Probability recall

Course of Machine Learning Master Degree in Computer Science University of Rome "Tor Vergata" a.a. 2024-2025

Giorgio Gambosi

1 Probability

Discrete random variables

A discrete random variable X can take values from some finite or countably infinite set \mathcal{X} . A probability mass function (pmf) associates to each event X = x a probability p(X = x).

Properties

• $0 \le p(x) \le 1$ for all $x \in \mathcal{X}$

•
$$\sum_{x \in \mathcal{X} p(x) = 1}$$

Note: we shall denote as x the event X = x

Discrete random variables

Joint and conditional probabilities

Given two events x, y, it is possible to define:

- the probability $p(x, y) = p(x \land y)$ of their joint occurrence
- the conditional probability p(x|y) of x under the hypothesis that y has occurred

Union of events

Given two events x, y, the probability of x or y is defined as

$$p(x \lor y) = p(x) + p(y) - p(x, y)$$

in particular,

$$p(x \lor y) = p(x) + p(y)$$

The same definitions hold for probability distributions.

Discrete random variables

Product rule

The product rule relates joint and conditional probabilities

$$p(x,y) = p(x|y)p(y) = p(y|x)p(x)$$

where p(x) is the marginal probability.

In general,

$$p(x_1, \dots, x_n) = p(x_2, \dots, x_n | x_1) p(x_1)$$

= $p(x_3, \dots, x_n | x_1, x_2) p(x_2 | x_1) p(x_1)$
= \cdots
= $p(x_n | x_1, \dots, x_{n-1}) p(x_{n-1} | x_1 \dots x_{n-2}) \cdots p(x_2 | x_1) p(x_1)$

Discrete random variables

Sum rule and marginalization

The sum rule relates the joint probability of two events x, y and the probability of one such events p(y) (or p(y))

$$p(x) = \sum_{y \in \mathcal{Y}} p(x, y) = \sum_{y \in \mathcal{Y}} p(x|y)p(y)$$

Applying the sum rule to derive a marginal probability from a joint probability is usually called marginalization

Discrete random variables

Bayes rule

Since

$$p(x, y) = p(x|y)p(y)$$

$$p(x, y) = p(y|x)p(x)$$

$$p(y) = \sum_{x \in \mathcal{X}} p(x, y) = \sum_{x \in \mathcal{X}} p(y|x)p(x)$$

it results

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} = \frac{p(y|x)p(x)}{\sum_{x \in \mathcal{X}} p(y|x)p(x)}$$

Terminology

- p(x): Prior probability of x (before knowing that y occurred)
- p(x|y): Posterior of x (if y has occurred)
- p(y|x): Likelihood of y given x
- p(y): Evidence of y

Independence

Definition

Two random variables X, Y are independent $(X \perp \!\!\!\perp Y)$ if their joint probability is equal to the product of their marginals

$$p(x,y) = p(x)p(y)$$

or, equivalently,

$$p(x|y) = p(x) \qquad \qquad p(y|x) = p(y)$$

The condition p(x|y) = p(x), in particular, states that, if two variables are independent, knowing the value of one does not add any knowledge about the other one.

Independence

Conditional independence

Two random variables X, Y are conditionally independent w.r.t. a third r.v. $Z(X \perp\!\!\!\perp Y \mid Z)$ if

$$p(x, y|z) = p(x|z)p(y|z)$$

Conditional independence does not imply (absolute) independence, and vice versa.

Continuous random variables

A continuous random variable X can take values from a continuous infinite set \mathcal{X} . Its probability is defined as cumulative distribution function (cdf) $F(x) = p(X \le x)$.

The probability that X is in an interval (a, b] is then $p(a < X \le b) = F(b) - F(a)$.

Probability density function

The probability density function (pdf) is defined as $f(x) = \frac{dF(x)}{dx}$. As a consequence,

$$p(a < X \le b) = \int_{a}^{b} f(x) dx$$

and

$$p(x < X \le x + dx) \approx f(x)dx$$

for a sufficiently small dx.

Sum rule and continuous random variables

In the case of continuous random variables, their probability density functions relate as follows.

$$f(x) = \int_{\mathcal{Y}} f(x, y) dy = \int_{y \in \mathcal{Y}} p(x|y) p(y) dy$$

Expectation

Definition

Let x be a discrete random variable with distribution p(x), and let $g : \mathbb{R} \to \mathbb{R}$ be any function: the expectation of g(x) w.r.t. p(x) is

$$E_p[g(x)] = \sum_{x \in V_x} g(x)p(x)$$

If x is a continuous r.v., with probability density f(x), then

$$E_f[g(x)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

Mean value

Particular case: g(x) = x

$$E_p[x] = \sum_{x \in V_x} xp(x) \qquad \qquad E_f[x] = \int_{-\infty}^{\infty} xf(x)dx$$

Elementary properties of expectation

- E[a] = a for each $a \in \mathbb{R}$
- E[af(x)] = aE[f(x)] for each $a \in \mathbb{R}$
- E[f(x) + g(x)] = E[f(x)] + E[g(x)]

Variance

Definition

$$Var[X] = E[(x - E[x])^2]$$

We may easily derive:

$$E[(x - E[x])^{2}] = E[x^{2} - 2E[x]x + E[x]^{2}]$$

= $E[x^{2}] - 2E[x]E[x] + E[x]^{2}$
= $E[x^{2}] - E[x]^{2}$

Some elementary properties:

- Var[a] = 0 for each $a \in \mathbb{R}$
- $Var[af(x)] = a^2 Var[f(x)]$ for each $a \in \mathbb{R}$

Probability distributions

Probability distribution

Given a discrete random variable $X \in V_X$, the corresponding probability distribution is a function p(x) = P(X = x) such that

- $0 \le p(x) \le 1$
- $\sum_{x \in V_X} p(x) = 1$
- $\sum_{x \in A} p(x) = P(x \in A)$, with $A \subseteq V_X$

Some definitions

Cumulative distribution

Given a continuous random variable $X \in \mathbb{R}$, the corresponding cumulative probability distribution is a function $F(x) = P(X \le x)$ such that:

- $0 \le F(x) \le 1$
- $\lim_{x \to -\infty} F(x) = 0$
- $\lim_{x \to \infty} F(x) = 1$

•
$$x \le y \implies F(x) \le F(y)$$

Some definitions

Probability density

Given a continuous random variable $X \in \mathbb{R}$ with derivable cumulative distribution F(x), the probability density is defined as

$$f(x) = \frac{dF(x)}{dx}$$

By definition of derivative, for a sufficiently small Δx ,

$$Pr(x \le X \le x + \Delta x) \approx f(x)\Delta x$$

The following properties hold:

•
$$f(x) \ge 0$$

- $\int_{-\infty}^{\infty} f(x) dx = 1$
- $\int_{x \in A} f(x) dx = P(X \in A)$

Bernoulli distribution

Definition

Let $x \in \{0, 1\}$, then $x \sim Bernoulli(p)$, with $0 \le p \le 1$, if

$$p(x) = \begin{cases} p & \text{se } x = 1\\ 1 - p & \text{se } x = 0 \end{cases}$$

or, equivalently,

$$p(x) = p^x (1-p)^{1-x}$$

Probability that, given a coin with head (H) probability p (and tail probability (T) 1 - p), a coin toss result into $x \in \{H, T\}$.

Mean and variance

$$E[x] = p \qquad \qquad Var[x] = p(1-p)$$

Extension to multiple outcomes

Assume k possible outcomes (for example a die toss).

In this case, a generalization of the Bernoulli distribution is considered, usualy named categorical distribution.

$$p(x) = \prod_{j=1}^{k} p_j^{x_j}$$

where (p_1, \ldots, p_k) are the probabilities of the different outcomes $(\sum_{j=1}^k p_j = 1)$ and $x_j = 1$ iff the k-th outcome occurs.

Binomial distribution

Definition

Let $x \in \mathbb{N}$, then $x \sim Binomial(n, p)$, with $0 \le p \le 1$, if

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x} = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

Probability that, given a coin with head (H) probability p, a sequence of n independent coin tosses result into x heads.

Mean and variance

$$E[x] = np$$
$$Var[x] = np(1-p)$$

Poisson distribution

Definition

Let $x_i \in \mathbb{N}$, then $x \sim Poisson(\lambda)$, with $\lambda > 0$, if

$$p(x) = e^{-\lambda} \frac{\lambda^x}{x!}$$

Probability that an event with average frequency λ occurs x times in the next time unit.

Mean and variance

$$E[x] = \lambda$$
$$Var[x] = \lambda$$

Normal (gaussian) distribution

Definition

Let $x \in \mathbb{R}$, then $x \sim Normal(\mu, \sigma^2)$, with $\mu, \sigma \in \mathbb{R}, \sigma \ge 0$, if

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

Mean and variance

$$E[x] = \mu$$
$$Var[x] = \sigma^2$$

Beta distribution

Definition

Let $x \in [0, 1]$, then $x \sim Beta(\alpha, \beta)$, with $\alpha, \beta > 0$, if

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

where

$$\Gamma(x) = \int_0^\infty u^{x-1} e^u du$$

is a generalization of the factorial to the real field \mathbb{R} : in particolar, $\Gamma(n) = (n-1)!$ if $n \in \mathbb{N}$

Mean and variance

$$E[x] = \frac{\beta}{\alpha + \beta}$$
$$Var[x] = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

Beta distribution

Multivariate distributions

Definition for k = 2 discrete variables

Given two discrete r.v. X, Y, their joint distribution is

$$p(x,y) = P(X = x, Y = y)$$

The following properties hold:

1.
$$0 \le p(x, y) \le 1$$

2. $\sum_{x \in V_X} \sum_{y \in V_Y} p(x, y) = 1$

Multivariate distributions

Definition for k = 2 variables

Given two continuous r.v. X, Y, their cumulative joint distribution is defined as

$$F(x,y) = P(X \le x, Y \le y)$$

The following properties hold:

1. $0 \le F(x, y) \le 1$ 2. $\lim_{x,y\to\infty} F(x, y) = 1$ 3. $\lim_{x,y\to-\infty} F(x, y) = 0$

If F(x, y) is derivable everywhere w.r.t. both x and y, joint probability density is

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$

The following property derives

$$\int \int_{(x,y)\in A} f(x,y) dx dy = P((X,Y)\in A)$$

Covariance

Definition

$$Cov[X,Y] = E[(X - E[X])(Y - E[Y])]$$

As for the variance, we may derive

$$Cov[X, Y] = E[(X - E[X])(Y - E[Y])] = E[XY - XE[Y] - YE[X] + E[X]E[Y]] = E[XY] - E[X]E[Y] - E[Y]E[X] + E[E[X]E[Y]] = E[XY] - E[X]E[Y]$$

Moreover, the following properties hold:

- 1. Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]
- 2. If $X \perp \!\!\!\perp Y$ then Cov[X, Y] = 0

Random vectors

Definition

Let X_1, X_2, \ldots, X_n be a set of r.v.: we may then define a random vector as

$$\mathbf{x} = \begin{pmatrix} X_1 \\ \vdots \\ X_2 \end{pmatrix} X_n$$

Expectation and random vectors

Definition

Let $g:\mathbb{R}^n\mapsto\mathbb{R}^m$ be any function. It may be considered as a vector of functions

$$g(\mathbf{x}) = \begin{pmatrix} g_1(\mathbf{x}) \\ \vdots \\ g_2(\mathbf{x}) \end{pmatrix} g_m(\mathbf{x})$$

where $\mathbf{x} \in \mathbb{R}^n$.

The expectation of g is the vector of the expectations of all functions g_i ,

$$E[g(\mathbf{x})] = \begin{pmatrix} E[g_1(\mathbf{x})] \\ \vdots \\ E[g_2(\mathbf{x})] \end{pmatrix} E[g_m(\mathbf{x})]$$

Covariance matrix

Definition

Let $\mathbf{x} \in \mathbb{R}^n$ be a random vector: its covariance matrix Σ is a matrix $n \times n$ such that, for each $1 \leq i, j \leq n$, $\Sigma_{ij} = Cov[X_i, X_j] = E[(X_i - \mu_i)(X_j - \mu_j)]$, where $\mu_i = E[X_i]$, $\mu_j = E[X_j]$.

Hence,

$$\Sigma = \begin{bmatrix} \operatorname{Cov}[X_1, X_1] & \operatorname{Cov}[X_1, X_2] & \cdots & \operatorname{Cov}[X_1, X_n] \\ \operatorname{Cov}[X_2, X_1] & \operatorname{Cov}[X_2, X_2] & \cdots & \operatorname{Cov}[X_2, X_n] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}[X_n, X_1] & \operatorname{Cov}[X_n, X_2] & \cdots & \operatorname{Cov}[X_n, X_n] \end{bmatrix}$$
$$= \begin{bmatrix} \operatorname{Var}[X_1] & \cdots & \operatorname{Cov}[X_1, X_n] \\ \vdots & \ddots & \vdots \\ \operatorname{Cov}[X_n, X_1] & \cdots & \operatorname{Var}[X_n] \end{bmatrix}$$

Covariance matrix

By definition of covariance,

$$\Sigma = \begin{bmatrix} E[X_1^2] - E[X_1]^2 & \cdots & E[X_1X_n] - E[X_1]E[X_n] \\ \vdots & \ddots & \vdots \\ E[X_nX_1] - E[X_n]E[X_1] & \cdots & E[X_n^2] - E[X_n]E[X_n] \end{bmatrix}$$
$$= E[\mathbf{X}\mathbf{X}^T] - \boldsymbol{\mu}\boldsymbol{\mu}^T$$

where $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)^T$ is the vector of expectations of the random variables X_1, \dots, X_n .

Properties

The covariance matrix is necessarily:

- semidefinite positive: that is, $\mathbf{z}^T \Sigma \mathbf{z} \ge 0$ for any $\mathbf{z} \in \mathbb{R}^n$
- symmetric: $\mathit{Cov}[X_i,X_j] = \mathit{Cov}[X_j,X_i]$ for $1 \leq i,j \leq n$

Correlation

For any pair of r.v. X, Y, the Pearson correlation coefficient is defined as

$$\rho_{X,Y} = \frac{Cov[X,Y]}{\sqrt{Var[X]Var[Y]}}$$

Note that, if Y = aX + b for some pair a, b, then

$$Cov[X, Y] = E[(X - \mu)(aX + b - a\mu - b)] = E[a(X - \mu)^2] = aVar[X]$$

and, since

$$Var[Y] = (aX - a\mu)^2 = a^2 Var[X]$$

it results $\rho_{X,Y} = 1$. As a corollary, $\rho_{X,X} = 1$.

Observe that if X and Y are independent, p(X,Y) = p(X)p(Y): as a consequence, Cov[X,Y] = 0 and $\rho_{X,Y} = 0$. That is, independent variables have null covariance and correlation.

The contrary is not true: null correlation does not imply indepedence: see for example X uniform in [-1, 1] and $Y = X^2$.

Correlation matrix

The correlation matrix of $(X_1, \ldots, X_n)^T$ is defined as

$$\Sigma = \begin{bmatrix} \rho_{X_1, X_1} & \rho_{X_1, X_2} & \cdots & \rho_{X_1, X_n} \\ \vdots & \ddots & \vdots \\ \rho_{X_n, X_1} & \rho_{X_n, X_2} & \cdots & \rho_{X_n, X_n} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & \rho_{X_1, X_2} & \cdots & \rho_{X_1, X_n} \\ \vdots & \ddots & \vdots \\ \rho_{X_n, X_1} & \rho_{X_n, X_2} & \cdots & 1 \end{bmatrix}$$

Multinomial distribution

Definition

Let $x_i \in \mathbb{N}$ for $i = 1, \ldots, k$, then $(x_1, \ldots, x_k) \sim Mult(n, p_1, \ldots, p_k)$ with $0 \le p \le 1$, if

$$p(x_1, \dots, x_k) = \frac{n!}{x_1! \dots x_k!} \prod_{i=1}^k p_i^{x_i} \qquad \text{con } \sum_{i=1}^k x_i = n$$

Generalization of the binomial distribution to $k \ge 2$ possible toss results t_1, \ldots, t_k with probabilities p_1, \ldots, p_k $(\sum_{i=1}^k p_i = 1).$

Probability that in a sequence of n independent tosses p_1, \ldots, p_k , exactly x_i tosses have result t_i $(i = 1, \ldots, k)$.

Mean and variance

$$E[x_i] = np_i \qquad Var[x_i] = np_i(1 - p_i) \qquad i = 1, \dots, k$$

Dirichlet distribution

Definition

Let $x_i \in [0, 1]$ for $i = 1, \ldots, k$, then $(x_1, \ldots, x_k) \sim Dirichlet(\alpha_1, \alpha_2, \ldots, \alpha_k)$ if

$$f(x_1,\ldots,x_k) = \frac{\Gamma(\sum_{i=1}^k \alpha_i)}{\prod_{i=1}^k \Gamma(\alpha_i)} \prod_{i=1}^k x_i^{\alpha_i-1} = \frac{1}{\Delta(\alpha_1,\ldots,\alpha_k)} \prod_{i=1}^k x_i^{\alpha_i-1}$$

with $\sum_{i=1}^{k} x_i = 1$.

Generalization of the Beta distribution to the multinomial case $k \ge 2$.

A random variable $\phi = (\phi_1, \dots, \phi_K)$ with Dirichlet distribution takes values on the K - 1 dimensional simplex (set of points $\mathbf{x} \in \mathbb{R}^K$ such that $x_i \ge 0$ for $i = 1, \dots, K$ and $\sum_{i=1}^K x_i = 1$)

Mean and variance

$$E[x_i] = \frac{\alpha_i}{\alpha_0} \qquad Var[x_i] = \frac{\alpha_i(\alpha_0 - \alpha_i)}{\alpha_0^2(\alpha_0 + 1)} \qquad i = 1, \dots, k$$

with $\alpha_0 = \sum_{j=1}^k \alpha_j$

Dirichlet distribution

Examples of Dirichlet distributions with k = 3

Dirichlet distribution

Symmetric Dirichlet distribution

Particular case, where $\alpha_i = \alpha$ for $i = 1, \ldots, K$

$$p(\phi_1, \dots, \phi_K | \alpha, K) = \operatorname{Dir}(\boldsymbol{\phi} | \alpha, K) = \frac{\Gamma(K\alpha)}{\Gamma(\alpha)^K} \prod_{i=1}^K \phi_i^{\alpha-1} = \frac{1}{\Delta_K(\alpha)} \prod_{i=1}^K \phi_i^{\alpha-1}$$

Mean and variance

In this case,

$$E[x_i] = \frac{1}{K}$$
 $Var[x_i] = \frac{K-1}{K^2(\alpha+1)}$ $i = 1, ..., K$

2 The normal distribution

Gaussian distribution

- Properties
 - Analytically tractable
 - Completely specified by the first two moments
 - A number of processes are asintotically gaussian (theorem of the Central Limit)
 - Linear transformation of gaussians result in a gaussian

Univariate gaussian

For $x \in \mathbb{R}$:

$$p(x) = \mathcal{N}(\mu, \sigma^2)$$
$$= \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

with

$$\mu = E[x] = \int_{-\infty}^{\infty} xp(x)dx$$
$$\sigma^2 = E[(x-\mu)^2] = \int_{-\infty}^{\infty} (x-\mu)^2 p(x)dx$$

Univariate gaussian

A univariate gaussian distribution has about 95% of its probability in the interval $|x - \mu| \ge 2\sigma$.

Multivariate gaussian

For $\mathbf{x} \in \mathbb{R}^d$:

$$p(\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$= \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$$

where

$$\boldsymbol{\mu} = E[\mathbf{x}] = \int \mathbf{x} p(\mathbf{x}) d\mathbf{x}$$
$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T] = \int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T p(\mathbf{x}) d\mathbf{x}$$

Multivariate gaussian

- μ : expectation (vector of size d)
- Σ : matrix $d \times d$ of covariance. $\sigma_{ij} = E[(X_i \mu_i)(X_j \mu_j)]$

Multivariate gaussian

Mahalanobis distance

• Probability is a function of **x** through the quadratic form

$$\Delta^2 = (\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

- Δ is the Mahalanobis distance from μ to **x**: it reduces to the euclidean distance if $\Sigma = I$.
- Constant probability on the curves (ellipsis) at constant Δ .

Multivariate gaussian

In general,

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = (\mathbf{x}^T \mathbf{A} \mathbf{x})^T = \mathbf{x}^T \mathbf{A}^T \mathbf{x}$$

this implies that

$$\mathbf{x}^{T}\mathbf{A}\mathbf{x} = \frac{1}{2}\mathbf{x}^{T}\mathbf{A}\mathbf{x} + \frac{1}{2}\mathbf{x}^{T}\mathbf{A}^{T}\mathbf{x} = \mathbf{x}^{T}\left(\frac{1}{2}\mathbf{A} + \frac{1}{2}\mathbf{A}^{T}\right)\mathbf{x}$$

- + $\mathbf{A} + \mathbf{A}^T$ is necessarily symmetric, as a consequence, Σ is symmetric
- as a consequence, its inverse Σ^{-1} does exist.

Diagonal covariance matrix

Assume a diagonal covariance matrix:

$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^2 \end{bmatrix}$$
$$\Sigma^{-1} = \begin{bmatrix} \frac{1}{\sigma_1^2} & 0 & \cdots & 0 \\ 0 & \frac{1}{\sigma_2^2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\sigma_n^2} \end{bmatrix}$$

Diagonal covariance matrix

then, $|\Sigma| = \sigma_1^2 \sigma_n^2 \dots \sigma_n^2$ and

Easy to verify that

$$(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) = \sum_{i=1}^n \frac{(x_i - \mu_i)^2}{\sigma_i^2}$$

and

$$f(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma_i}} \exp\left(-\frac{1}{2} \frac{(x_i - \mu_i)^2}{\sigma_i^2}\right)$$

The multivariate distribution turns out to be the product of d univariate gaussians, one for each coordinate x_i .

Identity covariance matrix

The distribution is the product of d "copies" of the same univariate gaussian, one copy for each coordinate x_i .

Spectral properties of Σ

 Σ is real and symmetric: then,

1. all its eigenvalues λ_i are in $\mathbb R$

2. there exists a corresponding set of orthonormal eigenvectors i (i.e. such that ($i^T j = 1$ if i = j and 0 otherwise)

Let us define the $d \times d$ matrix U whose columns correspond to the orthonormal eigenvectors

$$\mathbf{U} = \left(\begin{array}{ccc} | & & | \\ 1 & \cdots & 2 \\ | & & | \end{array}\right) d$$

and the diagonal d imes d matrix $oldsymbol{\Lambda}$ with eigenvalues on the diagonal

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & 0 \\ & & \lambda_3 & \\ & 0 & \ddots & \\ & & & & \lambda_d \end{bmatrix}$$

Multivariate gaussian

Decomposition of Σ

,

By the definition of U and A, and since $\Sigma i = i\lambda_i$ for all $i = 1, \ldots, d$, we may write

$$\Sigma \mathbf{U} = \mathbf{U} \mathbf{\Lambda}$$

Since the eigenvectors u_i are orthonormal, $\mathbf{U}^{-1} = \mathbf{U}^T$ by the properties of orthonormal matrices: as a consequence

$$\Sigma = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{-1} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^T = \sum_{i=1}^d \lambda_i \mathbf{u}_i \mathbf{u}_i^T$$

Then, its inverse matrix is a diagonal matrix itself

$$\Sigma^{-1} = \sum_{i=1}^{d} \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^T$$

Multivariate gaussian

Density as a function of eigenvalues and eigenvectors

As shown before,

$$\begin{split} \Delta^2 &= (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = (\mathbf{x} - \boldsymbol{\mu})^T \sum_{i=1}^d \frac{1}{\lambda_i} i i^T (\mathbf{x} - \boldsymbol{\mu}) \\ &= \sum_{i=1}^d \frac{1}{\lambda_i} (\mathbf{x} - \boldsymbol{\mu})^T i i^T (\mathbf{x} - \boldsymbol{\mu}) = \sum_{i=1}^d \frac{1}{\lambda_i} (i^T (\mathbf{x} - \boldsymbol{\mu}))^T i^T (\mathbf{x} - \boldsymbol{\mu}) \\ &= \sum_{i=1}^d \frac{(i^T (\mathbf{x} - \boldsymbol{\mu}))^2}{\lambda_i} \end{split}$$

Let $y_i = i^T(\mathbf{x} - \boldsymbol{\mu})$: then

$$(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) = \sum_{i=1}^n \frac{y_i^2}{\lambda_i}$$

and

$$f(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\lambda_{i}}} \exp\left(-\frac{1}{2} \frac{y_{i}^{2}}{\lambda_{i}}\right)$$

Multivariate gaussian

 y_i is the scalar product of $\mathbf{x} - \boldsymbol{\mu}$ and the *i*-th eigenvector *i*, that is the length of the projection of $\mathbf{x} - \boldsymbol{\mu}$ along the direction of the eigenvector. Since eigenvectors are orthonormal, they are the basis of a new space, and for each vector $\mathbf{x} = (x_1, \ldots, x_d)$, the values (y_1, \ldots, y_d) are the coordinates of \mathbf{x} in the eigenvector space.

Eigenvectors of Σ correspond to the axes of the distribution; each eigenvalue is a scale factor along the axis of the corresponding eigenvector.

Linear transformations

Let $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{A} \in \mathbb{R}^{d \times k}$, $\mathbf{y} = \mathbf{A}^T \mathbf{x} \in \mathbb{R}^k$: then, if \mathbf{x} is normally distributed, so is \mathbf{y} .

In particular, if the distribution of x has mean μ and covariance matrix Σ , the distribution of y has mean $\mathbf{A}^T \mu$ and covariance matrix $\mathbf{A}^T \Sigma \mathbf{A}$.

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma) \Longrightarrow \mathbf{y} \sim \mathcal{N}(\mathbf{A}^T \boldsymbol{\mu}, \mathbf{A}^T \Sigma \mathbf{A})$$

Marginal and conditional of a joint gaussian

Let
$$\mathbf{x}_1 \in \mathbb{R}^h, \mathbf{x}_2 \in \mathbb{R}^k$$
 be such that $\left[\frac{\mathbf{x}_1}{\mathbf{x}_2}\right] \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and let
 $\boldsymbol{\cdot} \quad \boldsymbol{\mu} = \left[\frac{\boldsymbol{\mu}_1}{\boldsymbol{\mu}_2}\right]$ with $\boldsymbol{\mu}_1 \in \mathbb{R}^h, \boldsymbol{\mu}_2 \in \mathbb{R}^k$
 $\boldsymbol{\cdot} \quad \boldsymbol{\Sigma} = \left[\frac{\Sigma_{11} \mid \Sigma_{12}}{\Sigma_{21} \mid \Sigma_{22}}\right]$ with $\Sigma_{11} \in \mathbb{R}^{h \times h}, \Sigma_{12} \in \mathbb{R}^{h \times k}, \Sigma_{21} \in \mathbb{R}^{k \times h}, \Sigma_{22} \in \mathbb{R}^{k \times k}$

then

• the marginal distribution of \mathbf{x}_1 is $\mathbf{x}_1 \sim \mathcal{N}(\boldsymbol{\mu}_1, \Sigma_{11})$

- the conditional distribution of x_1 given x_2 is $x_1|x_2 \sim \mathcal{N}(\pmb{\mu}_{1|2}, \Sigma_{1|2})$ with

$$\mu_{1|2} = \mu_1 - \Sigma_{12} \Sigma_{22}^{-1} (\mathbf{x}_2 - \mu_2)$$

$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

Bayes' formula and gaussians

Let \mathbf{x}, \mathbf{y} be such that

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma_1)$$
 and $\mathbf{y} | \mathbf{x} \sim \mathcal{N}(\mathbf{A}\mathbf{x} + \mathbf{b}, \Sigma_2)$

That is, the marginal distribution of \mathbf{x} (the prior) is a gaussian and the conditional distribution of \mathbf{y} w.r.t. \mathbf{x} (the likelihood) is also a gaussian with (conditional) mean given by a linear combination on \mathbf{x} . Then, both the the conditional distribution of \mathbf{x} w.r.t. \mathbf{y} (the posterior) and the marginal distribution of y (the evidence) are gaussian.

$$\mathbf{y} \sim \mathcal{N}(\mathbf{A} \boldsymbol{\mu} + \mathbf{b}, \Sigma_2 + \mathbf{A} \Sigma_1 \mathbf{A}^T)$$

 $\mathbf{x} | \mathbf{y} \sim \mathcal{N}(\hat{\boldsymbol{\mu}}, \hat{\Sigma})$

where

$$\hat{\boldsymbol{\mu}} = (\boldsymbol{\Sigma}_1^{-1} + \mathbf{A}^T \boldsymbol{\Sigma}_2^{-1} \mathbf{A})^{-1} (\mathbf{A}^T \boldsymbol{\Sigma}_2^{-1} (\mathbf{y} - \mathbf{b}) + \boldsymbol{\Sigma}_1^{-1} \boldsymbol{\mu})$$
$$\hat{\boldsymbol{\Sigma}} = (\boldsymbol{\Sigma}_1^{-1} + \mathbf{A}^T \boldsymbol{\Sigma}_2^{-1} \mathbf{A})^{-1}$$

3 Bayesian statistics

Bayesian statistics

Classical (frequentist) statistics

- Interpretation of probability as frequence of an event over a sufficiently long sequence of reproducible experiments.
- Parameters seen as constants to determine

Bayesian statistics

- Interpretation of probability as degree of belief that an event may occur.
- · Parameters seen as random variables

Bayes' rule

Cornerstone of bayesian statistics is Bayes' rule

$$p(X = x | \Theta = \theta) = \frac{p(\Theta = \theta | X = x)p(X = x)}{p(\Theta = \theta)}$$

Given two random variables X, Θ , it relates the conditional probabilities $p(X = x | \Theta = \theta)$ and $p(\Theta = \theta | X = x)$.

Bayesian inference

Given an observed dataset X and a family of probability distributions $p(x|\Theta)$ with parameter Θ (a probabilistic model), we wish to find the parameter value which best allows to describe X through the model.

In the bayesian framework, we deal with the distribution probability $p(\Theta)$ of the parameter Θ considered here as a random variable. Bayes' rule states that

$$p(\Theta|\mathbf{X}) = \frac{p(\mathbf{X}|\Theta)p(\Theta)}{p(\mathbf{X})}$$

Bayesian inference

Interpretation

- $p(\Theta)$ stands as the knowledge available about Θ before X is observed (a.k.a. prior distribution)
- $p(\Theta|\mathbf{X})$ stands as the knowledge available about Θ after **X** is observed (a.k.a. posterior distribution)
- $p(\mathbf{X}|\Theta)$ measures how much the observed data are coherent to the model, assuming a certain value Θ of the parameter (a.k.a. likelihood)
- $p(\mathbf{X}) = \sum_{\Theta'} p(\mathbf{X}|\Theta')p(\Theta')$ is the probability that **X** is observed, considered as a mean w.r.t. all possible values of Θ (a.k.a. evidence)

Conjugate distributions

Definition

Given a likelihood function p(y|x), a (prior) distribution p(x) is conjugate to p(y|x) if the posterior distribution p(x|y) is of the same type as p(x).

Consequence

If we look at p(x) as our knowledge of the random variable x before knowing y and with p(x|y) our knowledge once y is known, the new knowledge can be expressed as the old one.

Examples of conjugate distributions: beta-bernoulli

The Beta distribution is conjugate to the Bernoulli distribution. In fact, given $x \in [0, 1]$ and $y \in \{0, 1\}$, if

$$p(\phi|\alpha,\beta) = \text{Beta}(\phi|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\phi^{\alpha-1}(1-\phi)^{\beta-1}$$
$$p(x|\phi) = \phi^x(1-\phi)^{1-x}$$

then

$$p(\phi|x) = \frac{1}{Z}\phi^{\alpha-1}(1-\phi)^{\beta-1}\phi^x(1-\phi)^{1-x} = \text{Beta}(x|\alpha+x-1,\beta-x)$$

where Z is the normalization coefficient

$$Z = \int_0^1 \phi^{\alpha+x-1} (1-\phi)^{\beta-x} d\phi = \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+x)\Gamma(\beta-x+1)}$$

Examples of conjugate distributions: beta-binomial

The Beta distribution is also conjugate to the Binomial distribution. In fact, given $x \in [0, 1]$ and $y \in \{0, 1\}$, if

$$p(\phi|\alpha,\beta) = \text{Beta}(\phi|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\phi^{\alpha-1}(1-\phi)^{\beta-1}$$
$$p(k|\phi,N) = \binom{N}{k}\phi^{k}(1-\phi)^{N-k} = \frac{N!}{(N-k)!k!}\phi^{N}(1-\phi)^{N-k}$$

then

$$p(\phi|k, N, \alpha, \beta) = \frac{1}{Z} \phi^{\alpha - 1} (1 - \phi)^{\beta - 1} \phi^k (1 - \phi)^{N - k} = \text{Beta}(\phi|\alpha + k - 1, \beta + N - k - 1)$$

with the normalization coefficient

$$Z = \int_0^1 \phi^{\alpha+k-1} (1-\phi)^{\beta+N-k-1} d\phi = \frac{\Gamma(\alpha+\beta+N)}{\Gamma(\alpha+k)\Gamma(\beta+N-k)}$$

Multivariate distributions

Multinomial

Generalization of the binomial

$$p(n_1, \dots, n_K | \phi_1, \dots, \phi_K, n) = \frac{n!}{\prod_{i=1}^K n_i!} \prod_{i=1}^K \phi_i^{n_i} \qquad \sum_{i=1}^k n_i = n, \sum_{i=1}^k \phi_i = 1$$

the case n = 1 is a generalization of the Bernoulli distribution

$$p(x_1, \dots, x_K | \phi_1, \dots, \phi_K) = \prod_{i=1}^K \phi_i^{x_i} \qquad \forall i : x_i \in \{0, 1\}, \sum_{i=1}^K x_i = 1, \sum_{i=1}^K \phi_i = 1$$

Likelihood of a multinomial

$$p(\mathbf{X}|\phi_1,\ldots,\phi_K) \propto \prod_{i=1}^N \prod_{j=1}^K \phi_j^{x_{ij}} = \prod_{j=1}^K \phi_j^{N_j}$$

Conjugate of the multinomial

Dirichlet distribution

The conjugate of the multinomial is the Dirichlet distribution, generalization of the Beta to the case K > 2

$$p(\phi_1, \dots, \phi_K | \alpha_1, \dots, \alpha_K) = \text{Dir}(\phi | \alpha) = \frac{\Gamma(\sum_{i=1}^K \alpha_i)}{\prod_{i=1}^K \Gamma(\alpha_i)} \prod_{i=1}^K \phi_i^{\alpha_i - 1}$$
$$= \frac{1}{Z'} \prod_{i=1}^K \phi_i^{\alpha_i - 1}$$

with $\alpha_i > 0$ for $i = 1, \ldots, K$

Random variables and Dirichlet distribution

A random variable $\phi = (\phi_1, \dots, \phi_K)$ with Dirichlet distribution takes values on the K - 1 dimensional simplex (set of points $\mathbf{x} \in \mathbb{R}^K$ such that $x_i \ge 0$ for $i = 1, \dots, K$ and $\sum_{i=1}^K x_i = 1$)

Examples of conjugate distributions: dirichlet-multinomial

Assume $\phi \sim \text{Dir}(\phi | \alpha)$ and $z \sim \text{Mult}(z | \phi)$. Then,

$$p(\boldsymbol{\phi}|z, \boldsymbol{\alpha}) = \frac{p(z|\boldsymbol{\phi})p(\boldsymbol{\phi}|\boldsymbol{\alpha})}{p(z|\boldsymbol{\alpha})} = \frac{1}{Z} \frac{1}{Z'} \frac{1}{Z''} \prod_{i=1}^{K} \phi_i^{z_i} \prod_{i=1}^{K} \phi_i^{\alpha_i - 1}$$
$$= \frac{1}{Z'''} \prod_{i=1}^{K} \phi_i^{\alpha_i + z_i - 1} = \operatorname{Dir}(\boldsymbol{\phi}|\boldsymbol{\alpha}')$$

where $\boldsymbol{\alpha}' = (\alpha_1 + z_1, \dots, \alpha_K + z_K)$

Text modeling

Unigram model

Collection W of N term occurrences: N observations of a same random variable, with multinomial distribution over a dictionary V of size V.

$$p(\mathbf{W}|\phi) = L(\phi|\mathbf{W}) = \prod_{i=1}^{V} \phi_i^{N_i}$$
 $\sum_{i=1}^{V} \phi_i = 1, \sum_{i=1}^{V} N_i = N$

Parameter model

Use of a Dirichlet distribution, conjugate to the multinomial

$$p(\boldsymbol{\phi}|\boldsymbol{\alpha}) = \text{Dir}(\boldsymbol{\phi}|\boldsymbol{\alpha})$$
$$p(\boldsymbol{\phi}|\mathbf{W}, \boldsymbol{\alpha}) = \text{Dir}(\boldsymbol{\phi}|\boldsymbol{\alpha} + \mathbf{N})$$

Information theory

Let X be a discrete random variable:

- define a measure h(x) of the information (surprise) of observing X = x
- requirements:
 - likely events provide low surprise, while rare events provide high surprise: h(x) is inversely proportional to p(x)
 - X, Y independent: the event X = x, Y = y has probability p(x)p(y). Its surprise is the sum of the surprise for X = x and for Y = y, that is, h(x, y) = h(x) + h(y) (information is additive)

this results into $h(x) = -\log x$ (usually base 2)

Entropy

A sender transmits the value of X to a receiver: the expected amount of information transmitted (w.r.t. p(x)) is the entropy of X

$$H(x) = -\sum_{x} p(x) \log_2 p(x)$$

- · lower entropy results from more sharply peaked distributions
- the uniform distribution provides the highest entropy

Entropy is a measure of disorder.

Entropy, some properties

- + $p(x) \in [0,1]$ implies $p(x) \log_2 p(x) \le 0$ and $H(X) \ge 0$
- H(X) = 0 if there exists x such that p(x) = 1

Maximum entropy

Given a fixed number k of outcomes, the distribution p_1, \ldots, p_k with maximum entropy is derived by maximizing H(X) under the constraint $\sum_{i=1}^{k} p_i = 1$. By using Lagrange multipliers, this amounts to maximizing

$$-\sum_{i=1}^{k} p_i \log_2 p_i + \lambda \left(\sum_{i=1}^{k} p_i - 1\right)$$

Setting the derivative of each p_i to 0,

$$0 = -\log_2 p_i - \log_2 e + \lambda$$

results into $p_i = 2^{\lambda} - e$ for each *i*, that is into the uniform distribution $p_i = \frac{1}{k}$ and $H(X) = \log_2 k$

Entropy, some properties

H(X) is a lower bound on the expected number of bits needed to encode the values of X

- trivial approach: code of length $\log_2 k$ (assuming uniform distribution of values for X)
- for non-uniform distributions, better coding schemes by associating shorter codes to likely values of X

Conditional entropy

Let X, Y be discrete r.v. : for a pair of values x, y the additional information needed to specify y if x is known is $-\ln p(y|x)$.

The expected additional information needed to specify the value of Y if we assume the value of X is known is the conditional entropy of Y given X

$$H(Y|X) = -\sum_{x} \sum_{y} p(x, y) \ln p(y|x)$$

Clearly, since $\ln p(y|x) = \ln p(x, y) - \ln p(x)$

$$H(X,Y) = H(Y|X) + H(X)$$

that is, the information needed to describe (on the average) the values of X and Y is the sum of the information needed to describe the value of X plus that needed to describe the value of Y is X is known.

KL divergence

Assume the distribution p(x) of X is unknown, and we have modeled is as an approximation q(x).

If we use q(x) to encode values of X we need an average length $-\sum_{x} p(x) \ln q(x)$, while the minimum (known p(x)) is $-\sum_{x} p(x) \ln p(x)$.

The additional amount of information needed, due to the approximation of p(x) through q(x) is the Kullback-Leibler divergence

$$KL(p||q) = -\sum_{x} p(x) \ln q(x) + \sum_{x} p(x) \ln p(x)$$
$$= -\sum_{x} p(x) \ln \frac{q(x)}{p(x)}$$

KL(p||q) measures the difference between the distributions p and q.

- KL(p||p) = 0
- $KL(p||q) \neq KL(q||p)$: the function is not symmetric, it is not a distance (it would be d(x, y) = d(y, x))

Convexity

A function is convex (in an interval [a, b]) if, for all $0 \le \lambda \le 1$, the following inequality holds

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$

- $\lambda a + (1 \lambda)b$ is a point $x \in [a, b]$ and $f(\lambda a + (1 \lambda)b)$ is the corresponding value of the function
- $\lambda f(a) + (1 \lambda)f(b) = f(x)$ is the value at $\lambda a + (1 \lambda)b$ of the chord from (a, f(a)) to (b, f(b)).

Jensen's inequality and KL divergence

• If f(x) is a convex function, the Jensen's inequality holds for any set of points x_1, \ldots, x_M

$$f\left(\sum_{i=1}^{M} \lambda_i x_i\right) \le \sum_{i=1}^{M} \lambda_i f(x_i))$$

where $\lambda_i \geq 0$ for all i and $\sum_{i=1}^M \lambda_i = 1$.

• In particular, if $\lambda_i = p(x_i)$,

$$f(E[x]) \le E[f(x)]$$

• if x is a continuous variable, this results into

$$f\left(\int xp(x)dx\right) \le \int f(x)p(x)dx$$

• applying the inequality to KL(p||q), since the logarithm is convex,

$$KL(p||q) = -\int p(x)\ln\frac{q(x)}{p(x)}dx \ge -\ln\int q(x)dx = 0$$

thus proving the KL is always non-negative.

Applying KL divergence

- $\mathbf{x} = (x_1, \dots, x_n)$, dataset generated by a unknown distribution p(x)
- we want to infer the parameters of a probabilistic model $q_{ heta}(x| heta)$
- approach: minimize

$$KL(p||q_{\theta}) = -\sum_{x} p(x) \ln \frac{q(x|\theta)}{p(x)}$$
$$\approx -\frac{1}{n} \sum_{i=1}^{n} \ln \frac{q(x_{i}|\theta)}{p(x_{i})}$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\ln p(x_{i}) - \ln q(x_{i}|\theta))$$

First term is independent of θ , while the second one is the negative log-likelihood of **x**. The value of θ which minimizes $KL(p||q_{\theta})$ also maximizes the log-likelihood.

Mutual information

- Measure of the independence between \boldsymbol{X} and \boldsymbol{Y}

$$I(X,Y) = KL(p(X,Y)||p(X), p(Y)) = -\sum_{x} \sum_{y} p(x,y) \ln \frac{p(x)p(y)}{p(x,y)}$$

additional encoding length if independence is assumed

• We have:

$$\begin{split} I(X,Y) &= -\sum_{x} \sum_{y} p(x,y) \ln \frac{p(x)p(y)}{p(x,y)} \\ &= -\sum_{x} \sum_{y} p(x,y) \ln \frac{p(x)p(y)}{p(x|y)p(y)} \\ &= -\sum_{x} \sum_{y} p(x,y) \ln \frac{p(x)}{p(x|y)} \\ &= -\sum_{x} \sum_{y} p(x,y) \ln p(x) + \sum_{x} \sum_{y} p(x,y) \ln p(x|y) = H(X) - H(X|Y) \end{split}$$

+ Similarly, it derives I(X,Y) = H(Y) - H(Y|X)