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Fu]ly bayesian regression

We remind that, in fully bayesian regression, no specific model parameters w are identified, to be applied in pre-

diction as
h(x,w) = w! ¢(x)
where
$1(x)
) = OQFX)
¢m(x)

Instead the distribution p(t|x) is derived, under the assumption of gaussianity, with

p(t)x, @, ¢, a, B) = N(tm(x), o%(x))

and
m(x) = Bp(x)TsdT¢
7 = 5 + S S9()
where
$ = (al+ 7P) 1 € R™M
that is,
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The prediction h(x) can be returned here as the expectation of the predictive distribution, that is

h(x) = m(x) = Bp(x)TsdT¢



Since
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we may also write
n n

h(x) = Bo(x)TS Y pxi)ti = D Bo(x)"Sp(xi)ti

i=1 i=1

We may note here that the prediction is not computed by referring to a set of parameters derived by optimiza-
tion of a loss function. Instead, it can be seen as a linear combination of the target values ¢; of all items in the
training set, with weights dependent from the item values x; (and from x).

Let us denote as K;(xl, xz) = ﬁqb(xl)Tqu(xg) the function which providcs the Weight associated to target value
t;, when its arguments are x; and x. Then,

n

h(x) = Z ,‘f(x, Xi)tz‘

i=1

The weight function H(xl, xg) defined above is said cquivalcnt kernel. Note that, in a sense, it provides a measure
of how much the values of the targets associated to x1 and xg are dependendent from cach other.

In our framework, k(x,x;) is then a measure of how much the value of the target associated to x, which must
be approximated, is related to the target of x;, which is known.

In the figure below, it is shown on the right a plot on the plane (x, ;) of a sample equivalent kernel for the
case when only one feature is given, in the case when @ is a set of gaussian base functions. On the left, a plot of the
values of k(x, x;) as functions of , for three different values of z;.

In deriving h(z), the equivalent kernel tends to assign greater relevance to the target values ¢; corresponding
to items x; near I.

The same localization property holds also for different base functions, as shown in the figure below, where
(0, z) is plotted in the case of ¢ a polynomial function (left) and a gaussian function (right).
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Let us ﬁnal]y observe that, instead of introducing base functions which Cvcntually result into an Cquivalcnt
kernel, we may follow the same approach of predicting by means of a linear combination of target values, with
Wcights Computcd by a suitable localized kcrncl, defined on a pair of elements (that is on R? x Rd) and returning
a real value.

Kernel regression

In kernel regression mcthods, the target value Corrcsponding to any item X is predicted by rcferring to items in the
training set, and in particular to the items which are closer to x. This is controlled by referring to a predefined

kernel function &y, (x), which returns non negligib]e values on]y in an interval around 0.

A possible, common kernel, is the gaussian (or RBF) kernel, plotted below in the case d = 1 for different values
of the hyperparameter h.
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In order to derive the prediction function b, we remind that in regression our aim is to approximate the con-
ditional expectation

bieh = [ eptiige = [ 28 - Jrpsna [rpea

p(X) ])(X) /p(‘(f)(]f

Assume now that the joint distribution p(x, t) is approximated by means of a kernel function as

n

ZK}, xfxl Kh f*f)
n

=1

This results into

v
1=
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If we assume that the kernel £(z) is always non negative, has mean / tkp(r)dr = 0 and area under the curve
/Hh(a?)dx = 1 (which implies it is a probability density distribution), we have that /Kh(t —t;)dt = 1 and

tkp(t — t;)dt = t;, and we finally get



> iy Fnlx = xi)t;
Zjlzl f{h,(x - X'i)

h(x) =

By setting
Iﬂ',h,(x — xi)

w;(x) = >y kn(x —xj)

we can then write
n

h(x) = Z ’ll)i(x)ﬁi
=1
that s, the predicted value is computed as a normalized linear combination of all target values, weighted by applying
the chosen kernel (l\'adz\rz\yzl—W'atson).
Clearly, if base functions are applied, we get

h(x) = Z w;(@(x))t;
i=1

with

rn(P(x) — (xi))
z;‘l:'l Kn(@(x) — P(xi))

wj (x) =

Locally weighted regression

In Nadaraya—Watson model, the prcdiction is pcrformcd by means of a normalized Wcightcd combination of con-

stant values (target values in the training set).

Loca]ly Weighted regression (LOESS) improves that approach by referring toa weighted version of the sum of
squared differences loss function used in regression.

If a value ¢ has to be predicted for an item x, a “local” version of the loss function is considered, with weight

Ki(x). Assuming again base functions ¢,

n n

L(x) = > i) (W d(xi) = t:)* = > kn(@(x) — d(xi) (W d(x)i — 1)

i=1 1=1

Weights 14 (x) are dependent from the “distance” between ¢(x) and ¢(x;), as measured by the kernel function
Yi(x) = rp(P(x) — P(xi))
The minimization of this loss function

n
w(x) = argmin Z@O,i(x)(ergb(xi) — ti)2
v =

has solution
w(x) = ((bT\I/(x)fl))fl(I)T\I’(x)t
where U(x) is a diagonal n x n matrix with ¥(x);; = ki (x).

The prediction is then performed as usual, as

h(x) = w(x)" $(x)



Local logistic regression

The same approach applied in the case of local regression can be applied for classification, by deﬁning a Weighted
loss function to be minimized, with weights dependent from the item whose target must be predicted.

In this case, a weighted version of the cross entropy function is considered, which has to be maximized

n

L(x) =Y rn(@(x) = d(x)i)(ti logpi — (1 — t;) log(1 — p;))

1=1

with p; = o(wl ¢(x;)), as usual.

Gaussian processes

An alternative and equivalent way of reaching identical results to the previous ones is possible by Considering
inference directly in the space of functions f : R% — R. We use a Gaussian process (GP) to describe a distribution
over functions.s

More formally:

« A stochastic process f(x) is a collection of (possibly infinite) random variables, {f(x) IX € X}, the values
taken by function f on domain x. Observe that f is completely described by such values.

« A stochastic process is a Gaussian process if for any finite subset X = (x1, ..., x;,) of X, the function values
f(x1), ..., f(xp) have joint multivariate Gaussian distribution.

In the most general case, x = R%, but simpler cases, for example with finite |x| can be considered. Note that
in this case, if | x| = d, this corresponds to stating thar the joint multivariate distribution { f(x;) : ¢ = 1,...,d} is
a gaussian, from which, by the properties of the gaussian distribution, it derives that the discribution of any subset
of points { f(x;) : i € 1 C {1,...,d}} isitself a gaussian.

Gaussian processes are then a generalization of joint d-dimensional multivariate gaussians which extend them
to infinite d.

In order to specify the gaussian process in the general case of infinite X, we must introduce two rules which,
for any set of points X = (x1, . . . , X, define the distribution p(f(x1), ..., f(xm)) of the corresponding values.

« We alrcady know that, by assumption, the distribution p(f(x1),..., f(xm)) is an m-dimensional mulcivari-
ate normal distribution, which is then characterized loy a mean vector iy and covariance matrix X x.

« For what regards the mean, we define a function m(x) that for each point x; returns the expectation of the dis-
cribution of f(x;), whichis gaussian since any marginal of a gaussian distribution such as p(f(x1),..., f(xm))
is itself a gaussian. As a consequence, pux = (m(x1), ..., m(xp,)). A possible value for prx could be just the
set of target values t1, ..., tm, thats is m(x;) = ¢;, that is assuming that the observed value for f(x;) (or
its approximation) provided by ¢; correspondos to the expectation of p(f(x;)). However, we will see later
that assuming ptx = 0 does not limit the prediction capabilities of the approach, since the effect of non zero
means can be later taken into account, as a final step.

« The covariance matrix derives from the application of a predefined covariance function kK : x x x —= R

which associates a real value to any pair of points in x and, in particular, to any pair in X, hence to all elements

Of EX
*For simplicity of notation, we refer here to the original training set points x1,. .., X, instead of using the more general notation
@(x1), ..., ¢(xn) with points obtained by applying a set of base functions. All the considerations below clearly apply by substituting ¢(x)

o X.



The covariance function & is assumed to be a positive definite kernel: this means that for any set of distinct

points X1, . . ., X, it must be
n n

Z Z Ciij{(Xi, Xj) >0

i=1 j=1

for any choice of the constants ¢y, . . ., ¢, such that not all ¢; are equal to 0.
Equivalently, the square Gram matrix G defined as

/ﬁi(xl,xl) h",(xl,x2> h",(xl,xn)

Gy = H(X27 Xl) H’(XQa XQ) T H(XQ, Xn,)
\< o .. ... ..

H(X,,,,Xl) 'L/"(Xn,sXQ) co H("m"n)

must have positive cigenvalues. A collection of positive definite kernels is known in the literature and can be
constructed by applying suitable rules.

Thus, a Gaussian process can be interpreted as a distribution over functions whose shape (smoothness, ...) is
defined by k. If points x; and x; are considered to be similar (that is, £(x,; x;) is small) the function values at these
points, f(x;) and f(x;), can be expected to be similar too.

Recap

Reassuming, given a gaussian process p(f) = GP(m, k), for any set of items X = (xq,. .., Xy), the distribution
of f(x1),..., f(xn) is a gaussian

p(f) =p(f(x1),..., f(xn)) :N(fﬁix\zx)

Wl’lCI‘C

* pUx = (m(xl)7 v 7m(xn))T

« Y is the Gram marcrix Gx wrt xq, . . ., X, of a kernel function £(x, x')

For any finite subset X = (x1, ..., %) of X, we can refer to the defiition of gaussian process to obtain the

distribution of (f(x1), ..., f(xm)). In fact:
« it is gaussian by hypothesis
« it can be seen as the marginalization of the distribution on the infinite vector of variables defined by x
p(f) = N(f; px; x)
where p(X); = m(x;) and Xx[t, j] = &(x;, x;).

For any finite subset X = (xq, ..., X, ) of X it is possible to sample the values of f(x1), ..., f(xm) by sampling
from N'(f; px, Xx)

Kernels

Clearly, different kernels provide different processes: one of the most applied kernel is the RBF kernel

Iy —xoll?
l‘i(xl,xg) =o0°e 272

which tends to assign higher covariance between f(x1) and f(x2) if x; and xg are nearby points.



Functions drawn from a Gaussian process with RBF kernel tend to be smooth, since values computed for nearby
points tend to be similar. Smoothing is larger for larger 7.

Below, two examples of samples of functions on R (indeed approximated on a grid of values) are given: RBF
kerenel is assumed, with larger 7 in the first image and smaller 7 in the second one.
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The gaussian process GP(m(x), £(x,x’)) can be seen as a distribution p(f) of functions, and it is independent

Posterior distribution

from the actual points in the dataset. In bayesian terms, it is a prior with respect to the observation of actual values
(xi, ti), where t; is by assumption the value which is assumed is actually taken by any function sampled from p(f).
This is in particular true for the set X of m points in the dataset. Note that here we are not taking into account
the target values t.
We have then a gaussian distribution of m-dimensional vectors, which can be interpreted as functions from X

to R.
P(f) = N(f; 1, XX)

In the figure below, the red plot is the unknown function f(x) to be approximated, while the thinner, blue
ones are fucntions sampled by p(f) Xisa grid of points on the x axis).



- fx)

Let us now assume that each target value corresponds exactly to the value associated to point x; returned by
definition the unknown function f to be approximated, that is ¢; = f(x;). In other terms, we assume there is no
noise in our observations of the unknown function f. Note that in the probabilistic model of regression this is not
true, since a (gaussian) error is assumed.

By definition ofgaussian process, if we now consider an additional set ofpoints Z = (Zl, e ZT)T, the joint
distribution of f(x1), ..., f(xm), f(z1), ..., f(z) is an (m + r)-dimensional multivariate gaussian with mean
Hx,z) = (px, pz) and covariance matrix

o= (G )
(X,2) GZ‘( Gy

where
H(Zl, xl) H?(Zl, XQ) tee H(Zl s xm)
F(,(ZQ./Xl) H(ZQ./XQ) cee H(Z27Xm)
Gzx = . .
H(Z’ra Xl) H(Zma XZ) t K(Z’r-/ Xm)
We wish to derive the predictive distribution of f(z1), ..., f(zr) given z1, ..., zp, X1, . . ., X, and t1, . . ., Ty,
which by the no noise assumption is equal to f(x1),..., f(xm). That is, we wish to derive the conditional distri-

bution p(f(Z)|Z, X, f(X)). In order to do this, let us first remind some useful properties of multivariate gaussian
distributions.

Recap: some properties of Gaussian distributions
Let x = (1,...,2,)T be a random vector with gaussian distribution p(x) = N (i, %) and let x = (x4,xp) be a
partition of the components x such that:

« xa=(21,...,2.)T

e Xp = (,7,‘,,,_,’_1,... 7.’17”)T

Then, the marginal distributions p(x4) and p(xp) are both gaussian with means g4, ptp and covariance matrices
Y4, X B which can be derived from w, Y by observing that

by b))
M= (/-LAa /-LB)T - <ZTA ZABB)

Clearly, pa € R™, pp € R"7, $4 e R™*" Yp € R(n—r)x(n—7)
In the same situation, the conditional distributions p(x4|xg) and p(xp|x4) are also gaussian with means

Bap =pa+2apEs (x5 — 1p)
Bpa=pp+SpaY, (xa — pa)



and covariance matrices

Salp=%4-3aY5'SBA

YA =3 —Ypa¥, SaB

From these properties, by setting x4 = f(X) and xp = f(Z), it results that
])(f(Z)‘Z, X, f(X)) - p(.f(ll)t ) f(Zl‘)‘Zla ceeyZry X1y ooy Xy f(xl>7 cee sf(xm))

is an r-dimensional gaussian distribution itself with mean and covariance defined as

ppr = bz + GzxGx ' (£ — px)
Spr = Gz — GzxGx Gl x

Observe that even under the simplifying assumption that (Vmux, prz) = 0, that is that m(x) is assumed 0
for all x (and z), the mean of the prcdictivc distribution may result to be non zero. In fact, in such a case, it would
be

Hpr = GLXG)th

However, by the first equation above, even in the general case of any definition of m(x), we may assume that
m(x) = 0, obtaining pt,, = GZ7XG;1t, and next modify such value as

Hpr = Hpr +prz — GZ,XGQLMX

to take into account the assumed non zero expectations. This shows that we could have indeed considered the case
m(x) = 0 in the above considerations without loss of generality.

Sampling several functions from such the predictive discribution results in the following situation: again, the
red plot is the unknown functio f whose values at 5 points are now known, while the blue plot are samples from the
posterior distribution N (2| fpyr, Xpr ). Observe that all such functions have the same values of f at the 5 points.

Samples of Posterior Distribution, no noise

- fx)



The same considerations apply, in particular, for the prcdiction of a singlc test point z given the training set
X, t. According to what shown above, the predictive distribution of f(x) is a gaussian distribution with mean and

variance

pipr = GoxGx(t — px)

2 (o y 1T
02 = n(r,7) — G,xCx G

In the figure below, the mean value of the predictive distribution of f(x) for each point x, given the 5 points
shown on the red plot, is shown as a blue plot, with the corrcsponding variance rcportcd by the ycllow interval
around such plot.

Predictive Distribution, no noise

— fx)

As already observed, in this case an intcrpolzltion of the given values has been performed, namely f(x,) =1
for all possible functions, sampled from p(f|X, t))

Ic resules, in fact, for all x; € X,

Gaussian process regression: gaussian noise

If we make the more realistic hypothesis that each target value ¢; only provides a noisy observation of f(x;), we
may behave as in the definition of the probabilistic model for linear regression: in particular, we may make the
hypothesis of a gaussian noise, hence that p(¢;| f,x;) = N (f(x;), UJ%), while earlier we assumed ¢; = f(x;).

Then the value t; observed for variable x; differs from the one obtained as f(x;) by a gaussian and independent

noise

ti=f(xi)+e p(e) = N(eg;0, a:“;)

Under these assumptions, for the prior distribution on the noisy observations we have that the variance off(xi)
is increased, with respect to the previous case, by the uncertainty derived by the noise, whcih has variance UJQC. As

a consequence, we have thatz

¥xli, j] = h‘(x;,,x]-) if i £ j
Z\[[ 1} = H’(Xj,xj‘) + O'J%
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As a consequence, the covariance matrix Xx results

2(X) = Gx + o7l

Samples of Prior Distribution, gaussian noise
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Gaussian process regression: gaussian noise

Let us now assume that a training set X, t is available such that the rarget values in the training set correspond
approximately to the function value t; = f(x;) + €.

In this case, for any new set of points Z, the joint distribution of (f(X), f(Z)) is a multivariate gaussian
distribution with mean Knx,.z) = (px, pz) and covariance matrix

2w_<2x Gx,x)
X0 =\GLy Gy

where
K(x1,x1) + 07 k(x1,x2) L K(X1, Xm)
i}x Gt JJ%[ : K(XQ,X]) H(XQ,XQ) + oy v f{,<x2,xm)
BGomoxt)  Altmoxa) e K(smsm) + 02
The prcdictivc distribution off(zl), RN f(ZT) GIVEN Z1, ...y Zpy X1y« « s Xpm, and t1,...,ty, can be again de-

rived by the gaussian distribution properties, and, by the same considerations, turns out again to be a gaussian
distribution with mean and covariance defined as

fpr = 7 + ani(x)*l(t — px)
igor - GZ - G/XE(X>7]GZ\(

1



of Joint Distril i i noise

Again, if we assume zero mean in the prior distribution it results

- S—1
Ppr = Gz X35t

In particular, for a single test point z, we have now that the corresponding predictive distribution is again a
gaussian with
—1
frpr = m(x) + G, xXx (t — px)
2 _ v —1 ~T
Opr = KP(Zﬂ Z) - GZ,XEX Gz,X

ive Distri i it noise

— fx)

Estimating kernel parameters

The predictive performance of gaussian processes depends exclusively on the suitability of the chosen kernel.
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Let us consider the case of an RBF kernel. Then,
¢ 1/ . - . 9«
H(Xj,xj') — O—v?,e*§<x,f\J)TM(.\zfxy1> + Ujoij

M can be defined in several ways: the simplest one is M = 121

Even in this simple case, varying the values of o4, 0y, I returns quite different results.
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(figure from K.Murphy “Machine learning: a probabilistic perspective” p. 519, with (I, 0, o) equal to (1,1,0.1), (0.3, 1.08, 0.00005),
(3.0,1.16,0.89))
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