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1 Probability

Discrete random variables

A discrete random variable X can take values from some finite or countably infinite set X . A probability mass
function (pmf) associates to each eventX = x a probability p(X = x).

Properties

• 0 ≤ p(x) ≤ 1 for all x ∈ X

•
∑

x∈Xp(x)=1

Note: we shall denote as x the eventX = x

Discrete random variables

Joint and conditional probabilities

Given two events x, y, it is possible to define:

• the probability p(x, y) = p(x ∧ y) of their joint occurrence

• the conditional probability p(x|y) of x under the hypothesis that y has occurred

Union of events

Given two events x, y, the probability of x or y is defined as

p(x ∨ y) = p(x) + p(y)− p(x, y)

in particular,
p(x ∨ y) = p(x) + p(y)

The same definitions hold for probability distributions.
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Discrete random variables

Product rule

The product rule relates joint and conditional probabilities

p(x, y) = p(x|y)p(y) = p(y|x)p(x)

where p(x) is the marginal probability.
In general,

p(x1, . . . , xn) = p(x2, . . . , xn|x1)p(x1)
= p(x3, . . . , xn|x1, x2)p(x2|x1)p(x1)
= · · ·
= p(xn|x1, . . . , xn−1)p(xn−1|x1 . . . xn−2) · · · p(x2|x1)p(x1)

Discrete random variables

Sum rule and marginalization

The sum rule relates the joint probability of two events x, y and the probability of one such events p(y) (or p(y))

p(x) =
∑
y∈Y

p(x, y) =
∑
y∈Y

p(x|y)p(y)

Applying the sum rule to derive a marginal probability from a joint probability is usually called marginalization

Discrete random variables

Bayes rule

Since

p(x, y) = p(x|y)p(y)
p(x, y) = p(y|x)p(x)

p(y) =
∑
x∈X

p(x, y) =
∑
x∈X

p(y|x)p(x)

it results

p(x|y) = p(y|x)p(x)
p(y)

=
p(y|x)p(x)∑

x∈X p(y|x)p(x)

Terminology

• p(x): Prior probability of x (before knowing that y occurred)

• p(x|y): Posterior of x (if y has occurred)

• p(y|x): Likelihood of y given x

• p(y): Evidence of y
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Independence

Definition

Two random variables X,Y are independent (X ⊥⊥ Y ) if their joint probability is equal to the product of their
marginals

p(x, y) = p(x)p(y)

or, equivalently,
p(x|y) = p(x) p(y|x) = p(y)

The condition p(x|y) = p(x), in particular, states that, if two variables are independent, knowing the value of
one does not add any knowledge about the other one.

Independence

Conditional independence

Two random variablesX,Y are conditionally independent w.r.t. a third r.v. Z (X ⊥⊥ Y | Z) if

p(x, y|z) = p(x|z)p(y|z)

Conditional independence does not imply (absolute) independence, and vice versa.

Continuous random variables

A continuous random variable X can take values from a continuous infinite set X . Its probability is defined as
cumulative distribution function (cdf) F (x) = p(X ≤ x).

The probability thatX is in an interval (a, b] is then p(a < X ≤ b) = F (b)− F (a).

Probability density function

The probability density function (pdf) is defined as f(x) =
dF (x)

dx
. As a consequence,

p(a < X ≤ b) =

∫ b

a
f(x)dx

and
p(x < X ≤ x+ dx) ≈ f(x)dx

for a sufficiently small dx.

Sum rule and continuous random variables

In the case of continuous random variables, their probability density functions relate as follows.

f(x) =

∫
Y
f(x, y)dy =

∫
y∈Y

p(x|y)p(y)dy
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Expectation

Definition

Let x be a discrete random variable with distribution p(x), and let g : R 7→ R be any function: the expectation of
g(x) w.r.t. p(x) is

Ep[g(x)] =
∑
x∈Vx

g(x)p(x)

If x is a continuous r.v., with probability density f(x), then

Ef [g(x)] =
∫ ∞

−∞
g(x)f(x)dx

Mean value

Particular case: g(x) = x

Ep[x] =
∑
x∈Vx

xp(x) Ef [x] =
∫ ∞

−∞
xf(x)dx

Elementary properties of expectation

• E[a] = a for each a ∈ R

• E[af(x)] = aE[f(x)] for each a ∈ R

• E[f(x) + g(x)] = E[f(x)] + E[g(x)]

Variance

Definition

Var[X] = E[(x− E[x])2]

We may easily derive:

E[(x− E[x])2] = E[x2 − 2E[x]x+ E[x]2]

= E[x2]− 2E[x]E[x] + E[x]2

= E[x2]− E[x]2

Some elementary properties:

• Var[a] = 0 for each a ∈ R

• Var[af(x)] = a2Var[f(x)] for each a ∈ R
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Probability distributions

Probability distribution

Given a discrete random variable X ∈ VX , the corresponding probability distribution is a function p(x) =
P (X = x) such that

• 0 ≤ p(x) ≤ 1

•
∑
x∈VX

p(x) = 1

•
∑
x∈A

p(x) = P (x ∈ A), with A ⊆ VX

x

p(
x

)

Some definitions

Cumulative distribution

Given a continuous random variable X ∈ R, the corresponding cumulative probability distribution is a function
F (x) = P (X ≤ x) such that:

• 0 ≤ F (x) ≤ 1

• lim
x→−∞

F (x) = 0

• lim
x→∞

F (x) = 1

• x ≤ y =⇒ F (x) ≤ F (y)

x

F
(x

)

Some definitions

Probability density

Given a continuous random variableX ∈ R with derivable cumulative distribution F (x), the probability density
is defined as

f(x) =
dF (x)

dx

5



By definition of derivative, for a sufficiently small∆x,

Pr(x ≤ X ≤ x+∆x) ≈ f(x)∆x

The following properties hold:

• f(x) ≥ 0

•
∫∞
−∞ f(x)dx = 1

•
∫
x∈A f(x)dx = P (X ∈ A)

x

f
(x

)

Bernoulli distribution

Definition

Let x ∈ {0, 1}, then x ∼ Bernoulli(p), with 0 ≤ p ≤ 1, if

p(x) =

{
p se x = 1

1− p se x = 0

or, equivalently,
p(x) = px(1− p)1−x

Probability that, given a coin with head (H) probability p (and tail probability (T) 1 − p), a coin toss result into
x ∈ {H,T}.

Mean and variance

E[x] = p Var[x] = p(1− p)

Extension to multiple outcomes

Assume k possible outcomes (for example a die toss).
In this case, a generalization of the Bernoulli distribution is considered, usualy named categorical distribution.

p(x) =
k∏

j=1

p
xj

j

where (p1, . . . , pk) are the probabilites of the different outcomes (
∑k

j=1 pj = 1) and xj = 1 iff the k-th outcome
occurs.
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Binomial distribution

Definition

Let x ∈ IN, then x ∼ Binomial(n, p), with 0 ≤ p ≤ 1, if

p(x) =

(
n

x

)
px(1− p)n−x =

n!

x!(n− x)!
px(1− p)n−x

Probability that, given a coin with head (H) probability p, a sequence of n independent coin tosses result into x
heads.

Mean and variance

E[x] = np

Var[x] = np(1− p)

x

p(
x

)

Poisson distribution

Definition

Let xi ∈ IN, then x ∼ Poisson(λ), with λ > 0, if

p(x) = e−λλ
x

x!

Probability that an event with average frequency λ occurs x times in the next time unit.

Mean and variance

E[x] = λ

Var[x] = λ

x

p(
x

)
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Normal (gaussian) distribution

Definition

Let x ∈ R, then x ∼ Normal(µ, σ2), with µ, σ ∈ R, σ ≥ 0, if

f(x) =
1√
2πσ

e
(x−µ)2

2σ2

Mean and variance

E[x] = µ

Var[x] = σ2

x

f
(x

)

Beta distribution

Definition

Let x ∈ [0, 1], then x ∼ Beta(α, β), with α, β > 0, if

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

where
Γ(x) =

∫ ∞

0
ux−1eudu

is a generalization of the factorial to the real field R: in particolar, Γ(n) = (n− 1)! if n ∈ IN

Mean and variance

E[x] =
β

α+ β

Var[x] =
αβ

(α+ β)2(α+ β + 1)
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Beta distribution

x

f
(x

)

α=1, β=1

x

f
(x

)

α=0.7, β=0.7

x

f
(x

)

α=2, β=2

x

f
(x

)

α=2, β=4

x

f
(x

)

α=6, β=4

x

f
(x

)

α=10, β=10

Multivariate distributions

Definition for k = 2 discrete variables

Given two discrete r.v. X,Y , their joint distribution is

p(x, y) = P (X = x, Y = y)

The following properties hold:

1. 0 ≤ p(x, y) ≤ 1

2.
∑

x∈VX

∑
y∈VY

p(x, y) = 1
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Multivariate distributions

Definition for k = 2 variables

Given two continuous r.v. X,Y , their cumulative joint distribution is defined as

F (x, y) = P (X ≤ x, Y ≤ y)

The following properties hold:

1. 0 ≤ F (x, y) ≤ 1

2. lim
x,y→∞

F (x, y) = 1

3. lim
x,y→−∞

F (x, y) = 0

If F (x, y) is derivable everywhere w.r.t. both x and y, joint probability density is

f(x, y) =
∂2F (x, y)

∂x∂y

The following property derives ∫ ∫
(x,y)∈A

f(x, y)dxdy = P ((X,Y ) ∈ A)

Covariance

Definition

Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])]

As for the variance, we may derive

Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])]

= E[XY −XE[Y ]− Y E[X] + E[X]E[Y ]]

= E[XY ]− E[X]E[Y ]− E[Y ]E[X] + E[E[X]E[Y ]]

= E[XY ]− E[X]E[Y ]

Moreover, the following properties hold:

1. Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X,Y ]

2. IfX ⊥⊥ Y then Cov[X,Y ] = 0

Random vectors

Definition

LetX1, X2, . . . , Xn be a set of r.v.: we may then define a random vector as

x =

 X1
...

X2

Xn
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Expectation and random vectors

Definition

Let g : Rn 7→ Rm be any function. It may be considered as a vector of functions

g(x) =

 g1(x))
...

g2(x))

 gm(x)

where x ∈ Rn.
The expectation of g is the vector of the expectations of all functions gi,

E[g(x)] =

 E[g1(x)]
...

E[g2(x)]

 E[gm(x)]

Covariance matrix

Definition

Let x ∈ Rn be a random vector: its covariance matrix Σ is a matrix n × n such that, for each 1 ≤ i, j ≤ n,
Σij = Cov[Xi, Xj ] = E[(Xi − µi)(Xj − µj)], where µi = E[Xi], µj = E[Xj ].

Hence,

Σ =


Cov[X1, X1] Cov[X1, X2] · · · Cov[X1, Xn]
Cov[X2, X1] Cov[X2, X2] · · · Cov[X2, Xn]

...
...

. . .
...

Cov[Xn, X1] Cov[Xn, X2] · · · Cov[Xn, Xn]


=

 Var[X1] · · · Cov[X1, Xn]
...

. . .
...

Cov[Xn, X1] · · · Var[Xn]



Covariance matrix

By definition of covariance,

Σ =

 E[X2
1 ]− E[X1]

2 · · · E[X1Xn]− E[X1]E[Xn]
...

. . .
...

E[XnX1]− E[Xn]E[X1] · · · E[X2
n]− E[Xn]E[Xn]


= E[XXT ]− µµT

where µ = (µ1, . . . , µn)
T is the vector of expectations of the random variablesX1, . . . , Xn.

Properties

The covariance matrix is necessarily:

• semidefinite positive: that is, zTΣz ≥ 0 for any z ∈ Rn

• symmetric: Cov[Xi, Xj ] = Cov[Xj , Xi] for 1 ≤ i, j ≤ n
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Correlation

For any pair of r.v. X,Y , the Pearson correlation coefficient is defined as

ρX,Y =
Cov[X,Y ]√
Var[X]Var[Y ]

Note that, if Y = aX + b for some pair a, b, then

Cov[X,Y ] = E[(X − µ)(aX + b− aµ− b)] = E[a(X − µ)2] = aVar[X]

and, since
Var[Y ] = (aX − aµ)2 = a2Var[X]

it results ρX,Y = 1. As a corollary, ρX,X = 1.

Observe that if X and Y are independent, p(X,Y ) = p(X)p(Y ): as a consequence, Cov[X,Y ] = 0 and
ρX,Y = 0. That is, independent variables have null covariance and correlation.

The contrary is not true: null correlation does not imply indepedence: see for example X uniform in [−1, 1]
and Y = X2.

Correlation matrix

The correlation matrix of (X1, . . . , Xn)
T is defined as

Σ =

 ρX1,X1 ρX1,X2 · · · ρX1,Xn

...
. . .

...
ρXn,X1 ρXn,X2 · · · ρXn,Xn


=

 1 ρX1,X2 · · · ρX1,Xn

...
. . .

...
ρXn,X1 ρXn,X2 · · · 1



Multinomial distribution

Definition

Let xi ∈ IN for i = 1, . . . , k, then (x1, . . . , xk) ∼ Mult(n, p1, . . . , pk) with 0 ≤ p ≤ 1, if

p(x1, . . . , xk) =
n!

x1! . . . xk!

k∏
i=1

pxi
i con

k∑
i=1

xi = n

Generalization of the binomial distribution to k ≥ 2 possible toss results t1, . . . , tk with probabilities p1, . . . , pk
(
∑k

i=1 pi = 1).
Probability that in a sequence of n independent tosses p1, . . . , pk, exactly xi tosses have result ti (i = 1, . . . , k).

Mean and variance

E[xi] = npi Var[xi] = npi(1− pi) i = 1, . . . , k
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Dirichlet distribution

Definition

Let xi ∈ [0, 1] for i = 1, . . . , k, then (x1, . . . , xk) ∼ Dirichlet(α1, α2, . . . , αk) if

f(x1, . . . , xk) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

k∏
i=1

xαi−1
i =

1

∆(α1, . . . , αk)

k∏
i=1

xαi−1
i

with
∑k

i=1 xi = 1.
Generalization of the Beta distribution to the multinomial case k ≥ 2.
A random variable ϕ = (ϕ1, . . . , ϕK) with Dirichlet distribution takes values on the K − 1 dimensional

simplex (set of points x ∈ RK such that xi ≥ 0 for i = 1, . . . ,K and
∑K

i=1 xi = 1)

Mean and variance

E[xi] =
αi

α0
Var[xi] =

αi(α0 − αi)

α2
0(α0 + 1)

i = 1, . . . , k

with α0 =
∑k

j=1 αj

Dirichlet distribution

Examples of Dirichlet distributions with k = 3

Dirichlet distribution

Symmetric Dirichlet distribution

Particular case, where αi = α for i = 1, . . . ,K

p(ϕ1, . . . , ϕK |α,K) = Dir(ϕ|α,K) =
Γ(Kα)

Γ(α)K

K∏
i=1

ϕα−1
i =

1

∆K(α)

K∏
i=1

ϕα−1
i

Mean and variance

In this case,

E[xi] =
1

K
Var[xi] =

K − 1

K2(α+ 1)
i = 1, . . . ,K
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2 The normal distribution

Gaussian distribution

• Properties

– Analytically tractable

– Completely specified by the first two moments

– A number of processes are asintotically gaussian (theorem of the Central Limit)

– Linear transformation of gaussians result in a gaussian

Univariate gaussian

For x ∈ R:

p(x) = N (µ, σ2)

=
1√
2πσ

e−
(x−µ)2

2σ2

with

µ = E[x] =
∫ ∞

−∞
xp(x)dx

σ2 = E[(x− µ)2] =

∫ ∞

−∞
(x− µ)2p(x)dx

Univariate gaussian

µ−3σ µ−2σ µ−σ µ µ+σ µ+2σ µ+3σ

x

f(
x
)

2.5%2.5%

A univariate gaussian distribution has about 95% of its probability in the interval |x− µ| ≥ 2σ.

Multivariate gaussian

For x ∈ Rd:

p(x) = N (µ,Σ)

=
1

(2π)d/2|Σ|1/2
e−

1
2
(x−µ)TΣ−1(x−µ)

where

µ = E[x] =
∫

xp(x)dx

Σ = E[(x− µ)(x− µ)T ] =

∫
(x− µ)(x− µ)T p(x)dx
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Multivariate gaussian

• µ: expectation (vector of size d)

• Σ: matrix d× d of covariance. σij = E[(Xi − µi)(Xj − µj)]

Multivariate gaussian

Mahalanobis distance

• Probability is a function of x through the quadratic form

∆2 = (x− µ)TΣ−1(x− µ)

• ∆ is the Mahalanobis distance from µ to x: it reduces to the euclidean distance if Σ = I.

• Constant probability on the curves (ellipsis) at constant∆.

Multivariate gaussian

In general,
xTAx = (xTAx)T = xTAT x

this implies that

xTAx =
1

2
xTAx+

1

2
xTAT x = xT

(
1

2
A+

1

2
AT

)
x

• A+ AT is necessarily symmetric, as a consequence, Σ is symmetric

• as a consequence, its inverse Σ−1 does exist.
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Diagonal covariance matrix

Assume a diagonal covariance matrix:

Σ =


σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

n


then, |Σ| = σ2

1σ
2
n . . . σ

2
n and

Σ−1 =


1
σ2
1

0 · · · 0

0 1
σ2
2

· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
n



Diagonal covariance matrix

Easy to verify that

(x− µ)TΣ−1(x− µ) =
n∑

i=1

(xi − µi)
2

σ2
i

and

f(x|µ,Σ) =
n∏

i=1

1√
2πσi

exp
(
−1

2

(xi − µi)
2

σ2
i

)
The multivariate distribution turns out to be the product of d univariate gaussians, one for each coordinate xi.

x

y

Identity covariance matrix

The distribution is the product of d “copies” of the same univariate gaussian, one copy for each coordinate xi.

x

y

Spectral properties of Σ

Σ is real and symmetric: then,

1. all its eigenvalues λi are in R
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2. there exists a corresponding set of orthonormal eigenvectors i (i.e. such that (iT j = 1 if i = j and 0
otherwise)

Let us define the d× d matrix U whose columns correspond to the orthonormal eigenvectors

U =

 | |
1 · · · 2
| |

 d

and the diagonal d× d matrixΛ with eigenvalues on the diagonal

Λ =


λ1

λ2 0
λ3

0
. . .

λd



Multivariate gaussian

Decomposition of Σ

By the definition of U andΛ, and since Σi = iλi for all i = 1, . . . , d, we may write

ΣU = UΛ

Since the eigenvectors ui are orthonormal,U−1 = UT by the properties of orthonormal matrices: as a consequence
,

Σ = UΛU−1 = UΛUT =
d∑

i=1

λiuiuTi

Then, its inverse matrix is a diagonal matrix itself

Σ−1 =

d∑
i=1

1

λi
uiuTi

Multivariate gaussian

Density as a function of eigenvalues and eigenvectors

As shown before,

∆2 = (x− µ)TΣ−1(x− µ) = (x− µ)T
d∑

i=1

1

λi
iiT (x− µ)

=

d∑
i=1

1

λi
(x− µ)T iiT (x− µ) =

d∑
i=1

1

λi
(iT (x− µ))T iT (x− µ)

=
d∑

i=1

(
iT (x− µ)

)2
λi
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Let yi = iT (x− µ): then

(x− µ)TΣ−1(x− µ) =

n∑
i=1

y2i
λi

and

f(x|µ,Σ) =
n∏

i=1

1√
2πλi

exp
(
−1

2

y2i
λi

)

Multivariate gaussian

yi is the scalar product of x− µ and the i-th eigenvector i, that is the length of the projection of x− µ along the
direction of the eigenvector. Since eigenvectors are orthonormal, they are the basis of a new space, and for each
vector x = (x1, . . . , xd), the values (y1, . . . , yd) are the coordinates of x in the eigenvector space.

Eigenvectors of Σ correspond to the axes of the distribution; each eigenvalue is a scale factor along the axis of
the corresponding eigenvector.

Linear transformations

Let x ∈ Rd, A ∈ Rd×k, y = AT x ∈ Rk : then, if x is normally distributed, so is y.
In particular, if the distribution of x has mean µ and covariance matrixΣ, the distribution of y has meanATµ

and covariance matrix ATΣA.

x ∼ N (µ,Σ) =⇒ y ∼ N (ATµ,ATΣA)

Marginal and conditional of a joint gaussian

Let x1 ∈ Rh, x2 ∈ Rk be such that
[
x1
x2

]
∼ N (µ,Σ) and let

• µ =

[
µ1

µ2

]
with µ1 ∈ Rh,µ2 ∈ Rk

• Σ =

[
Σ11 Σ12

Σ21 Σ22

]
with Σ11 ∈ Rh×h, Σ12 ∈ Rh×k, Σ21 ∈ Rk×h, Σ22 ∈ Rk×k

then

• the marginal distribution of x1 is x1 ∼ N (µ1,Σ11)
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• the conditional distribution of x1 given x2 is x1|x2 ∼ N (µ1|2,Σ1|2) with

µ1|2 = µ1 − Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21

Bayes’ formula and gaussians

Let x, y be such that

x ∼ N (µ,Σ1) and y|x ∼ N (Ax+ b,Σ2)

That is, the marginal distribution of x (the prior) is a gaussian and the conditional distribution of y w.r.t. x (the
likelihood) is also a gaussian with (conditional) mean given by a linear combination on x. Then, both the the
conditional distribution of x w.r.t. y (the posterior) and the marginal distribution of y (the evidence) are gaussian.

y ∼ N (Aµ+ b,Σ2 + AΣ1AT )

x|y ∼ N (µ̂, Σ̂)

where

µ̂ = (Σ−1
1 + ATΣ−1

2 A)−1(ATΣ−1
2 (y− b) + Σ−1

1 µ)

Σ̂ = (Σ−1
1 + ATΣ−1

2 A)−1

3 Bayesian statistics

Bayesian statistics

Classical (frequentist) statistics

• Interpretation of probability as frequence of an event over a sufficiently long sequence of reproducible ex-
periments.

• Parameters seen as constants to determine

Bayesian statistics

• Interpretation of probability as degree of belief that an event may occur.

• Parameters seen as random variables

Bayes’ rule

Cornerstone of bayesian statistics is Bayes’ rule

p(X = x|Θ = θ) =
p(Θ = θ|X = x)p(X = x)

p(Θ = θ)

Given two random variablesX,Θ, it relates the conditional probabilities p(X = x|Θ = θ) and p(Θ = θ|X = x).
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Bayesian inference

Given an observed dataset X and a family of probability distributions p(x|Θ) with parameter Θ (a probabilistic
model), we wish to find the parameter value which best allows to describe X through the model.

In the bayesian framework, we deal with the distribution probability p(Θ) of the parameterΘ considered here
as a random variable. Bayes’ rule states that

p(Θ|X) = p(X|Θ)p(Θ)

p(X)

Bayesian inference

Interpretation

• p(Θ) stands as the knowledge available about Θ before X is observed (a.k.a. prior distribution)

• p(Θ|X) stands as the knowledge available about Θ after X is observed (a.k.a. posterior distribution)

• p(X|Θ) measures how much the observed data are coherent to the model, assuming a certain valueΘ of the
parameter (a.k.a. likelihood)

• p(X) =
∑

Θ′ p(X|Θ′)p(Θ′) is the probability that X is observed, considered as a mean w.r.t. all possible
values of Θ (a.k.a. evidence)

Conjugate distributions

Definition

Given a likelihood function p(y|x), a (prior) distribution p(x) is conjugate to p(y|x) if the posterior distribution
p(x|y) is of the same type as p(x).

Consequence

If we look at p(x) as our knowledge of the random variable x before knowing y and with p(x|y) our knowledge
once y is known, the new knowledge can be expressed as the old one.

Examples of conjugate distributions: beta-bernoulli

The Beta distribution is conjugate to the Bernoulli distribution. In fact, given x ∈ [0, 1] and y ∈ {0, 1}, if

p(ϕ|α, β) = Beta(ϕ|α, β) = Γ(α+ β)

Γ(α)Γ(β)
ϕα−1(1− ϕ)β−1

p(x|ϕ) = ϕx(1− ϕ)1−x

then
p(ϕ|x) = 1

Z
ϕα−1(1− ϕ)β−1ϕx(1− ϕ)1−x = Beta(x|α+ x− 1, β − x)

where Z is the normalization coefficient

Z =

∫ 1

0
ϕα+x−1(1− ϕ)β−xdϕ =

Γ(α+ β + 1)

Γ(α+ x)Γ(β − x+ 1)
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Examples of conjugate distributions: beta-binomial

The Beta distribution is also conjugate to the Binomial distribution. In fact, given x ∈ [0, 1] and y ∈ {0, 1}, if

p(ϕ|α, β) = Beta(ϕ|α, β) = Γ(α+ β)

Γ(α)Γ(β)
ϕα−1(1− ϕ)β−1

p(k|ϕ,N) =

(
N

k

)
ϕk(1− ϕ)N−k =

N !

(N − k)!k!
ϕN (1− ϕ)N−k

then

p(ϕ|k,N, α, β) =
1

Z
ϕα−1(1− ϕ)β−1ϕk(1− ϕ)N−k = Beta(ϕ|α+ k − 1, β +N − k − 1)

with the normalization coefficient

Z =

∫ 1

0
ϕα+k−1(1− ϕ)β+N−k−1dϕ =

Γ(α+ β +N)

Γ(α+ k)Γ(β +N − k)

Multivariate distributions

Multinomial

Generalization of the binomial

p(n1, . . . , nK |ϕ1, . . . , ϕK , n) =
n!∏K

i=1 ni!

K∏
i=1

ϕni
i

k∑
i=1

ni = n,
k∑

i=1

ϕi = 1

the case n = 1 is a generalization of the Bernoulli distribution

p(x1, . . . , xK |ϕ1, . . . , ϕK) =

K∏
i=1

ϕxi
i ∀i : xi ∈ {0, 1},

K∑
i=1

xi = 1,

K∑
i=1

ϕi = 1

Likelihood of a multinomial

p(X|ϕ1, . . . , ϕK) ∝
N∏
i=1

K∏
j=1

ϕ
xij

j =

K∏
j=1

ϕ
Nj

j

Conjugate of the multinomial

Dirichlet distribution

The conjugate of the multinomial is the Dirichlet distribution, generalization of the Beta to the caseK > 2

p(ϕ1, . . . , ϕK |α1, . . . , αK) = Dir(ϕ|α) =
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏
i=1

ϕαi−1
i

=
1

Z ′

K∏
i=1

ϕαi−1
i

with αi > 0 for i = 1, . . . ,K
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Random variables and Dirichlet distribution

A random variable ϕ = (ϕ1, . . . , ϕK) with Dirichlet distribution takes values on theK − 1 dimensional simplex
(set of points x ∈ RK such that xi ≥ 0 for i = 1, . . . ,K and

∑K
i=1 xi = 1)

Examples of conjugate distributions: dirichlet-multinomial

Assume ϕ ∼ Dir(ϕ|α) and z ∼ Mult(z|ϕ). Then,

p(ϕ|z,α) =
p(z|ϕ)p(ϕ|α)

p(z|α)
=

1

Z

1

Z ′
1

Z ′′

K∏
i=1

ϕzi
i

K∏
i=1

ϕαi−1
i

=
1

Z ′′′

K∏
i=1

ϕαi+zi−1
i = Dir(ϕ|α′)

where α′ = (α1 + z1, . . . , αK + zK)

Text modeling

Unigram model

Collection W of N term occurrences: N observations of a same random variable, with multinomial distribution
over a dictionary V of size V .

p(W|ϕ) = L(ϕ|W) =
V∏
i=1

ϕNi
i

V∑
i=1

ϕi = 1,
V∑
i=1

Ni = N

Parameter model

Use of a Dirichlet distribution, conjugate to the multinomial

p(ϕ|α) = Dir(ϕ|α)

p(ϕ|W,α) = Dir(ϕ|α+ N)

Information theory

LetX be a discrete random variable:

• define a measure h(x) of the information (surprise) of observingX = x

• requirements:

– likely events provide low surprise, while rare events provide high surprise: h(x) is inversely propor-
tional to p(x)

– X,Y independent: the event X = x, Y = y has probability p(x)p(y). Its surprise is the sum of the
surprise forX = x and for Y = y, that is, h(x, y) = h(x) + h(y) (information is additive)

this results into h(x) = − logx (usually base 2)
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Entropy

A sender transmits the value of X to a receiver: the expected amount of information transmitted (w.r.t. p(x)) is
the entropy ofX

H(x) = −
∑
x

p(x) log2 p(x)

• lower entropy results from more sharply peaked distributions

• the uniform distribution provides the highest entropy

Entropy is a measure of disorder.
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Entropy, some properties

• p(x) ∈ [0, 1] implies p(x) log2 p(x) ≤ 0 andH(X) ≥ 0

• H(X) = 0 if there exists x such that p(x) = 1

Maximum entropy

Given a fixed number k of outcomes, the distribution p1, . . . , pk with maximum entropy is derived by maximizing
H(X) under the constraint

∑k
i=1 pi = 1. By using Lagrange multipliers, this amounts to maximizing

−
k∑

i=1

pi log2 pi + λ

(
k∑

i=1

pi − 1

)

Setting the derivative of each pi to 0,

0 = − log2 pi − log2 e+ λ

results into pi = 2λ − e for each i, that is into the uniform distribution pi =
1

k
andH(X) = log2 k

23



Entropy, some properties

H(X) is a lower bound on the expected number of bits needed to encode the values ofX

• trivial approach: code of length log2 k (assuming uniform distribution of values forX)

• for non-uniform distributions, better coding schemes by associating shorter codes to likely values ofX

Conditional entropy

Let X,Y be discrete r.v. : for a pair of values x, y the additional information needed to specify y if x is known is
− ln p(y|x).

The expected additional information needed to specify the value of Y if we assume the value ofX is known is
the conditional entropy of Y givenX

H(Y |X) = −
∑
x

∑
y

p(x, y) ln p(y|x)

Clearly, since ln p(y|x) = ln p(x, y)− ln p(x)

H(X,Y ) = H(Y |X) +H(X)

that is, the information needed to describe (on the average) the values of X and Y is the sum of the information
needed to describe the value ofX plus that needed to describe the value of Y isX is known.

KL divergence

Assume the distribution p(x) ofX is unknown, and we have modeled is as an approximation q(x).
If we use q(x) to encode values ofX we need an average length−

∑
x p(x) ln q(x), while the minimum (known

p(x)) is −
∑

x p(x) ln p(x).
The additional amount of information needed, due to the approximation of p(x) through q(x) is the Kullback-

Leibler divergence

KL(p||q) = −
∑
x

p(x) ln q(x) +
∑

p(x) ln p(x)

= −
∑
x

p(x) ln
q(x)

p(x)

KL(p||q) measures the difference between the distributions p and q.

• KL(p||p) = 0

• KL(p||q) 6= KL(q||p): the function is not symmetric, it is not a distance (it would be d(x, y) = d(y, x))

Convexity

A function is convex (in an interval [a, b]) if, for all 0 ≤ λ ≤ 1, the following inequality holds

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b)

• λa+ (1− λ)b is a point x ∈ [a, b] and f(λa+ (1− λ)b) is the corresponding value of the function

• λf(a) + (1− λ)f(b) = f(x) is the value at λa+ (1− λ)b of the chord from (a, f(a)) to (b, f(b)).

24



xa bxλ

chord

xλ

f(x)

Jensen’s inequality and KL divergence

• If f(x) is a convex function, the Jensen’s inequality holds for any set of points x1, . . . , xM

f

(
M∑
i=1

λixi

)
≤

M∑
i=1

λif(xi))

where λi ≥ 0 for all i and
∑M

i=1 λi = 1.

• In particular, if λi = p(xi),
f(E[x]) ≤ E[f(x)]

• if x is a continuous variable, this results into

f

(∫
xp(x)dx

)
≤
∫

f(x)p(x)dx

• applying the inequality toKL(p||q), since the logarithm is convex,

KL(p||q) = −
∫

p(x) ln
q(x)

p(x)
dx ≥ − ln

∫
q(x)dx = 0

thus proving theKL is always non-negative.

Applying KL divergence

• x = (x1, . . . , xn), dataset generated by a unknown distribution p(x)

• we want to infer the parameters of a probabilistic model qθ(x|θ)

• approach: minimize

KL(p||qθ) = −
∑
x

p(x) ln
q(x|θ)
p(x)

≈ − 1

n

n∑
i=1

ln
q(xi|θ)
p(xi)

=
1

n

n∑
i=1

(ln p(xi)− ln q(xi|θ))

First term is independent of θ, while the second one is the negative log-likelihood of x. The value of θ which
minimizesKL(p||qθ) also maximizes the log-likelihood.
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Mutual information

• Measure of the independence betweenX and Y

I(X,Y ) = KL(p(X,Y )||p(X), p(Y )) = −
∑
x

∑
y

p(x, y) ln
p(x)p(y)

p(x, y)

additional encoding length if independence is assumed

• We have:

I(X,Y ) = −
∑
x

∑
y

p(x, y) ln
p(x)p(y)

p(x, y)

= −
∑
x

∑
y

p(x, y) ln
p(x)p(y)

p(x|y)p(y)

= −
∑
x

∑
y

p(x, y) ln
p(x)

p(x|y)

= −
∑
x

∑
y

p(x, y) ln p(x) +
∑
x

∑
y

p(x, y) ln p(x|y) = H(X)−H(X|Y )

• Similarly, it derives I(X,Y ) = H(Y )−H(Y |X)
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