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Fully bayesian regression

We remind that, in fully bayesian regression, no specific model parameters ŵ are identified, to be applied in pre-
diction as

h(x, ŵ) = ŵTϕ(x)

where

ϕ(x) =


ϕ1(x)
ϕ2(x)

...
ϕm(x)


Instead the distribution p(t|x) is derived, under the assumption of gaussianity, with

p(t|x,Φ, t, α, β) = N (t|m(x), σ2(x))

and

m(x) = βϕ(x)TSΦT t

σ2(x) =
1

β
+ ϕ(x)TSϕ(x)

where
S = (αI+ βΦTΦ)−1 ∈ Rm×m

that is,

S−1 =


∑n

i=1 βϕ1(xi)
2 + α

∑n
i=1 βϕ1(xi)ϕ2(x1) · · ·

∑n
i=1 βϕ1(xi)ϕm(x1)∑n

i=1 βϕ2(xi)ϕ2(x1)
∑n

i=1 βϕ2(xi)
2 + α · · ·

∑n
i=1 βϕ2(xi)ϕm(x1)

...
...

. . .
...∑n

i=1 βϕm(xi)ϕ1(x1)
∑n

i=1 βϕm(xi)ϕ2(x1) · · ·
∑n

i=1 βϕm(xi)2 + α


The prediction h(x) can be returned here as the expectation of the predictive distribution, that is

h(x) = m(x) = βϕ(x)TSΦT t
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Since

ΦT t =


ϕ1(x1) · · · ϕ1(xn)
ϕ2(x1) · · · ϕ2(xn)

...
. . .

...
ϕm(x1) · · · ϕm(xn)




t1
t2
...
tn

 =


∑n

i=1 ϕ1(xi)ti∑n
i=1 ϕ2(xi)ti

...∑n
i=1 ϕm(xi)ti

 =
n∑

i=1


ϕ1(xi)
ϕ2(xi)

...
ϕm(xi)

 ti =
n∑

i=1

ϕ(xi)ti

we may also write

h(x) = βϕ(x)TS
n∑

i=1

ϕ(xi)ti =
n∑

i=1

βϕ(x)TSϕ(xi)ti

We may note here that the prediction is not computed by referring to a set of parameters derived by optimiza-
tion of a loss function. Instead, it can be seen as a linear combination of the target values ti of all items in the
training set, with weights dependent from the item values xi (and from x).

Let us denote as κ(x1, x2) = βϕ(x1)TSϕ(x2) the function which provides the weight associated to target value
ti, when its arguments are xi and x. Then,

h(x) =
n∑

i=1

κ(x, xi)ti

The weight function κ(x1, x2) defined above is said equivalent kernel. Note that, in a sense, it provides a measure
of how much the values of the targets associated to x1 and x2 are dependendent from each other.

In our framework, κ(x, xi) is then a measure of how much the value of the target associated to x, which must
be approximated, is related to the target of xi, which is known.

In the figure below, it is shown on the right a plot on the plane (x, xi) of a sample equivalent kernel for the
case when only one feature is given, in the case when ϕ is a set of gaussian base functions. On the left, a plot of the
values of κ(x, xi) as functions of x, for three different values of xi.

In deriving h(x), the equivalent kernel tends to assign greater relevance to the target values ti corresponding
to items xi near x.

The same localization property holds also for different base functions, as shown in the figure below, where
κ(0, x) is plotted in the case of ϕ a polynomial function (left) and a gaussian function (right).
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Let us finally observe that, instead of introducing base functions which eventually result into an equivalent
kernel, we may follow the same approach of predicting by means of a linear combination of target values, with
weights computed by a suitable localized kernel, defined on a pair of elements (that is on Rd ×Rd) and returning
a real value.

Kernel regression

In kernel regression methods, the target value corresponding to any item x is predicted by referring to items in the
training set, and in particular to the items which are closer to x. This is controlled by referring to a predefined
kernel function κh(x), which returns non negligible values only in an interval around 0.

A possible, common kernel, is the gaussian (or RBF) kernel, plotted below in the case d = 1 for different values
of the hyperparameter h.

g(x) = e−
∥x∥2

2h2

In order to derive the prediction function h, we remind that in regression our aim is to approximate the con-
ditional expectation

E[t|x] =
∫
t p(t|x)dt =

∫
t
p(x, t)
p(x)

dt =

∫
t p(x, t)dt

p(x)
=

∫
t p(x, t)dt∫
p(x, t)dt

Assume now that the joint distribution p(x, t) is approximated by means of a kernel function as

p(x, t) ≈ 1

n

n∑
i=1

κh(x− xi)κh(t− ti)

This results into

h(x) =

∫
t
1

n

n∑
i=1

κt(x− xi)κh(t− ti)dt∫
1

n

n∑
i=1

κh(x− xi)κh(t− ti)dt

=

∑n
i=1 κh(x− xi)

∫
t κh(t− ti)dt∑n

i=1 κh(x− xi)
∫
κh(t− ti)dt

If we assume that the kernel κ(x) is always non negative, has mean
∫
tκh(x)dx = 0 and area under the curve∫

κh(x)dx = 1 (which implies it is a probability density distribution), we have that
∫
κh(t − ti)dt = 1 and∫

tκh(t− ti)dt = ti, and we finally get
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h(x) =
∑n

i=1 κh(x− xi)ti∑n
i=1 κh(x− xi)

By setting

wi(x) =
κh(x− xi)∑n
j=1 κh(x− xj)

we can then write

h(x) =
n∑

i=1

wi(x)ti

that is, the predicted value is computed as a normalized linear combination of all target values, weighted by applying
the chosen kernel (Nadaraya-Watson).

Clearly, if base functions are applied, we get

h(x) =
n∑

i=1

wi(ϕ(x))ti

with

wi(x) =
κh(ϕ(x)− ϕ(xi))∑n
j=1 κh(ϕ(x)− ϕ(xi))

Locally weighted regression

In Nadaraya-Watson model, the prediction is performed by means of a normalized weighted combination of con-
stant values (target values in the training set).

Locally weighted regression (LOESS) improves that approach by referring to a weighted version of the sum of
squared differences loss function used in regression.

If a value t has to be predicted for an item x, a “local” version of the loss function is considered, with weight
κi(x). Assuming again base functions ϕ,

L(x) =
n∑

i=1

ψi(x)(wTϕ(xi)− ti)
2 =

n∑
i=1

κh(ϕ(x)− ϕ(xi))(wTϕ(x)i − ti)
2

Weights ψi(x) are dependent from the “distance” between ϕ(x) and ϕ(xi), as measured by the kernel function

ψi(x) = κh(ϕ(x)− ϕ(xi))

The minimization of this loss function

ŵ(x) = argmin
w

n∑
i=1

ψi(x)(wTϕ(xi)− ti)
2

has solution
ŵ(x) = (ΦTΨ(x)Φ)−1ΦTΨ(x)t

where Ψ(x) is a diagonal n× n matrix with Ψ(x)ii = κi(x).

The prediction is then performed as usual, as

h(x) = ŵ(x)Tϕ(x)
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Local logistic regression

The same approach applied in the case of local regression can be applied for classification, by defining a weighted
loss function to be minimized, with weights dependent from the item whose target must be predicted.

In this case, a weighted version of the cross entropy function is considered, which has to be maximized

L(x) =
n∑

i=1

κh(ϕ(x)− ϕ(x)i)(ti log pi − (1− ti) log(1− pi))

with pi = σ(wTϕ(xi)), as usual.

Gaussian processes

An alternative and equivalent way of reaching identical results to the previous ones is possible by considering
inference directly in the space of functions f : Rd 7→ R. We use a Gaussian process (GP) to describe a distribution
over functions.*

More formally:

• A stochastic process f(x) is a collection of (possibly infinite) random variables, {f(x) : x ∈ χ}, the values
taken by function f on domain χ. Observe that f is completely described by such values.

• A stochastic process is a Gaussian process if for any finite subset X = (x1, . . . , xn) of χ, the function values
f(x1), . . . , f(xn) have joint multivariate Gaussian distribution.

In the most general case, χ = Rd, but simpler cases, for example with finite |χ| can be considered. Note that
in this case, if |χ| = d, this corresponds to stating that the joint multivariate distribution {f(xi) : i = 1, . . . , d} is
a gaussian, from which, by the properties of the gaussian distribution, it derives that the distribution of any subset
of points {f(xi) : i ∈ I ⊂ {1, . . . , d}} is itself a gaussian.

Gaussian processes are then a generalization of joint d-dimensional multivariate gaussians which extend them
to infinite d.

In order to specify the gaussian process in the general case of infinite χ, we must introduce two rules which,
for any set of points X = (x1, . . . , xm), define the distribution p(f(x1), . . . , f(xm)) of the corresponding values.

• We already know that, by assumption, the distribution p(f(x1), . . . , f(xm)) is anm-dimensional multivari-
ate normal distribution, which is then characterized by a mean vector µX and covariance matrix ΣX .

• For what regards themean, we define a functionm(x) that for each point xi returns the expectation of the dis-
tribution of f(xi), which is gaussian since anymarginal of a gaussian distribution such as p(f(x1), . . . , f(xm))
is itself a gaussian. As a consequence, µX = (m(x1), . . . ,m(xm)). A possible value for µX could be just the
set of target values t1, . . . , tm, thats is m(xi) = ti, that is assuming that the observed value for f(xi) (or
its approximation) provided by ti correspondos to the expectation of p(f(xi)). However, we will see later
that assumingµX = 0 does not limit the prediction capabilities of the approach, since the effect of non zero
means can be later taken into account, as a final step.

• The covariance matrix derives from the application of a predefined covariance function κ : χ × χ 7→ R
which associates a real value to any pair of points inχ and, in particular, to any pair inX, hence to all elements
of ΣX

*For simplicity of notation, we refer here to the original training set points x1, . . . , xn instead of using the more general notation
ϕ(x1), . . . ,ϕ(xn) with points obtained by applying a set of base functions. All the considerations below clearly apply by substitutingϕ(x)
to x.
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The covariance function κ is assumed to be a positive definite kernel: this means that for any set of distinct
points x1, . . . , xn it must be

n∑
i=1

n∑
j=1

cicjκ(xi, xj) > 0

for any choice of the constants c1, . . . , cn such that not all ci are equal to 0.
Equivalently, the square Gram matrixGX defined as

GX =


κ(x1, x1) κ(x1, x2) · · · κ(x1, xn)
κ(x2, x1) κ(x2, x2) · · · κ(x2, xn)

· · · · · · · · · · · ·
κ(xn, x1) κ(xn, x2) · · · κ(xn, xn)


must have positive eigenvalues. A collection of positive definite kernels is known in the literature and can be
constructed by applying suitable rules.

Thus, a Gaussian process can be interpreted as a distribution over functions whose shape (smoothness, ...) is
defined by κ. If points xi and xj are considered to be similar (that is, κ(x,i xj) is small) the function values at these
points, f(xi) and f(xj), can be expected to be similar too.

Recap

Reassuming, given a gaussian process p(f) = GP(m,κ), for any set of items X = (x1, . . . , xn), the distribution
of f(x1), . . . , f(xn) is a gaussian

p(f) = p(f(x1), . . . , f(xn)) = N (f ;µX|ΣX)

where

• µX = (m(x1), . . . ,m(xn))T

• ΣX is the Gram matrixGX wrt x1, . . . , xn of a kernel function κ(x, x′)

For any finite subset X = (x1, . . . , xm) of χ, we can refer to the definition of gaussian process to obtain the
distribution of (f(x1), . . . , f(xm)). In fact:

• it is gaussian by hypothesis

• it can be seen as the marginalization of the distribution on the infinite vector of variables defined by χ

p(f) = N (f ;µX,ΣX)

where µ(X)i = m(xi) and ΣX[i, j] = κ(xi, xj).

For any finite subset X = (x1, . . . , xn) of χ it is possible to sample the values of f(x1), . . . , f(xm) by sampling
fromN (f ;µX,ΣX)

Kernels

Clearly, different kernels provide different processes: one of the most applied kernel is the RBF kernel

κ(x1, x2) = σ2e−
||x1−x2||

2

2τ2

which tends to assign higher covariance between f(x1) and f(x2) if x1 and x2 are nearby points.
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Functions drawn from aGaussian process with RBF kernel tend to be smooth, since values computed for nearby
points tend to be similar. Smoothing is larger for larger τ .

Below, two examples of samples of functions on R (indeed approximated on a grid of values) are given: RBF
kerenel is assumed, with larger τ in the first image and smaller τ in the second one.

Posterior distribution

The gaussian process GP(m(x), κ(x, x′)) can be seen as a distribution p(f) of functions, and it is independent
from the actual points in the dataset. In bayesian terms, it is a prior with respect to the observation of actual values
(xi, ti), where ti is by assumption the value which is assumed is actually taken by any function sampled from p(f).

This is in particular true for the set X ofm points in the dataset. Note that here we are not taking into account
the target values t.

We have then a gaussian distribution ofm-dimensional vectors, which can be interpreted as functions from X
to R.

p(f) = N (f ;µX,ΣX)

In the figure below, the red plot is the unknown function f(x) to be approximated, while the thinner, blue
ones are fucntions sampled by p(f) (X is a grid of points on the x axis).
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Let us now assume that each target value corresponds exactly to the value associated to point xi returned by
definition the unknown function f to be approximated, that is ti = f(xi). In other terms, we assume there is no
noise in our observations of the unknown function f . Note that in the probabilistic model of regression this is not
true, since a (gaussian) error is assumed.

By definition of gaussian process, if we now consider an additional set of points Z = (z1, . . . , zr)T , the joint
distribution of f(x1), . . . , f(xm), f(z1), . . . , f(zr) is an (m + r)-dimensional multivariate gaussian with mean
µ(X,Z) = (µX,µZ) and covariance matrix

Σ(X,Z) =

(
GX GZ,X
GT

Z,X GZ

)
where

GZ,X =


κ(z1, x1) κ(z1, x2) · · · κ(z1, xm)
κ(z2, x1) κ(z2, x2) · · · κ(z2, xm)

...
...

. . .
...

κ(zr, x1) κ(zm, x2) · · · κ(zr, xm)


Wewish to derive the predictive distribution of f(z1), . . . , f(zr) given z1, . . . , zr , x1, . . . , xm, and t1, . . . , tm,

which by the no noise assumption is equal to f(x1), . . . , f(xm). That is, we wish to derive the conditional distri-
bution p(f(Z)|Z,X, f(X)). In order to do this, let us first remind some useful properties of multivariate gaussian
distributions.

Recap: some properties of Gaussian distributions
Let x = (x1, . . . , xn)

T be a random vector with gaussian distribution p(x) = N (µ,Σ) and let x = (xA, xB) be a
partition of the components x such that:

• xA = (x1, . . . , xr)
T

• xB = (xr+1, . . . , xn)
T

Then, the marginal distributions p(xA) and p(xB) are both gaussian with means µA,µB and covariance matrices
ΣA,ΣB which can be derived from µ,Σ by observing that

µ = (µA,µB)
T Σ =

(
ΣA ΣAB

ΣT
AB ΣB

)
Clearly, µA ∈ Rr, µB ∈ Rn−r, ΣA ∈ Rr×r, ΣB ∈ R(n−r)×(n−r),

In the same situation, the conditional distributions p(xA|xB) and p(xB |xA) are also gaussian with means

µA|B = µA +ΣABΣ
−1
B (xB − µB)

µB|A = µB +ΣBAΣ
−1
A (xA − µA)
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and covariance matrices

ΣA|B = ΣA − ΣABΣ
−1
B ΣBA

ΣB|A = ΣB − ΣBAΣ
−1
A ΣAB

From these properties, by setting xA = f(X) and xB = f(Z), it results that

p(f(Z)|Z,X, f(X)) = p(f(z1), . . . , f(zr)|z1, . . . , zr, x1, . . . , xm, f(x1), . . . , f(xm))

is an r-dimensional gaussian distribution itself with mean and covariance defined as

µpr = µZ +GZ,XG
−1
X (t− µX)

Σpr = GZ −GZ,XG
−1
X GT

Z,X

Observe that even under the simplifying assumption that (V muX,µZ) = 0, that is that m(x) is assumed 0
for all x (and z), the mean of the predictive distribution may result to be non zero. In fact, in such a case, it would
be

µpr = GZ,XG
−1
X t

However, by the first equation above, even in the general case of any definition ofm(x), we may assume that
m(x) = 0, obtaining µpr = GZ,XG

−1
X t, and next modify such value as

µpr = µpr + µZ −GZ,XG
−1
X µX

to take into account the assumed non zero expectations. This shows that we could have indeed considered the case
m(x) = 0 in the above considerations without loss of generality.

Sampling several functions from such the predictive distribution results in the following situation: again, the
red plot is the unknown functio f whose values at 5 points are now known, while the blue plot are samples from the
posterior distributionN (x|µpr,Σpr). Observe that all such functions have the same values of f at the 5 points.
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The same considerations apply, in particular, for the prediction of a single test point z given the training set
X, t. According to what shown above, the predictive distribution of f(x) is a gaussian distribution with mean and
variance

µpr = Gz,XG
−1
X (t− µX)

σ2pr = κ(z, z)−Gz,XG
−1
X GT

z,X

In the figure below, the mean value of the predictive distribution of f(x) for each point x, given the 5 points
shown on the red plot, is shown as a blue plot, with the corresponding variance reported by the yellow interval
around such plot.

As already observed, in this case an interpolation of the given values has been performed, namely f(xi) = ti
for all possible functions, sampled from p(f |X, t)).

It results, in fact, for all xi ∈ X,

µ(f(xi)|X, t) = ti

σ2 = 0

Gaussian process regression: gaussian noise

If we make the more realistic hypothesis that each target value ti only provides a noisy observation of f(xi), we
may behave as in the definition of the probabilistic model for linear regression: in particular, we may make the
hypothesis of a gaussian noise, hence that p(ti|f, xi) = N (f(xi), σ2f ), while earlier we assumed ti = f(xi).

Then the value ti observed for variable xi differs from the one obtained as f(xi) by a gaussian and independent
noise

ti = f(xi) + ε p(ε) = N (ε; 0, σ2f )

Under these assumptions, for the prior distribution on the noisy observations we have that the variance of f(xi)
is increased, with respect to the previous case, by the uncertainty derived by the noise, whcih has variance σ2f . As
a consequence, we have that:

ΣX[i, j] = κ(xi, xj) if i 6= j

ΣX[i, i] = κ(xi, xj) + σ2f
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As a consequence, the covariance matrix ΣX results

Σ(X) = GX + σ2f I

Gaussian process regression: gaussian noise

Let us now assume that a training set X, t is available such that the target values in the training set correspond
approximately to the function value ti = f(xi) + ε.

In this case, for any new set of points Z, the joint distribution of (f(X), f(Z)) is a multivariate gaussian
distribution with mean µ(X,Z) = (µX,µZ) and covariance matrix

Σ̂(X,Z) =

(
Σ̂X GZ,X
GT

Z,X GZ

)
where

Σ̂X = GX + σ2f I =


κ(x1, x1) + σ2f κ(x1, x2) · · · κ(x1, xm)

κ(x2, x1) κ(x2, x2) + σ2f · · · κ(x2, xm)
...

...
. . .

...
κ(xm, x1) κ(xm, x2) · · · κ(xm, xm) + σ2f


The predictive distribution of f(z1), . . . , f(zr) given z1, . . . , zr , x1, . . . , xm, and t1, . . . , tm can be again de-

rived by the gaussian distribution properties, and, by the same considerations, turns out again to be a gaussian
distribution with mean and covariance defined as

µ̂pr = µZ +GZ,XΣ̂(X)−1(t− µX)

Σ̂pr = GZ −GZ,XΣ̂(X)−1GT
Z,X
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Again, if we assume zero mean in the prior distribution it results

µ̂pr = GZ,XΣ̂
−1
X t

In particular, for a single test point z, we have now that the corresponding predictive distribution is again a
gaussian with

µpr = m(x) +Gz,XΣ̂
−1
X (t− µX)

σ2pr = κp(z, z)−Gz,XΣ̂
−1
X GT

z,X

Estimating kernel parameters

The predictive performance of gaussian processes depends exclusively on the suitability of the chosen kernel.
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Let us consider the case of an RBF kernel. Then,

κ(xi, xj) = σ2fe
− 1

2
(xi−xj)TM(xi−xj) + σ2yδij

M can be defined in several ways: the simplest one isM = l−2I.

Even in this simple case, varying the values of σf , σy, l returns quite different results.

(figure from K.Murphy “Machine learning: a probabilistic perspective” p. 519, with (l, σf , σy) equal to (1, 1, 0.1), (0.3, 1.08, 0.00005),
(3.0, 1.16, 0.89))
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