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1 Probabi]ity

Discrete random variables

A discrete random variable X can take values from some finite or countably infinite set X. A probability mass
function (pmf) associates to each event X = x a probability p(X = x).

Properties
c0<p(x)<lforalzeXx
z€Xp(x)=1

Note: we shall denote as z the event X =

Discrete random variables
Joint and conditional probabilities

Given two events &, ¥, it is possible to define:
« the probability p(x, y) = p(x A y) of their joint occurrence
+ the conditional probability p(z|y) of « under the hypothesis that y has occurred

Union of events

Given two events , ¥, the probability of  or y is defined as
p(zVy) = p(@) +ply) —p(z,y)
in 1:)articuiar7

p(xVy)=plx)+ply)

The same definitions hold for probability distributions.



Discrete random variables
Product rule
The product rule relates joint and conditional probabilities
p(z,y) = p(zly)p(y) = p(ylr)p(x)

where p(x) is the marginal probabi]ity.
In general,

p(x1,...,xn) = p(xe, ..., zn|x1)p(x1)
=p(3, ..., Tn|T1, 22)p(22|71)p(21)

= p(I7z|51;17 cee 71’7171)])(1‘n71ixl .- --7771,72> e '])(fl?2|371)]7(371)

Discrete random variables
Sum rule and marginalization

The sum rule relates the joint probability of two events &, y and the probability of one such events p(y) (or p(y))

= Zp(a:,y) = Zp(flfil/)P(l/)

yey yey
Applying the sum rule to derive a marginai probability froma joint probabiiity is usua]iy called mzn‘ginalizzltion

Discrete random variables

Bayes rule
Since
p(z,y) = p(zly)p(y)
p(x,y) = p(ylz)p(x)
py) =Y plxy) = > plyle)p(z)
reX reX
frresules WlopE) _ pelope)
) = PWlz)p(x) p(y|x)p(a
plely) p(y) > wex PYlT)p()
Terminology

« p(x): Prior probability of x (before knowing that y occurred)
« p(z|y): Posterior of z (if y has occurred)

« p(y|z): Likelihood of y given
(

+ p(y): Evidence of y



Independence
Definition

Two random variables X, Y are independent (X L Y) if their joint probability is equal to the product of their
marginals

p(z,y) = p(x)p(y)
or, cquivalcntiy7

p(z|y) = p(z) p(ylx) = p(y)

The condition p(z|y) = p(x), in particular, states that, if two variables are independent, knowing the value of
one does not add any knowledge about the other one.
Independence

Conditional independence

Two random variables X, Y are conditionally independent wr.e. a thirdrv. Z (X 1LY | 2) if

p(z,y|z) = p(x]2)p(y|2)

Conditional independence does not imply (absolute) independence, and vice versa.

Continuous random variables
A continuous random variable X can take values from a continuous infinite set X. Its probability is defined as
cumulative distribution function (cdf) F(x) = p(X < QC)

The probability that X is in an interval (@, b] is then p(a < X < b) = F(b) — F(a).

Probability density function
dF(z)
dzx

b
pla< X <b)= [ f(x)dx
Ja

The probability density function (pdf) is defined as f(z) =

.Asa consequence,

and
ple < X <z+dr)~ f(x)dr

for a sufhiciently small de.

Sum rule and continuous random variables

In che case of continuous random variables, their probability density functions relate as follows.

fo) = /) o)y = / Pl



Expectation
Definition

Let  be a discrete random variable with discribution p(x), and let g : R — R be any function: the expectation of
g(z) wr.e. p(x) is

Eplg(2)] = ) g(a)p(z)

reVy
If 2 is a continuous r.v., with probability density f(x), then

ge el

Eflg(x)] = / g(z)f(x)dx

J —00

Mean value

Particular case: g(x) = x

Eplz] = Z xp(x) Eflz] = '/OC zf(x)dx

xeVy

Elementary properties of expectation

+ Ela] = atoreacha € R
. Elaf(z)] = aE[f(x)] for cacha € R
* E[f(x) + g(z)] = E[f (z)] + Elg(x)]

Variance

Definition
Var[X] = E[(z — [‘:[1"})2]

We may easily derive:

El(z — E[z])?] = E[2® - 2E[z]a + E[2)?]
= E[z?] — 2E[z]E[z] + E[z]?
= E[z? — E[2)?
Some elementary properties:

« Var[a] = 0 for eacha € R

. Varlaf(x)] = a®Var[f(z)] for cacha € R



Probability distributions

Probability distribution

Given a discrete random variable X € Vi, the corresponding probability discribution is a function p(x) =

P(X = x) such that

- 0<p(z) <1
> pl)=1
zeVx

. ZP("”) = P(z € A),with A C Vx
z€A

Some definitions
Cumulative distribution

Given a continuous random variable X € R, the corresponding cumulative probability discribution is a function

F(x) = P(X < z) such that:
c0<F(z)<1
' im Flw) =0

lim F(z)=1

Tr—r00

sr <y = F(z) < F(y)

Some definitions
Probability density

Given a continuous random variable X € R with derivable cumulative distribution F'(z), the probability densicy

is defined as 1 ()
, dF(x

flz) = —+

dx




By definition of derivative, for a sufﬁcicntly small Az,
Priz <X <z+ Azx) = f(x)Ax

The following properties hold:
-+ f(2) =20

7, Fayde =1

¢ Jren f(@)dz = P(X € A)

A

Bernoulli distribution

Definition
Let z € {0, 1}, then z ~ Bernoulli(p), with 0 < p < 1,if

P sex =1
p(z) = {

1—p sex=0

or, equivalently,
1—x

p(z) =p*(1 - p)
Probability that, given a coin with head (H) probability p (and tail probability (T) 1 — p), a coin toss result into
re{HT}

Mean and variance

Elz] = p Var[z] = p(1 — p)

Extension to multiple outcomes

Assume k possible outcomes (for example a die toss).
In this case, a generalization of the Bernoulli distribution is considered, usualy named categorical distribution.

k
p(x) = lej
=1

where (p1, ..., pg) are the probabilites of the different outcomes (Z?Zl pj = 1) and x; =1 iff the k-th outcome
occurs.



Binomial distribution
Definition
Let € N, then z ~ Binomial(n, p), with0 < p < 1,if
p(z) ( )p (1-p) An—a)? (1-p)

Probability that, given a coin with head (H) probability p, a sequence of n independent coin tosses result into

heads.

Mean and variance

Elx] =np
Varlz] = np(1 — p)

()

Poisson distribution
Definition

Let z; € N, then x ~ Poisson(\), with A > 0, if

AT
:eA—

p(x) o

Probability that an event with average frequency A\ occurs Z times in the next time unit.

Mean and variance




Normal (gaussian) distribution

Definition

Let # € R, then & ~ Normal(u, 02), with p, 0 € R, o0 > 0, if

1 (z—p)?
’ €T) = (& 202
f(z) g
Mean and variance
Elz] = p
\/ar{x] =2

Beta distribution

Definition

Let z € [0, 1], then & ~ Beta(cv, B), with a, 8 > 0, if

I'a+pB)

@)=ttt

2ol (1 o m)ﬁ’fl

where .
I(z) = / u”tetdu
0

is a generalization of the factorial to the real field R: in particolar, I'(n) = (n — 1)!'if n € N

Mean and variance

af
(a+pB)2(a+B8+1)

Var[z] =



Beta distribution

a=1, =1

T

a=0.7, =07

f(z)

a=2, /=2

a=2, f=4

a=6, f=4
=
-
r
a=10, =10
=
g

Multivariate distributions
Definition for k£ = 2 discrete variables

Given two discrete rv. X, Y, their joint distribution is
p(z,y) = P(X =z,Y =y)
The following properties hold:
LO0<p(r,y) <1

2‘ E:EGVX ZyGVy p(x’ y) = 1



Multivariate distributions
Definition for &k = 2 variables

Given two continuous r.v. X, Y, their cumulative joint distribution is defined as
F(z,y) = P(X <z,Y <y)
The following properties hold:
LO<F(z,y) <1

2. lim F(z,y)=1

T,Yy—>00

3. lim F(z,y)=0

T,y——00
If F(x,y) is derivable everywhere w.r.t. both z and y, joint probabilicy densicy is

f)zF(:z:, Y)

flay) = Oxdy

T]’lﬁ fOHOWil’lg property derives

/ / f(z,y)dedy = P((X,Y) € A)
J J(zy)eA

Covariance
Definition
Covo[X,Y] = E[(X — E[X]))(Y — E[Y])]

As for the variance, we may derive

Cou[X, Y] = E[(X — E[X])(Y — E[Y])]
= E[XY — XE[Y] — YE[X] + E[X]E[Y]]
= E[XY] — E[X]E[Y] — E[Y]E[X] + E[E[X]E[Y]]
= E[XY] — E[X]E[Y]

Moreover, the following properties hold:
1. Var[X + Y| = Var[X] + Var[Y] + 2Cov[ X, Y]
2. I X 1LY then Coo[X,Y] =0

Random vectors

Definition
Let X1, X2, ..., Xy, be aset of r.v.: we may then define a random vector as
X1
X = Xn
Xo

10



Expectation and random vectors
Definition

Let g : R” — R™ be any function. It may be considered as a vector of functions

91(x))

g(x) - .Qm(x)
92(x))
where x € R™.
The expectation of g is the vector of the expectations of all functions g;,
E[g1(x)]
Elg(x)] = : E[gm (%)]
Elg2(x)]

Covariance matrix
Definition

Let x € R™ be a random vector: its covariance matrix ¥ is a matrix n X n such that, for each 1 < 7,5 < n,

Yij = Cov[ Xy, Xj] = E[(Xi — i) (Xj — pj)], where p; = E[X;], pj = E[X].

Hence,
[ Cov[X1, X4] Cov[X1,Xo] -+ Cov[Xy, X))
S Cov[Xo, X1] Cov[Xo, Xo] -+ Cov[Xa, Xy]
i Cov[Xp, X1]  Cov[Xy, Xo] -+ Cov[X,, X))
\b)'[Xl] te C()U[Xh X,,,y]
i Cov[Xp, X4] -+~ Var[ X,
Covariance matrix
By definition of covariance,
E[X?] — E[X:1]? o E[XaXn] — E[X1]E[X0]
[;[XnXl] - [;[XHJE{XI} e [{X%] - [;[anlf{Xn]

= EXXT] — pp”

where pp = (1, . .. ,,LLn)T is the vecror ofexpectations of the random variables X1, ..., X,,.

Properties
The covariance matrix is necessarily:
« semidefinite positive: that s, 2I'%72 > 0 for any z € R"

« symmetric: Cov[X;, X;] = Cov[X;, X;] for1 <i,j <n

1



Correlation
For any pair of rv. X, Y, the Pearson correlation coefficient is defined as
Cov[X,Y]
PXY = —F—————
' Var[ X|Var[Y]

Note that, if Y = aX + b for some pair a, b, then
Coo[X,Y] = E[(X — p)(aX 4+ b— ap — b)] = Ela(X — u)?] = aVar[X]
and, since
Var[Y] = (aX — ap)? = a®Var[X]
it results pxy = 1. As a corollary, px x = 1.

Observe that if X and Y are independent, p(X,Y) = p(X)p(Y): as a consequence, Cov[X,Y] = 0 and
px,y = 0. That is, independent variables have null covariance and correlation.
The contrary is not true: null correlation does not irnpiy indepedence: see for example X uniform in [—1, 1]

andY = X2

Correlation matrix

The correlation matrix of (X1, ..., Xp,)T is defined as

PX1,X1 PXi1,Xo “°° PX1,Xn
Y= : ' :
L /)Xna)(l an,Xz IOXnaXn
1 PX1,Xo ° PX1,Xn
L an:«Xl an:XQ 1

Multinomial distribution
Definition
Letz; € Nfori=1,...,k, then (z1,...,2%) ~ Mult(n,p1,...,pr) with0 < p < 1,if

k k

n! .
p(fl/'l: .- LA) =T Hpj” con g T;=n
T1:...Tk:

© =1 =1

Generalization of the binomial distribution to k& > 2 possible toss results ¢1, . . ., t with probabilities p1, ..., pg

(Zle pi=1).

Probability thatina sequence ofn independent tosses P1, - - - Pk, exactiy x; tosses haveresult ¢; (i = 1,..., k).

Mean and variance

E[x;] = np; Varlz;] = np;(1 — p;) i=1,...,k

12



Dirichlet distribution
Definition

Letx; € [0,1] fori =1,...,k, then (z1,...,xk) ~ Dirichlec(a1, g, . .., ) if
k

. k
X I‘(zkfl (lij) 1 1 1
floy,.. .. xp) = === 2" = ——— || 2"
HLJ () [[1 ’ Alag, ... o) 11:[1 !

with Zle x; = 1.

Generalization of the Beta distribution to the multinomial case k > 2.

A random variable ¢ = (¢1,...,¢x) with Dirichlet distribution takes values on the K — 1 dimensional
simplex (set of points x € RE such thatz; > 0fori=1,..., K and Zfil x;=1)

Mean and variance

] «; ai(ap — o)
Elz;] = — Varlz;| = —5———> =1,...,k
] o0 arl:] ad(ap+1) '
with ag = Z?:l Qa;
Dirichlet distribution
Examples of Dirichlet distributions with £ = 3
Dirichlet distribution
Symmetric Dirichlet distribution
Particular case, where oy = afori=1,... | K
. K K
| / v . e F(I&(}) ra—1 1 ra—1
p(ér1, ..., x|, K) = Dir(¢p|a, K) = L Hl # = R H1 &
1= 1=
Mean and variance
In this case,
1 K-1
Elzi] = — Var[zi] = —5——— i=1,... K

K?2(a+1)



2  The normal distribution

Gaussian distribution

+ Properties

Analytically tractable

Completely specified by the first two moments

Univariate gaussian

A number of processes are asintotically gaussian (theorem of the Central Limit)

Linear transformation ofgaussians result in a gaussian

For z € R:
p(z) = N (i, 0?)
1 (= /1,)2
— (& 202
V2o
with

Univariate gaussian

25%

pto p+20 p+3a

A univariate gaussian distribution has about 95% of its probability in the interval | — u| > 20.

Multivariate gaussian

For x € R%:
plx) = Mg, 5)
1 —1(x
= ——e 2V
(21)4/2[T[1/2
where

14



Multivariate gaussian

« p: expectation (vector of size d)

« 3: matrix d X d of covariance. 0y = E[(X; — pi)(X; — p5)]

(x)f

Multivariate gaussian

Mahalanobis distance

. Probability is a function of x through the quzldmtic form

A?=(x—p)' 2 (x— p)

+ Ais the Mahalanobis distance from p to x: it reduces to the euclidean distance it ¥ = 1.

« Constant probability on the curves (ellipsis) at constant A.

Multivariate gaussian

In general,

— X

xL Ax = (XTAX)T

TATx

1 1
T T
—A+ —-A
X (2 +2 >x

« A+ AT s necessarily symmetric, as a consequence, Y is symmetric

this implies that

1 1 +
xTAx = §xTAx + fxTATx =

+ as a consequence, its inverse Y1 does exist.

15



Diagonal covariance matrix

Assume a diagona] covariance matrix:

o2 0 - 0
_ 0 03 0
0 O o
then, || = 0'%0721 . O'% and
L0 -0
o7
0 % 0
Y= 72
0 0 o
Diagona] covariance matrix
Easy to verify that
n 2
Tv—1 o (w5 — ;)
(x—p)' 2 (X*N)—ZT
1

and

. L @i pu)”
X, X)) =|| ———exp | —z———
f(xm, 1

The multivariate distribution turns out to be the product of d univariate gaussians, one for each coordinate ;.

]dentity covariance matrix
The distribution is the product of d “copies” of the same univariate gaussian, one copy for each coordinate ;.

Spectral properties of ¥
> is real and symmetric: then,

1. all its eigenvalues A; are in R

16



2. there exists a corresponding set of orthonormal eigenvectors i (i.e. such that (i7j = 1ifi = jand 0
otherwise)

Let us define the d x d matrix U whose columns correspond to the orthonormal eigenvectors

| |
u=[1 - 2 |d

and the diagonal d x d matrix A with eigenvalues on the diagonal

A

Ao O

A= A3

Multivariate gaussian
Decomposition of X

By the definition of U and A, and since 3¢ = i¢); foralli =1, ..., d, we may write
YU =UA

Since the eigenvectors u; are orthonormal, ult=u" by the properties of orthonormal matrices: as a consequence

’

d
S =UAU ' = UAU" =) " Nuju]

Then, its inverse matrix is a diagonal matrix itself
d
P 1
— )\

Multivariate gaussian
Density as a function of eigenvalues and eigenvectors

As shown before,

17



Let y; = 47 (x — p): then
(=)' (x—p) =Y

and

n l 17?
sl %) =TT e <M>

Multivariate gaussian

Y; is the scalar product of x — g and the i-th eigenvector 1, that is the lcngth of the projection ofx — along the
direction of the eigenvector. Since eigenvectors are orthonormal, they are the basis of a new space, and for each
vector X = (21, ..., Zq), the values (Y1, . .., yq) are the coordinates of x in the eigenvector space.

T
A

Ty

Eigenvectors of ¥ Corrcspond to the axes of the distribution; each cigcnvaluc is a scale factor along the axis of
the corresponding eigenvector.

Linear transformations

Letx € RE A € R y = ATx € RF: then, if x is normally distributed, so is y.
In particular, if the distribution of x has mean pt and covariance macrix X, the distribution ofy has mean AT/,L

and covariance matrix AT L A.

x~ N (X)) =y~ N(ATu, ATSA)

Marginal and conditional of a joint gaussian

Let x; € R” xg € RF be such that [xl} ~ N (,X) and let
X2

. IJ,:|:Z1 ]WithulERh,ugéRk
2

.y [211 212

:| with X117 € RhXh, Y19 € Rth, Yo € Rth, Yoo € RFkxk
o1 | Lo

then

+ the marginal discribution of x is x1 ~ N (1, X11)

18



+ the conditional distribution of x1 given xg is x1|x2 ~ N (ft1)2, £1)2) with

Hij2 = p1 — S12555 (x2 — p2)
Yip=%Yn — Y1255 Sa1

Bayes’ formula and gaussians

Let x, y be such chat
x~N(u,¥q) and  y|x ~ N(Ax+ b, 39)

That is, the marginal distribution of x (the prior) is a gaussian and the conditional distribution ofy w.r.t. x (the
likelihood) is also a gaussian with (conditional) mean given by a linear combination on x. Then, both the the

conditional distribution of x w.r.t. y (the posterior) and the rnarginal distribution ofy (the evidence) are gaussian.

y ~ N(A/,L + b, + AZlAT)
Ay ~ N (s, )

where

fo= (37 + AT A THATS (y —b) + 5 )
Y= (o +ATS A

3 Bayesian statistics
Bayesian statistics
Classical (frequentist) statistics

« Interpretation of probability as frequence of an event over a sufficiently long sequence of reproducible ex-
periments.

« Parameters seen as constants to determine
Bayesian statistics
« Interpretation of probability as degree of belicf that an event may occur.

« Parameters seen as random variables

Bayes’ rule
Cornerstone of bayesian statistics is Bayes’ rule

p(© = 0|X = 2)p(X = z)
p(© =10)

p(X = 2]0 = ) =

Given two random variables X, O, it relates the conditional probabilities p(X = 2|0 = 0) and p(© = /X = z).

19



Bayesian inference

Given an observed dataset X and a family of probability discributions p(x|@) with parameter O (a probabi]istic
model), we wish to find the parameter value which best allows to describe X through the model.

In the bayesian framework, we deal with the distribution probability p(O) of the parameter O considered here

as a random variable. Bayes’ rule states that

p(X|©)p(©)
p(X)

p(OX) =

Bayesian inference
Interpretation

+ p(©) stands as the knowledge available about © before X'is observed (ak.a. prior distribution)
« p(©|X) stands as the knowledge available about © after X is observed (ak.a. posterior discribution)

+ p(X]©) measures how much the observed data are coherent to the model, assuming a certain value © of the

parameter (ak.a. likelihood)
- p(X) = Y o p(X]|O®")p(O’) is the probability that X is observed, considered as a mean w.r.t. all possible
values of © (a.k.a. evidence)
Conjugate distributions
Definition
Given a likelihood function p(y|z), a (prior) distribution p(x) is conjugate to p(y|x) if the posterior distribution
p(x|y) is of the same type as p(z).
Consequence
If we look at p(z) as our knowledge of the random variable  before knowing y and with p(x|y) our knowledge
once ¥ is known, the new knowledge can be expressed as the old one.
Examples of conjugate distributions: beta-bernoulli
The Beta distribution is conjugate to the Bernoulli distribution. In fact, given x € [0, 1] and y € {0, 1}, if

I'(a+p) so-1

p(dla, B) = Beta(g|a, B) = T(a)T(3) (1— )1

p(z|d) = ¢*(1 — ¢)'=*

then .
p(o|x) = Z(b"’*l (1—¢)"1o%(1 — ¢)' % = Beta(z|a + 2 — 1,8 — x)
where Z is the normalization coefficient

MNa+p+1)
MNa+z)I'(B—x+1)

"1
7 — / q§(1+1:71(1 o (‘,‘5)371)(1(‘;’) _
JO

20



Examples of conjugate distributions: beta-binomial

The Beta distribution is also conjugate to the Binomial distribution. In fact, given 2 € [0, 1] and y € {0, 1}, if

Fla+B) 0 B—1
farm? 179
NI

plb19,N) = ()1~ )" = (e -

p(dla, B) = Beta(g|a, B) =

then
mthaﬁ%:%w*u—¢ﬁ*&u—¢f““:&m@m+k—Lﬁ+N—k—n

with the normalization coefficient

Lo L I(a+ B+ N)
o a+k—1 o B+N—k—1 o
Z= /0 o 1= 9) = F T BN —F)

Multivariate distributions
Multinomial

Generalization of the binomial

k k
p(ni,...,nk|d1, ..., ¢x,n) = Hcﬁnz Znizmzcﬁz’: 1
imil i) i=1 i=1
thecasen =1isa gencralization of the Bernoulli distribution
K K K
p(z1,.. TK[P1, .., OK) = HWZ Vi:x; € {071}72% = 1;2@ =1
=1 =1 =1
Likelihood of a multinomial
N K K
Lij J
X[, o) < [ TT] 677 = [T ¢
i=1j=1 j=1

Conjugate of the multinomial
Dirichlet distribution

The conjugate of the multinomial is the Dirichlet distribution, generalization of the Beta to the case K > 2

K K

a;) -

p(é1,...,0K|01,...,ax) = Dir(¢p|la) = H 2 l i H@az !
=1 =1

1 K
i—1
= 11e
=1
witha; > 0fori=1,..., K

21



Random variables and Dirichlet distribution

A random variable ¢ = (¢1, ..., ¢x) with Dirichlet distribution takes values on the K — 1 dimensional simplex
(set of points x € RE such thatz; > 0fori=1,..., K and Zfil z; =1)

Examples of conjugate distributions: dirichlet-multinomial
Assume ¢ ~ Dir(¢|a) and z ~ Mule(z|¢). Then,
K

o p(zlo)p(dla) 11 1
p(gb\/,,a)f W E?ﬁno Ho

Z/// H Da et o D“(¢|a )

where o = (Oél + 21y, 0K —|—ZK)

Text modeling
Unigram model

Collection W of N term occurrences: IN observations of a same random variable, with multinomial discribution
over a dictionary V of size V.

Vv v v
p(W|¢) = L(g|W) = [ 4" Y =1 Ni=N
i=1 1=1 1=1

Parameter model

Use of a Dirichlet distribution, conjugate to the multinomial

p(@ler) = Dir(¢ex)
p(¢|W, @) = Dir(¢p|ex + N)

Information theory

Let X be a discrete random variable:
+ define a measure h(m) of the information (surprise) ofobserving X ==z
* requirements:

— likely events provide low surprise, while rare events provide high surprise: h(x) is inversely propor-
tional to p(z)

- X, Y independent: the event X = x,Y = y has probability p(z)p(y). Its surprise is the sum of the
surprise for X = z and for Y = y, that is, h(x,y) = h(x) + h(y) (information is additive)

this results into h(z) = — log x (usually base 2)

22



Entropy

A sender transmits the value of X to a receiver: the cxpected amount of information transmitted (w.r.t. p(:v)) is

the entropy of X

H(z)=— Zp(.’l?) log, p(x)

« lower entropy results from more sharply peaked distributions
« the uniform distribution provides the highest entropy

Entropy is a measure of disorder.

05

H=177

probabilities
o
2
[

05

H = 3.09

probabilities
o
N
3

eernttl T e

Entropy, some properties
- p(x) € [0, 1] implies p(x) log, p(x) < 0and H(X) >0

« H(X) = 0 if there exists x such that p(z) =1

Maximum entropy

Given a fixed number £ of outcomes, the distribution py, . . ., pr with maximum entropy is derived by maximizing

H(X) under the constraint Zle pi = 1. By using Lagrange multipliers, this amounts to maximizing

k k
_ Zpi logy pi + A (Zpi — 1)
1=1

i= i=1
Setting the derivative of each p; to 0,

0= —logypi — log, e + A

1
results into p; = 2 — e for each 1, that is into the uniform distribution p; = E and H(X) = log2 k
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Entropy, some properties

H(X) is a lower bound on the expected number of bits needed to encode the values of X
+ trivial approach: code of length log, k (assuming uniform distribution of values for X)

« for non-uniform distributions, better coding schemes by associating shorter codes to 1ikely values of X

Conditional entropy

Let X, Y be discrete rv. : for a pair of values 2, y the additional information needed to specify y if x is known is

—Inp(yl|z).
The expected additional information needed to specify the value of Y if we assume the value of X is known is
the conditional entropy of Y given X

HY|X)= ZZ}) x,y) Inp(y|z)

Clearly, since Inp(y|z) = Inp(z,y) — Inp(x)

H(X,Y) = H(Y|X) + H(X)
that is, the information needed to describe (on the average) the values of X and Y is the sum of the information
needed to describe the value of X plus that needed to describe the value of Y is X is known.

KL divergence

Assume the distribution p(z) of X is unknown, and we have modeled is as an approximation ¢(x).
Ifwe use g(x) to encode values of X we need an average length — > p(2) In ¢(2), while the minimum (known

p(x))is —>_ . p(z) Inp(x).
The additional amount of information needed, due to the approximation of p(x) through g(x) is the Kullback-

Leibler di\'crgcncc

L(p|lq) = Zp Ing(a +Zp Inp(a
(x)
= —Z[} ln @)

K L(pl||q) measures the difference between the distributions p and g.

- KL(p|lp) =0

« KL(p||lq) # KL(q||p): the function is not symmetric, it is not a distance (it would be d(z,y) = d(y, x))

Convexity

A function is convex (in an interval [a, b]) if, for all 0 < X < 1, the following inequality holds

fa+ (1 =X2b) < Af(a) + (1 —A)f(b)

« Aa+ (1 —X)bisapoint z € [a,b] and f(Aa + (1 — A)b) is the corresponding value of the function
« AMf(a) 4+ (1 =XN)f(b) = f(x) is the value at Aa + (1 — A)b of the chord from (a, f(a)) to (b, f(b)).
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ensen’s inequality and KL divergence
q y 8

« If f(x) is a convex function, the Jensen’s incquality holds for any set of points z1, ...,z

M M
f (Z )\z:-’fz:) < Z)\zf(fi))

where \; > 0 for all 7 and Zf\il A= 1.

« In particular, if A; = p(z;),
f(E[z]) < E[f(2)]

« if' & is a continuous variable, this results into
f </ xp(;v)d:l;> < / f(z)p(x)dx

. applying the inequality to K L(p||q), since the logarithm is convex,

D = — D\ HM.L — In xr)axr =
KL(plo) = = [ o) n &80 e > —1n [ gfa)da =0

thus proving the KL is always non-negative.
Applying KL divergence
= (x1,...,xy), dataset generated by a unknown distribution p(z)
« we want to infer the parameters of a probabilistic model gg(x|0)

« approach: minimize

L(pllqo) = Zp )in 2 ))
q(z

~ ——Zln
n p(:r

= 13" (nplai) — nq(z:10))
n
=1

First term is independent of #, while the second one is the negative log-likelihood of x. The value of § which
minimizes K L(p||gp) also maximizes the log-likelihood.
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Mutual information

+ Measure of the independence between X and Y

z)p(y)

i
(z,y)

IXY) = KLGOGY)p00:5(0) = = 3 3 plag) 1n 2

additional encoding length if independence is assumed

« We have:

==> > pla,y)Inp@) + YD plx,y) npaly) = HX) - HX|Y)

« Similarly, it derives I(X,Y) = H(Y) — H(Y'|X)
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