the general case

in the general case, this is denoted as Bayes estimator.
Unfortunately, this approach cannot be applied since both the function f and the distribution pC
are assumed unknown.
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MACHINE LEARNING FRAMEWORK: PREDICTOR RISK

The error of a predictor h is defined in terms of risk expected loss on all items in X

Rpm,f(h) = E
x∼pM

[Rf(h(x), x) ] = E
x∼pM

[ L(h(x), f(x)) ] =
∫
X
L(h(x), f(x)) · pM(x)dx

In the general case,

Rp(h) = E
x∼pM

[RpC(y, x) ] = E
(x,t)∼p

[ L(h(x), t) ] =
∫
X

∫
Y
L(h(x), t) · pM(x) · pC(t|x)dxdt
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MACHINE LEARNING FRAMEWORK: LEARNER EVALUATION

Since pM and pC (or f) are not known, the risk can only be estimated from the data available (the
training set T ).
Empirical risk: The risk can be estimated from the training set by estimating the expectation of

the loss function as the average loss on the set.

RT (h) = 1

|T |
∑

(x,t)∈T

L(h(x), t)
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MACHINE LEARNING FRAMEWORK: FROM LEARNING TO OPTIMIZATION

The fundamental approach in the approach to machine learning considered here is deriving a
predictor h which (at least approximately) minimizes the empirical risk computed on the
available training set.

A learning problem is then reduced to a minimization problem in some functional space H, the
set of all possible predictors h.

h∗ = argmin
h∈H

RT (h)

Here, H is the set of hypotheses or inductive bias
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ISSUES RELATED TO THE INDUCTIVE BIAS

The choice of the set of hypotheses is an important issue in Machine Learning:
• what is the effect of the structure and size of H?
• how to define H in such a way to make it feasible to compute h∗?
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CHOICE OF THE SET OF HYPOTHESES

• The hypotheses class H can be viewed as reflecting some prior knowledge that the learner
has about the task

• a belief that one of the members of the classH is a low-error model for the task
• A trivial way of pursuing this goal would be to define a very rich class, that is assuming that
many possible functions belong to H

• As a limit, H could be defined just as the set of all functions f : X 7→ Y
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CHOICE OF THE SET OF HYPOTHESES

Problem with large H:
• Assume a binary classification problem with training set T = (X, t), with 0/1 loss

L(y, t) =
{

0 if y = t
1 otherwise

that is, the loss is 1 if the item is misclassified, 0 otherwise. As a consequence, the risk is the
expected number of classification errors, while the empirical risk is the fraction of items in
the training set which are misclassified.

• Assume p(t = 1|x) = 1
2
for x ∈ X , that is, the two classes have same size in the population
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CHOICE OF THE SET OF HYPOTHESES

Consider the classification function defined as:

h(x) =
{

1 if x = xi ∈ X
0 otherwise

that is, h assigns to class 1 all items labeled as 1 in the training set. All other items are classified
as 0.

Clearly, the empirical risk here is 0 by definition, but the risk is ≈ 1
2
. When applied to a dataset

randomly sampled from the population, the quality of h∗ is the same of a function which
randomly assigns items to classes.

This is called overfitting: the classification method behaves well on the training set, but poorly on
new data from the population.
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CHOICE OF THE SET OF HYPOTHESES

With respect to H, the following considerations can be done:
• If H is too large (complex), overfitting may occur: a function which behaves very well on the
training set may be available which however performs poorly on new data

• If H is too small (simple), underfitting may occur: no function behaving in a satisfactory way,
both on the training set and on new sets of data, is available in H

This is related to the so-called bias variance tradeoff
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