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Linear models

Linear models are based on a linear combination of input features

h(x,w) = w0 + w1x1 + w2x2 + . . .+ wdxd

More compactly,

h(x,w) = wT x =
(
w0 w1 · · · wd

)


1
x1
...
xd


where x = (1, x1, . . . , xd)

T

Observe that such models are linear both with respect to features and, more important, also to parameters. This
is relevant since, during the learning phase of the models, parameters are treated as variables.

In general, the set of features can be modified (in particular, extended) by means of a set of predefined base
functions ϕ1, . . . , ϕm defined as ϕi : Rd 7→ R. That is, each vector x in Rd is mapped to a new vector in Rm,
ϕ(x) = (ϕ1(x), . . . , ϕm(x)). The prediction task is mapped from a d-dimensional to an m-dimensional space
(usually withm > d). This is an action concerning feature engineering, which concerns the search of an effective
representation of the data items from which predictions are to be made.

Clearly, applying base functions does not change the linearity of a linear model, which then has the structure

h(ϕ(x),w) =
m∑
j=1

wjϕj(x)

Most common types of base functions:

• Polynomial (global functions)
ϕj(x) = xj

• Gaussian (local)

ϕj(x) = exp
(
−(x− µj)

2

2s2

)
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• Sigmoid (local)

ϕj(x) = σ

(
x− µj

s

)
=

1

1 + e−
x−µj

s

• Hyperbolic tangent (local)

ϕj(x) = tanh(x) = 2σ(x)− 1 =
1− e−

x−µj
s

1 + e−
x−µj

s

Observe that a set of items

X =

 – x1 –
...

– xn –

 =


x11 x12 · · · x1d
x21 x22 · · · x2d
...

...
. . .

...
xn1 xn2 · · · xnd


is transformed by the set ϕ of base functions into

Φ =


ϕ1(x1) ϕ2(x1) · · · ϕm(x1)
ϕ1(x2) ϕ2(x2) · · · ϕm(x2)

...
...

. . .
...

ϕ1(xn) ϕ2(xn) · · · ϕm(xn)


The case when we extend X by 1 values to

X =

 – x1 –
...

– xn –

 =


1 x11 · · · x1d
1 x21 · · · x2d
...

...
. . .

...
1 xn1 · · · xnd


is just a special case ϕ = (1, π1(x), . . . , πd(x)), where πi(x) = xi.

In the following, we will, for generality, usually refer to the training set (Φ, t) resulting from the application of
a generic set of base function ϕ = (ϕ1, . . . , ϕm) to the items. We remark again that the original dataset (X, t) (or
possibly (X, t)) is just a particular case.

• A set of n observations of two variables x, t ∈ R: (x1, t1), . . . , (xn, tn)) is available. We wish to exploit these
observations to predict, for any value x̃ of x, the corresponding unknown value of the target variable t

• The training set is a pair of vectors x = (x1, . . . , xn)
T and t = (t1, . . . , tn)

T , related through an unknown rule
(function)
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Example of a training set.

In this case, we assume that the (unknown) relation between x and t in the training set is provided by the function
t = sin(2πx), with an additional gaussian noise with mean 0 and given variance σ2. Hence, ti = sin(2πxi)+ εi, with
εi ∼ N (0, σ2).

x

t

0 1

−1

0

1

Our purpose is guessing, or approximating as well as possible, the deterministic relation t = sin(2πx), on the
basis of the analysis of data in the training set.

In polynomial regression we wish to approximate the unknown function through a suitable polynomial of given
degree m > 0

h(x,w) = w0 + w1x+ w2x
2 + . . .+ wmxm =

m∑
j=0

wjx
j

whose coefficients w = (w0, w1, . . . , wm)T are to be computed.
This corresponds to applying a set ϕ of m+ 1 base functions ϕj(x) = xj , j = 0, . . . ,m to the unique feature x

h(ϕ(x),w) =
m∑
j=0

wjϕj(x)

Regression loss

When base functions are applied, h(ϕ(x),w) is a nonlinear function ofϕ(x), but it is still a linear function (model)
of w.

The values assigned to coefficients should minimize the empirical risk computed wrt some error function (a.k.a.
cost function), when applied to data in the training set (then, to ϕ(x), t and w).

A most widely adopted error function is the quadratic loss (h(ϕ(xi))− ti)
2, which results into the least quares

approach, i.e. minimizing the sum, for all items in the training set, of the (squared) difference between the value
returned by the model and the target value.
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t

x

y(xn,w)

tn

xn

E(w) =
1

2

n∑
i=1

ri(w)2

where

ri(w) = h(ϕ(xi),w)− ti =

m∑
j=1

wjϕj(xi)− ti

is the residue for item (ϕ(xi), ti) if w is the vector of parameter values applied.
This is clearly equivalent to minimizing the empirical riskR(w), since

E(w) =
|T |
2

R(w)(w)

To minimize E(w), set its derivative w.r.t. w to 0. Since the quadratic loss is a convex function, only one

(global) minimum is defined. The error E(w) =
1

2

n∑
i=1

(h(ϕ(xi),w) − ti)
2 is the sum of n convex functions

(h(ϕ(xi),w) − ti)
2, which implies that only one (global) minimum is defined. In particular, E(w) quadratic

implies that its derivative is linear, hence that it is zero in one point w∗: the resulting predictor is h(ϕ(x),w∗).
The gradient w.r.t. w is indeed a collection of derivatives. A linear system is obtained:

∂E(w)
∂wk

= 2

n∑
i=1

ri(w)
∂

∂wk
ri(w) = 2

n∑
i=1

ri(w)ϕk(xi) = 2

n∑
i=1

 m∑
j=1

wjϕj(xi)− ti

ϕk(xi)

since
∂

∂wk
ri(w) =

∂

∂wk
h(ϕ(xi),w)

Each of the m equations is linear w.r.t. each coefficient in w. A linear system results, with m equations and m
unknowns w1, . . . , wm, which, in general and with the exceptions of degenerate cases, has precisely one solution,
that can be expressed in closed form by the normal equations for least squares.

w∗ = (ΦTΦ)−1ΦT t

The minimum of E(w) can be also computed numerically, by means of gradient descent methods with the
following structure

1. Initial assignment w(0) = (w
(0)
1 , w

(0)
2 , . . . , w

(0)
m ), with a corresponding error value

E(w(0)) =
1

2

n∑
i=1

ri(w(0))2
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2. Iteratively, the current value w(s−1) is modified in the direction of steepest descent of E(w), that is the one
corresponding to the negative of the gradient evaluated at w(s−1)

3. At step s, w(s−1)
k is updated as follows:

w
(s)
k := w

(s−1)
k − η

∂E(w)
∂wk

∣∣∣∣∣
w(s−1)

= w
(s−1)
k − 2η

n∑
i=1

ri(w(s−1))ϕk(xi)

In matrix notation:
w(s) := w(s−1) − η∇E(w)

∣∣∣
w(s−1)

4. By definition of E(w):

w(s) := w(s−1) − 2η

n∑
i=1

ri(w(s−1))ϕ(xi)


w

(s)
1

w
(s)
2
...

w
(s)
m

 =


w

(s−1)
1

w
(s−1)
2
...

w
(s−1)
m

− 2η
n∑

j=1

r(w(s−1))


ϕ1(xi)
ϕ2(xi)

...
ϕm(xi)


where, we remind,

ri(w(s−1)) =
m∑
j=1

w
(s−1)
j ϕj(xi)− ti

As we may see, the update at each step is proportional to the linear combination of the items (possibly trans-
formed by the application of base functions), each weighted by the corresponding residue, that is by the current
error in its prediction.

Fitting of polynomials: polynomial degree. We apply here a set of base function ϕ = (1, x, x2, . . . , xM ) to
1-dimemsional items.

• Example of model selection: assigning a value to the degree M determines the representation of the items in
the training set and as a consequence the specific model to be used, since the choice of M implies the number
of coefficients in w to be estimated

• increasing M allows to better approximate the training set items, decreasing the error
• if M + 1 = n the model allows to obtain a null error (overfitting)
Overfitting
• The function h(ϕ(x),w) is derived from items in the training set, but should provide good predictions for other

items.
• It should provide a suitable generalization to all items in the whole domain.
• If h(ϕ(x),w) is derived as a too much accurate depiction of the training set, it results into an unsuitable

generalization to items not in the training set
Evaluation of the generalization

– Training set Ttrain of 1-dimensional items, generated by uniformly sampling x in [0, 1, ] and ε from
N (0, σ2), and computing t = sin 2πx+ ε
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x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

– Test set Ttest of 1-dimensional items, generated in the same way as the training set
– For each M :

* derives w∗ by minimizing the empirical risk on the training set RTtrain
(w)

* compute the empirical risk RTtest(w
∗) on the test set: the square root of such value is considered

here

ERMS(w∗, Ttest) =
√
RTtest(w∗) =

√√√√ 1

|Ttest|
∑

(x,t)∈Ttest

(h(ϕ(x),w∗)− t)
2

– a lower value of ERMS(w∗, Ttest) denotes a good generalization

Plot of ERMS w.r.t. M , on the training set and on the test set.

M

E
R

M
S

 

 

0 3 6 9
0

0.5

1
Training
Test

• As M increases, the error on the training set tends to 0.
• On the test set, the error initially decreases, since the higher complexity of the model allows to better deal

with the characteristics of the data set. Next, the error increases, since the model becomes too dependent
from the training set.

For a given model complexity (such as the degree in our example), overfitting decreases as the dimension of the
training set increases.

The larger the training set, the higher the acceptable complexity of the model.
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How to limit the complexity of the model?

A common approach is introducing a regularization term in the cost function

ED(w) + λEW (w)

Here, ED(w) is the empirical risk, which is dependent from the dataset (and the parameters): The regularization
term EW (w) is instead dependent from the parameters alone.

The regularization coefficient λ controls the relative importance of the two terms.
IfED(w) is defined in terms of quadratic loss, we are dealing with regularized least squares learning. Different

types of regularized least squares can be obtained in dependance of how the regularization term is defined.
The most common form is the sum of the squared values of the coefficients (times 1/2, but this not relevant.

EW (w) =
1

2
wTw =

1

2

m∑
i=1

w2
i

The resulting overall loss to be minimized is then

E(w) =
1

2

n∑
i=1

ri(w)2 +
λ

2
wTw =

1

2
r(w)Tr(w) +

λ

2
wTw

where r(w) is the vector of residues, which can be expressed in terms of Φ,w and t as

r(w) =


r1(w)
r2(w)

...
rn(w)

 =


h(ϕ(x1),w)
h(ϕ(x2),w)

...
h(ϕ(xn),w)

−


t1
t2
...
tn

 =


ϕ1(x1) · · · ϕm(x1)
ϕ1(x2) · · · ϕm(x2)

...
. . .

...
ϕ1(xn) · · · ϕm(xn)




w1

w2

...
wm

−


t1
t2
...
tn

 = Φw−t

this is called ridge regression: its solution can be expressed in closed form as

w = (λI+ΦTΦ)−1ΦT t

A more general form is obtained by considering the degree of the summed coefficients as a parameter

E(w) =
1

2

n∑
i=1

ri(w)2 +
λ

2

m∑
j=1

|wj |q

The case q = 1 is denoted as lasso. Lasso regression has the property of favor sparse models (that is returning
parameter vectors with many null values).

Example: polynomial regression
Use of regularization to limit complexity and overfitting.
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• inclusion of a penalty term in the error function
• purpose: limiting the possible values of coefficients
• usually: limiting the absolute value of the coefficients

Ẽ(w) =
1

2

n∑
i=1

ri(w)2 +
λ

2

M∑
k=0

w2
k =

1

2

n∑
i=1

ri(w)2 +
λ

2
||w||2

Dependance from the value of the hyperparameter λ.

x

t

ln λ = −18

0 1

−1

0

1

x

t

ln λ = 0

0 1

−1

0

1

Plot of the error w.r.t λ, ridge regression.

E
R

M
S

 

 

ln λ
−35 −30 −25 −20

0

0.5

1
Training
Test

• Small λ: overfitting. Small error on the training set, large error on the test set.
• Large λ: the effect of data values decreases. Large error on both test and training sets.
• Intermediate λ. Intermediate error on training set, small error on test set.

• Consider the case of function y = sin 2πx and assume L = 100 training sets T1, . . . , TL are available, each of
size n = 25.

• Given m = 24 gaussian base functions ϕ = (ϕ1(x), . . . , ϕm(x)), from each training set Ti a prediction function
hi(ϕ(x)) is derived by minimizing the regularized cost function

E(w) =
1

2

n∑
i=1

ri(w)2 +
λ

2

m∑
k=1

w2
k

=
1

2
(Φw− t)T (Φw− t) +

λ

2
wTw

x

t

ln λ = 2.6

0 1

−1

0

1

x

t

0 1

−1

0

1
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Left, a possible plot of prediction functions hi(ϕ(x)) (i = 1, . . . , 100), as derived, respectively, by training sets
Ti, i = 1, . . . , 100 setting lnλ = 2.6. Right, their expectation, with the unknown function f(x) = sin 2πx.
The prediction functions hi(ϕ(x)) do not differ much between them (small variance), but their expectation is a bad
approximation of the unknown function (large bias).

x

t

ln λ = −0.31

0 1

−1

0

1

x

t

0 1

−1

0

1

Plot of the prediction functions obtained with lnλ = −0.31.

x

t

ln λ = −2.4

0 1

−1

0

1

x

t

0 1

−1

0

1

Plot of the prediction functions obtained with lnλ = −2.4. As λ decreases, the variance increases (prediction
functions hi(ϕ(x)) are more different each other), while bias decreases (their expectation is a better approximation
of y = sin 2πx).

• Plot of (bias)2, variance and their sum as functions of λ: las λ increases, bias increases and varinace decreases.
Their sum has a minimum in correspondance to the optimal value of λ.

Probabilistic model for regression

As said before, in this case we define a class of joint probability distributions in order to select the best one of them
with respect to the training set. The class we define here is a class p(x, t) = pM (x)pC(t|x) where p(x) is uniform
(so we shall not take it into account) while pC(t|x) will be assumed to be a gaussian. In particular, we assume
that, given an item x, the corresponding unknown target t is normally distributed around the value returned by the
model h(ϕ(x),w), with a given variance σ2 or, equivalently precision β, where β−1 = σ2.

p(t|x,w, β) = N (t|h(ϕ(x),w), β−1)
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t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w, β)

An estimate βML of β and wML of the coefficients w can be performed on the basis of the likelihood of the
training set with respect to the model:

L(w, β|Φ, t) = p(t|Φ,w, β) =
n∏

i=1

N (ti|y(ϕ(xi),w), β−1) =

n∏
i=1

√
β√
2π

e
β
2
ri(w)2

Parameter valueswML andβML can be estimated as the valueswhichmaximize the data likelihoodL(w, β|Φ, t)
or equivalently its logarithm

l(w, β|Φ, t) = log p(t|Φ,w, β) =
n∑

i=1

logN (ti|y(ϕ(xi),w), β−1)

which results into

p(t|Φ,w, β) = −β

2

n∑
i=1

ri(w)2 +
n

2
logβ + c

where c is a constant, independent from w and β.
The maximization w.r.t. w is performed by determining a maximum w.r.t. w of the function

−1

2

n∑
i=1

ri(w)2

this is equivalent to minimizing the least squares sum.
The maximization w.r.t. the precision β is done by setting to 0 the corresponding derivative

∂l(t|Φ,w, β)
∂β

= −1

2

n∑
i=1

ri(w)2 +
n

2β

which results into

β−1
ML =

1

n

n∑
i=1

ri(w)2

As a side result, the parameter estimate provides a predictive distribution of t given x, that is the (gaussian)
distribution of the target value for a given item x.
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p(t|x;w, β) = N (t|h(ϕ(x),w), β−1) =

√
βML

2π
e−

βML
2

(h(ϕ(x),wML)−t)2

Remind that in the maximum likelihood framework parameters are considered as (unknown) values to deter-
mine with the best possible precision (frequentist approach). Moreover, being such maximization equivalent to
minimizing the squares, it is prone to overfitting, thus a regularization term E(w) should be introduced. This can
be done while staying in the probabilistic framework by applying a bayesian approach.

In this framework, parameters are considered as random variables, whose probability distributions has to be
defined or estimated. In particular, we are interested to the probability distribution of parameters, given the
observation of the training set, that is of the set of examples (xi, ti), on which the setϕ of base functions is applied.
A prior distribution of the parameters will be assumed.

In the case we consider here, the prior distribution of parameters will be assumed to be a gaussian with mean
0 and diagonal covariance matrix, with variance equal to the inverse of hyperparameter α

p(w|α) = N (w|0, α−1I) =
( α

2π

)m
2
e−

α
2
wTw

w0

w
1

Why a gaussian prior? Because the gaussian distribution is conjugated to itself. This means that the posterior
distribution, being proportional to prior times likelihood, is gaussian if the likelihood is gaussian.

p(t|Φ,w, β) =
n∏

i=1

N (ti|h(ϕ(xi),w), β−1) =
n∏

i=1

e−
β
2
ri(w)2

Given the prior p(w|α), the posterior distribution for w derives from Bayes’ rule

p(w|Φ, t, α, β) = p(t|Φ,w, β)p(w|α)
p(t|Φ, α, β)

∝ p(t|Φ,w, β)p(w|α)

Given the above likelihood, if the prior of w is a gaussian

p(w) = N (w|m0,Σ0)

than the posterior distribution is itself gaussian

p(w|Φ, t) = N (w|mp,Σp)

with

Σp = (Σ−1
0 + βΦTΦ)−1

mp = Σp(Σ
−1
0 m0 + βΦT t)
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In the case we are considering here, we have

p(w|α) = N (w|0, α−1I) =
m∏
j=1

√
α√
2π

e−
α
2
w2

i

The posterior distribution is then a gaussian itself

p(w|t,Φ, α, σ) = N (w|mp,Σp)

with

Σp = (αI+ βΦTΦ)−1

mp = βΣpΦ
T t

Maximum a Posteriori

Given the posterior distribution p(w|Φ, t, α, β), we may derive the value wMAP of w which makes it maximum
(the mode of the distribution). This is equivalent to maximizing its logarithm

log p(w|Φ, t, α, β) = log p(t|w,Φ, β) + log p(w|α)− log p(t|Φ, β)

and, since p(t|Φ, β) is a constant wrt w

wMAP = argmax
w

log p(w|Φ, t, α, β) = argmax
w

(log p(t|w,Φ, β) + log p(w|α))

that is,

wMAP = argmin
w

(− log p(t|Φ,w, β)− log p(w|α)) = argmax
w

(log p(t|Φ,w, β) + log p(w|α))

In this case

log p(t|Φ,w, β) = log
n∏

i=1

√
β√
2π

e−
β
2
ri(w)2 =

n∑
i=1

(
1

2
logβ − 1

2
log(2π)− ri(w)2

)
=

n

2
logβ−n

2
log(2π)−β

2

n∑
i=1

ri(w)2

and

log p(w|α) = log
m∏
j=1

√
α√
2π

e−
α
2
w2

i =

m∑
j=1

(
1

2
logα− 1

2
log(2π)− w2

j

)
=

m

2
logα− n

2
log(2π)− α

2

m∑
j=1

w2
j

The value wMAP which maximize the probability (mode of the distribution) minimizes

−β

2

n∑
i=1

ri(w)2 −
α

2

m∑
j=1

w2
j +

n

2
logβ +

m

2
logα− n+m

2
log(2π)

this is equivalent to maximizing

β

2

n∑
i=1

ri(w)2 +
α

2

m∑
j=1

w2
j ∝ 1

2

n∑
i=1

ri(w)2 +
α

2β

m∑
j=1

w2
j
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This corresponds to a ridge regression with regularization hyperparameter λ = α
β .

The same considerations of ML appy here for what concerns deriving the predictive distribution of t given x,
which results now

p(t|x;wMAP , βMAP ) = N (t|h(ϕ(x),wMAP ), β
−1
MAP ) =

√
βMAP

2π
e−

βMAP
2

(h(ϕ(x),wMAP )−t)2

where, as it is easy to see, βMAP = βML

Sequential learning

Observe now that the posterior after observing T1 can be used as a prior for the next training set acquired.

In general, for a sequence T1, . . . , Tn of training sets,

p(w|T1, . . . Tn) ∝ p(Tn|w)p(w|T1, . . . Tn−1)

p(w|T1, . . . Tn−1) ∝ p(Tn−1|w)p(w|T1, . . . Tn−2)

. . .

p(w|T1) ∝ p(T1|w)p(w)

• Input variable x, target variable t, linear regression y(x,w0, w1) = w0 + w1x.
• Dataset generated by applying function y = a0+a1x (with a0 = −0.3, a1 = 0.5) to values uniformly sampled

in [−1, 1], with added gaussian noise (µ = 0, σ = 0.2).
• Assume the prior distribution p(w0, w1) is a bivariate gaussian with µ = 0 and Σ = σ2I = 0.04I

Left, prior distribution of w0, w1; right, 6 lines sampled from the distribution.
After observing item (x1, y1) (circle in right figure).
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Left, posterior distribution p(w0, w1|x1, y1); right, 6 lines sampled from the distribution.
After observing items (x1, y1), (x2, y2) (circles in right figure).

Left, posterior distribution p(w0, w1|x1, y1, x2, y2); right, 6 lines sampled from the distribution.
After observing a set of n items (x1, y1), . . . , (xn, yn) (circles in right figure).

Left, posterior distribution p(w0, w1|xi, yi, i = 1, . . . , n); right, 6 lines sampled from the distribution.

• As the number of observed items increases, the distribution of parameters w0, w1 tends to concentrate (variance
decreases to 0) around a mean point a0, a1.

• As a consequence, sampled lines are concentrated around y = a0 + a1x.

Approaches to prediction in linear regression

Classical

A value wLS for w is learned through a point estimate, performed by minimizing a quadratic cost function, or
equivalently by maximizing likelihood (ML) under the hypothesis of gaussian noise; regularization can be applied
to modify the cost function to limit overfitting.

Given any x, the obtained value wLS is used to predict the corresponding t as t = ϕ(x)TwLS .

Bayesian point estimation

The posterior distribution p(w|Φ, t, α, β) is derived and a point estimate is performed from it, computing the
mode wMAP of the distribution (MAP).

This is equivalent to the classical approach, as wMAP corresponds to wLS if λ = α
β . The prediction, for an

element x, is a gaussian distributionN (t|ϕ(x)TwMAP , β) for t, with mean ϕ(x)TwMAP and variance β−1.
The distribution is not derived directly from the posterior p(w|Φ, t, α, β): it is built, instead, as a gaussian with

mean depending from the expectation of the posterior, and variance given by the assumed noise.
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Fully bayesian

The real interest is not in estimatingw or its distribution p(w|Φ, t, α, β), but in deriving the predictive distribution
p(t|x). This can be done through expectation of the probability p(t|x,w, β) predicted by a model instance wrt
model instance distribution p(w|Φ, t, α, β), that is

p(t|x, t,Φ, α, β) =
∫

p(t|x,w, β)p(w|t,Φ, α, β)dw

The distribution p(t|x,w, β) is assumed gaussian, and p(w|t,Φ, α, β) is gaussian by the assumption that the
likelihood p(t|w,Φ, β) and the prior p(w|α) are gaussian themselves and by their being conjugate

p(t|x,w, β) = N (t|wTϕ(x), β)

p(w|t,Φ, α, β) = N (w|βSNΦT t, SN )

where SN = (αI+ βΦTΦ)−1

Under such hypothesis, the predictive distribution is gaussian

p(t|x, t,Φ, α, β) = N (t|m(x), σ2(x))

with mean
m(x) = βϕ(x)TSNΦT t

and variance
σ2(x) =

1

β
+ ϕ(x)TSNϕ(x)

•
1

β
is a measure of the uncertainty intrinsic to observed data (noise)

• ϕ(x)TSNϕ(x) is the uncertainty wrt the values derived for the parameters w

• as the noise distribution and the distribution of w are independent gaussians, their variances add

• predictive distribution for f(x) = sin 2πx, applying a model with 9 gaussian base functions and training sets
of 1, 2, 4, 25 items, respectively

• left: items in training sets (sampled uniformly, with added gaussian noise); expectation of the predictive
distribution (red), as function of x; variance of such distribution (pink shade within 1 standard deviation from
mean), as a function of x

• right: items in training sets, 5 possible curves approximating f(x) = sin 2πx, derived through sampling from
the posterior distribution p(w|t,Φ, α, β)

n = 1
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n = 2

n = 4

n = 25

Fully bayesian regression and hyperparameter marginalization

In a fully bayesian approach, the hyper-parameters α, β are also marginalized

p(t|x, t,Φ) =
∫

p(t|x,w, β)p(w|t,Φ, α, β)p(α, β|t,Φ) dw dα dβ

where, as seen before,

• p(t|x,w, β) = N (t|wTϕ(x), β)

• p(w|t,Φ, α, β) = N (w|mN , SN ), with SN = (αI+ βΦTΦ)−1 e mN = βSNΦT t

this marginalization wrt w, α, β is analytically intractable we may consider approximation methods, that we do
not introduce here.
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