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Generative models

« Classes are modeled by suitable conditional distributions p(x|Cy) (language models in the previous case): it
is possibie to sampie from such distributions to generate random documents statisticaiiy equivalent to the
documents in the collection used to derive the model.

« Bayes’ rule allows to derive p(C|x) given such models (and the prior distributions p(C},) of classes)

« We may derive the parameters of p(x|Cy) and p(C,) from the dataset, for example through maximum like-
lihood estimation

+ Classification is performed by comparing p(Cj|x) for all classes

Deriving posterior probabilities

« Let us consider the binary classification case and observe that

p(x|C1)p(C1)

1
, , O () o(x]C2)p(C2)
p(ICP(CL) +p(x|C2)p(C) 14 BEHEEN

P(Ci

x) =

« Let us define
= g RECUHCD _ Ci
| p(x|C2)p(Cy) © p(Calx)

that is, a is the log of the ratio between the posterior probabilities (log odds)

« We obtain that
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« o(x) is the logistic function or (sigmoid)



Sigmoid

Useful properties of the sigmoid
co(—z)=1—-0(x)
D o)1 - o)

Deriving posterior probabilities

« In the case K > 2, the general formula holds
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« Let us define, foreachk =1,..., K

(Lk(x) = log(p(x‘ck)p(ck)) = Iogp(x‘ck) + log (Ck)

« Then, we may write

p(Cilx) = S e s(ak)
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« s(x) is the softmax function (or normalized exponential) and it can be seen as an extension of the sigmoid
to the case K > 2 and as a smoothed version of the maximum

Gaussian discriminant analysis

In Gaussian discriminant analysis (GDA) all class conditional distributions p(x|C}) are assumed gaussians. This
implies that the corresponding posterior distributions p(C|x) can be easily derived.

H\'porhcsis

All distributions p(x|C}) have same covariance matrix 3, of size d X d. Then,

1 1 -
p(x|Cy) = Wﬂ’/’ <2(X — ) S (x — Nk:))

2



p(Cilx) = o(a(x))
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Binary case:

Observe that the results of all products involving 371 are scalar, hence, in particular

I8y = pFE
I8y = pIy 1y

Then,
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p(C1]x) = a(wl'x + b) is computed by applying a non-linear function to a lincar combination of the features
(generalized linear model)
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Left, the class conditional distributions p(x|C1), p(x|C2), gaussians with d = 2. Right the posterior distribution
of C1, p(C1 |x) with sigmoidal slope.



Discriminant function

The discriminant function can be obtained by the condition p(C1|x) = p(Cs|x), that is, 0 (a(x)) = o(—a(x)).

This is equivalent to a(x) = —a(x) and to a(x) = 0. As a consequence, it results
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Simple case: X = Al (that is, 04; = A foré = 1,...,d). In this case, the discriminant function is
p(Ca)
2 — X+ 2 el ® + 2M\ log =0
(2 = pr)x + |[pa || = [ o] B p(Cy)

Multiple classes )
In this case, we refer to the softmax function:

p(Crlx) = s(ax(x))
where aj(x) = log(p(x|Ci)p(Ck)).

By the above considerations, it easily turns out that
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Again, p(Ck|x) = s(wLx + by) is computed by applying a non-linear function to a linear combination of the
features (generalized linear model)

Decision boundaries corresponding to the case when there are two classes C, C, such that the corresponding
posterior probabilities are equal, and larger than the probability of any other class. That is,

p(Cklx) = p(Cjlx) p(Cilx) <p(Cklx) i,k
hence
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As shown, this implies that boundaries are linear.

General covariance matrices, binary case
The class conditional distributions p(x|C},) are gaussians with different covariance matrices

a(x) = log M
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By applying the same considerations, the decision boundary turns out to be
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Classes are separated by a (at most) quadratic surface.
It can be proved that boundary surfaces are at most quadratic.

Example
Left: 3 classes, modeled by gaussians with different covariance matrices.

Right: posterior distribution of classes, with boundary surfaces.
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GDA and maximum likelihood
The class conditional distributions p(x|C) can be derived from the training set by maximum likelihood estimation.
For the sake of simplicity, assume K = 2 and both classes share the same 3.

It is then necessary to estimate ft1, p2, X, and ™ = p(C1) (clearly, p(C2) = 1 — 7).
Training set T includes n elements (xi, ti), with

P 0 sex; € CQ
1 se x; € C
If x € C1, then p(x, C1) = p(x|C1)p(Cy) =7 - N(x|p1, X)
Ifx € Oy, p(x, C2) = p(x|C2)p(C2) = (1 — ) - N(x|p2, X)
The likelihood of the training set 7 is

L(m, o, po, BIT) = [ [ (7 - N (alpen, £)5 (1 = 7) - N(xilpa, £) "
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The corresponding log likelihood is
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Its derivative wrt 7 is
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GDA: discrete features
+ In the case of m discrete (for example, binary) features ¢1(x), ..., ¢m(x) we may apply the Naive Bayes

hypothcsis (indcpcndcncc offcaturcs7 given the class)

« Then, we may assume that, for any class Cf, the value of the i-th feature is sampled from a Bernoulli discri-
bution of parameter pg;; by the conditional independence hypothesis, it results into

m

p(x|Cy) = sz;(l )
i=1

where pr; = p(x; = 1|C}) could be estimated by ML, as in the case of language models



« Functions ag(x) can then be defined as:

m

Cr)p(Cr)) =Y (wilogpri + (1 — 2;) log(1 — pri)) + log p(Ci)
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ar(x) = log(p(x

These are still linear functions on x.

« The same considerations can be done in the case of non binary features, where, for any class Ck, we may
assume the value of the ¢-th feature is sampled from a distribution on a suitable domain (e.g. Poisson in the
case of count data)



