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Supervised learning framework: deriving a probabilistic predictor

As done before, we assume that the observed dataset (features and target) has been derived by randomly sampling:

• X according to the probability distribution pM (x) (usually the uniform distribution)

• Y according to the conditional distribution pC(t|x)

Deriving a probabilistic predictor results into deriving, from the training set T , an algorithm computing a con-
ditional distribution p∗(t|x) which approximates the correct, unknown distribution pC . An independent decision
strategy will then be applied to p∗(t|x) to return a specific prediction h(x): this usually results into returning the
target value t∗ with maximum probability according to p∗(t|x), that is h(x) = argmax

t∈Y
p∗(t|x). However, different

decision strategies could be applied, for example in the case of different cost for different error types.

Decision theory

In general, we wish to select the best actions to perform, given a cost associated to each action, in order to minimize
the expected cost. Let us consider the case of classification: in this case, assuming the joint distribution p(x, C) =
p(C|x)p(x) is known, we want to derive a partition of the input space X into decision regionsRk, with regionRk

containing all elements which are predicted as belonging to class Ck .
Let us first consider, for simplicity, the binary case {0, 1}: here, an item x is classified correctly with probability

p̂(x) = p(x ∈ R0, C0) + p(x ∈ R1, C1) =
∫
R0

p(x, C0)dx+
∫
R1

p(x, C1)dx

this probability is maximized if each x is assigned to the class Ck with maximum probability p(x, Ck), hence the
decision region Ri corresponds to the set of points x such that i = argmax p(x, Ci). This results in assigning x to

class C0 if
p(x, C0) > p(x, C1)

that is if
pC(C0|x)pM (x)
pC(C1|x)pM (x)

=
pC(C0|x)
pC(C1|x)

> 1

These considerations are immediately extendable toK-class classification (K > 2): the probability of correct
classification is now

p̂(x) =
K−1∑
i=0

p(x ∈ Ri, Ci) =

K−1∑
i=1

∫
Ri

p(x, Ci)dx
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which is maximized, again, if Ri corresponds to the set of points x such that i = argmax
0≤i≤K−1

p(x, Ci), resulting in

the generalization of the decision rule above

h(x) = argmax
0≤i≤K−1

p(x, Ci)

If we assume now that error cost is not uniform, we have to take into account the values of such costs: by
Lij , 0 ≤ i, j ≤ K − 1 we denote the cost associated to the event that x ∈ Ci is classified as belonging to Cj , that
is x ∈ Rj .

The expected classification cost of element x is then

E
(x,C)∼p

[L ] =
∑
i

∑
j

∫
Rj

Lijp(x, Ci)dx =
∑
i

∑
j

∫
Rj

Lijp(Ci|x)p(x)dx

we assume that, in general, a classification cost is defined even if x is classified correctly: in many cases however it
is assumed Lii = 0 for all i.

In order to minimize such value, we chooseRj assigning x to class Cj (hence including it inRj) if

j = argmin
k

∑
i

Likp(x, Ci)

or
j = argmin

k

∑
i

Likp(Ci|x)

In the binary case, applying the considerations above the expected cost of classifying element x as belonging to
C0 is

L00p(C0|x) + L01p(C1|x)
while

L10p(C0|x) + L11p(C1|x)
is the cost of classifying it as belonging to C1.

Element x is then assigned toR0 if

L00p(C0|x) + L01p(C1|x) < L10p(C0|x) + L11p(C1|x)

that is, if

(L10 − L00)p(C0|x) > (L01 − L11)p(C1|x)

hence if

p(C0|x)
p(C1|x)

>
L01 − L11

L10 − L00

that is, we compare the increase of cost occurring when an element is assigned to the wrong class, for the cases when
it is assigned to class 0 or to class 1. Observe that this just the ratio between the misclassification cost in the two
cases when we assume no cost in classifying correctly.

This corresponds to having a threshold

θ =
L01 − L11

L10 + L01 − L00 − L11

such that x is assigned to class C0 (that isR0 includes x) iff p(C0|x) > θ. Note that if we assume L00 = L11 = 0
(no cost for correct predictions) and L01 = L10 (errors have the same cost), then θ = 1

2

Typical example: medical diagnosis
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• Ck = {0, 1} (sick, healthy)

• L =

[
0 100
1 0

]
: strong cost of not realizing of a sick patient

The expected loss

E
(x,C) p

[L ] =

∫
R1

L01p(x,C0)dx+

∫
R0

L10p(x,C1)dx

=

∫
R1

100 · p(x,C0)dx+

∫
R0

p(x,C1)dx

and the assignment rule to R1 is

p(C1|x) >
L10

L01
p(C0|x) = 100p(C0|x) = 100(1− p(C1|x))

The use of a threshold makes it possible to define situations when elements are not classified: for example, in
the binary case, if ratio of the expected cost is in a neighborhood of 1 (for example in [1− ε, 1+ ε]) the prediction
is not returned. Then, in this framework x is inR0 if

L00p(C0|x) + L01p(C1|x) < (1− ε)(L10p(C0|x) + L11p(C1|x))

By the same considerations above, this results into p(C0|x) > θ′, where

θ′ =
L01 − (1− ε)L11

(1− ε)L10 + L01 − L00 − (1− ε)L11
=

L01 − L11 + εL11

L10 + L01 − L00 − L11 + ε(L11 − L10)

it is not hard to prove that θ′ > θ if L01L10 > L00L11 that is if the cost of errors is greater than the cost of
correct predictions (as we expect).

Similarly, x is inR1 if

L10p(C0|x) + L11p(C1|x) < (1− ε)(L00p(C0|x) + L01p(C1|x))

which leads to p(C1|x) > θ′′, where

θ′′ =
L10 − (1− ε)L00

(1− ε)L01 + L10 − L11 − (1− ε)L00

this corresponds to

p(C0|x) < 1− θ′′ =
L01 − L11 − εL01

L10 + L01 − L00 − L11 − ε(L01 − L00)

again, 1− θ′′ can be proved to be smaller than θ.
In summary, we have that:

h(x) =


1 if p(C0|x) < 1− θ′′

0 if p(C0|x) > θ′

undefined otherwise
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In the case of regression, target is a numeric value, t ∈ R, and the typical loss function is the squared difference
L(t, y(x)) = (y(x)− t)2

we wish to minimize the expected loss w.r.t. h(x) (functional minimization)

E
(x,t)∼p

[L ] =

∫ ∫
(h(x)− t)2p(x, t)dxdt

this expectation is minimized by the regression function

h∗(x) =
∫

p(t|x)tdt = E
t∼pc(·|x)

[ t ]

that is usually denoted as E [ t|x ]
To show that the regression function minimizes the loss, observe that

(h(x)− t)2 = (h(x)− E [ t|x ] + E [ t|x ]− t)2

= (h(x)− E [ t|x ])2 + (E [ x|t ]− t)2 + 2
(
(h(x)− E [ t|x ])(E [ t|x ]− t)

)
Then,

E
(x,t)∼p

[L ] =

∫ ∫
(h(x)− E [ t|x ])2p(x)dxdt+

∫ ∫
(E [ t|x ]− t)2p(x)dxdt

which is minimized w.r.t. h(x) by setting the first term to 0, that is when h(x) = E [ t|x ].

Approximating pC(x, t)

The considerations above refer to the case that the real conditional distribution pC(t|x) is available. Since this is
not the case, we need to infer for T a distribution p(t|x) which is a good approximation of pC .

Two different approaches can be applied here:

1. Generative probabilistic models. Inference of conditional probabilities p(x|Ck) for all classes. Inference of
prior probabilities p(Ck). Use of Bayes’ rule

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
≈ p(x|Ck)p(Ck)

to derive (at least up to a multiplicative constant) the posterior probabilities p(Ck|x)

2. Discriminative probabilistic models. Inference of class probabilities p(Ck|x) directly from T

With this aim,
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1. we may consider a class of possible conditional distributions P and

2. select (infer) the “best” conditional distribution p∗ ∈ P from the available knowledge (that is, the dataset),
according to some measure q

3. given any new item x, apply p∗(t|x) to assign probabilities for each possible value of the corresponding target

Tlearning A AT

x
y

predicting AT p∗(t|x)

How to define the class of possible conditional distributions p(t|x)?
• usually, parametric approach: distributions defined by a common (arbitrary) structure and a set of parameters

Example: logistic regression for binary classification
The probability p(t|x), where t ∈ {0, 1}, is assumed to be a Bernoulli distribution

p(t|x) = π(x)t(1− π(x))1−t

with
π(x) = p(t = 1|x) = 1

1 + e−
∑d

i=1 wixi+w0

Inferring a best distribution

What is a measure q(p, T ) of the quality of the distribution (given the dataset T = (X, t))?

• this is related to how a dataset generated by randomly sampling fromD1 (usually uniform) and p(t|x) (instead
of the unknown distribution D2) could be similar to the available dataset T

• in particular, what is the probability that the dataset T = (X, t) is obtained under the following hypotheses?

– n = |t| pairs xi, ti are each other independently sampled
– xi is sampled from D1 (which we assume uniform)
– ti is sampled from p(t|xi)

• we may use such probability as the quality measure q(p, T ) and search the distribution p∗(t|x) that makes
p(X, t) maximum assuming D1 is the uniform distribution and D2 is p∗(t|x)

That is, we consider the probability

p(X, t) =
n∏

i=1

p(xi, ti) =
n∏

i=1

p(ti|xi)p(xi) ∝
n∏

i=1

p(ti|xi) = q(p, T )

and look (within some class of distributions) for the conditional probability p∗(t|x)whichmakes p(X, t)maximum

Observe that learning the distribution p∗(t|x) which maximizes q(p, T ) corresponds, in the probabilistic pre-
dictor case, to learning the function h∗ which minimizes the empirical riskRT (h) in the functional predictor case.
In both cases, learning is performed through optimization.

The same considerations done wrt the inductive bias in the case of a functional predictor, and related to over-
fitting and underfitting, can be rephrased here wrt the class of possible conditional distributions.
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A different approach

Instead of finding a best distribution p∗ ∈ P and use it to predict target probabilities as p∗(y|x) for any element
x, we could

• consider for each possible conditional distribution p ∈ P its quality q(p, T )

• compose all conditional distributions p(y|x) each weighted by its quality q(p, T ) (for example by means of
a weighted averaging)

• apply the resulting distribution

Assume q takes the form of a probability distribution (of probability distribution)

• first approach: take the modal value (the distribution of maximum quality) and apply it to perform predic-
tions

• second approach: compute the expectation of the distributions, wrt the probability distribution q

Inference of predictive distribution

We assume elements in the dataset T correspond to a set of n samples, independently drawn from the same proba-
bility distribution (that is, they are independent and identically distributed, i.i.d): they can be seen as n realizations
of a single random variable.

We are interested in learning, starting from T , a predictive distribution p(x|X) (or p(x, t|X, t)) for any new
element (or element-target pair). We may interpret this as the probability that, in a random sampling, the element
actually returned is indeed x (or x, t).

• in the case that T = X = {x1, . . . , xn}, we are interested in deriving the probability distribution p(x|X) of
a new element, given the knowledge of the set X

• in the case that T = (X, t) = {(x1, t1), . . . , (xn, tn)}, we are interested in deriving the joint probability
distribution p(x, t|X, t) or, assuming p(x|X, t) uniform and thus also independent from X, t, the conditional
distribution p(t|x,X, t), given the knowledge of the set of pairs X, t

Probabilistic models

A probabilistic model is a collection of probability distributions with the same structure, defined over the data do-
main. Probability distribution are instances of the probabilistic model and are characterized by the values assumed
by a set of parameters.

In a bivariate gaussian probabilistic model, distributions are characterized by the values assumed by:
1. the mean µ = (µ1, µ2)

2. the covariance matrix Σ =

(
σ11 σ12

σ21 σ22

)
where σ12 = σ21

A probabilistic model could be

Parametric if the set of parameters is given, finite, and independent from the data

Non parametric if the set of parameters is not given in advance, but derives from the data

Given a dataset T and a probability distribution p with parameters θ defined on the same data domain,
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• the likelihood of θ wrt T is defined as
L(θ|T ) = p(T |θ)

the probability of the dataset under distribution p with parameters θ, that is that the dataset is generated
by independently sampling points from p(x, t;θ).

• while the probability p(T |θ) is considered as a function of p(T |θ) with θ fixed, the likelihood L(θ|T ) is a
function of θ with T fixed

• parameters θ are considered as (independent) variables (frequentist interpretation of probability)

• By assuming that elements in T are i.i.d.,

L(θ|T ) = p(X|θ) =
n∏

i=1

p(xi|θ) in the first case

L(θ|T ) = p(X, t|θ) =
n∏

i=1

p(xi, ti|θ) =
n∏

i=1

p(ti|xi,θ)p(xi|θ) = p(x|θ)
n∏

i=1

p(ti|xi,θ)

= p(x)
n∏

i=1

p(ti|xi,θ) ∝
n∏

i=1

p(ti|xi,θ) in the second case, assuming p(x|θ) uniform

Maximum likelihood estimate

Frequentist point of view: parameters are deterministic variables, whose value is unknown and must be estimated.
Determine the parameter value that maximize the likelihood

θ∗ = argmax
θ

L(θ|T ) = argmax
θ

p(X|θ) = argmax
θ

n∏
i=1

p(xi|θ)

or

θ∗ = argmax
θ

L(θ|T ) = argmax
θ

p(X, t|θ) = argmax
θ

p(x)
n∏

i=1

p(ti|xi,θ) = argmax
θ

n∏
i=1

p(ti|xi,θ)

The log-likelihood

l(θ|T ) = lnL(θ|T )

is usually preferrable, since products are turned into sums, while θ∗ remains the same (since log is a monotonic
function), that is

argmax
θ

l(θ|T ) = argmax
θ

L(θ|T )

The resulting optimization problem is then

θ∗
ML = argmax

θ

p(X|θ) = argmax
θ

n∑
i=1

ln p(xi|θ)

or

θ∗
ML = argmax

θ

p(X, t|θ) = argmax
θ

n∑
i=1

ln p(ti|xi,θ)
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A solution is computed solving the set of equations

∂l(θ|T )

∂θi
= 0 i = 1, . . . , d

more concisely, setting the gradient to 0
∇l(θ|T ) = 0

Notice that the null gradient condition is only a necessary condition for the maximization of the ML function
considered, since in this case we can only say that the corresponding point is a stationary point (that is a maximum,
a minimum, or a saddle point). Even in the case that the point is a maximum (which could be verified by estimating
the second derivative or in general theHessian), wemay conclude that it is a localmaximum, while we are interested
to the global maximum.

These issues are tipically dealt with either by considering cases where, for example, there is only a stationary
point and such a point is a maximum (hence the global one), or applying more complex maximum search strategies.

Once the optimum θ∗
ML is computed, predictions can be performed by estimating, for any new observation x,

its probability:

p(x|X) =
∫
θ
p(x|θ)p(θ|X)dθ ≈

∫
θ
p(x|θ∗

ML)p(θ|X)dθ = p(x|θ∗
ML)

∫
θ
p(θ|X)dθ = p(x|θ∗

ML)

and the conditional distribution t|x of the associated target value:

p(t|x,X, t) =
∫
θ
p(t|x,θ)p(θ|X, t)dθ ≈

∫
θ
p(t|x,θ∗

ML)p(θ|X)dθ = p(x|θ∗
ML)

∫
θ
p(θ|X, t)dθ = p(t|x,θ∗

ML)

Collection X of n binary events, modeled through a Bernoulli distribution with unknown parameter ϕ

p(x|ϕ) = ϕx(1− ϕ)1−x

Likelihood: L(ϕ|X) =
∏n

i=1 ϕ
xi(1− ϕ)1−xi

Log-likelihood: l(ϕ|X) =
∑n

i=1 (xi lnϕ+ (1− xi) ln(1− ϕ)) = n1 lnϕ+ n0 ln(1− ϕ)

where n0 (n1) is the number of events x ∈ X equal to 0 (1)
∂l(ϕ|X)

∂ϕ
=

n1

ϕ
− n0

1− ϕ
= 0 =⇒ ϕ∗

ML =
n1

n0 + n1
=

n1

n

Linear regression: collection X, t of value-target pairs, modeled as p(x, t) = p(x)p(t|x,w, σ2), with w ∈ Rd,
w0 ∈ R:

• p(x) uniform
• p(t|x,w, σ2) = N (wT x+ w0, 1/β) (β, the inverse of the variance, is the precision)

Likelihood: L(t|X,w, w0, β) =
∏n

i=1 p(ti|xi,w, w0, β) =
∏n

i=1 N (wT xi + w0, β)

Log-likelihood:

l(t|X,w, w0, β) =

n∑
i=1

ln p(ti|xi,w, w0, β) =

n∑
i=1

ln

(√
β

2π
e−

β(wT xi+w0−ti)
2

2

)

=

n∑
i=1

(
−β(wT xi + w0 − ti)

2

2
+

1

2
lnβ − 1

2
ln(2π)

)

= −β

2

n∑
i=1

(wT xi + w0 − ti)
2 +

n

2
lnβ − n

2
ln(2π)
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∂

∂wk
l(t|X,w, w0, β) = −β

2

n∑
i=1

(wT xi + w0 − ti)xik k = 1, . . . , d

∂

∂w0
l(t|X,w, w0, β) = −β

2

n∑
i=1

(wT xi + w0 − ti)

∂

∂β
l(t|X,w, w0, β) = −1

2

n∑
i=1

(wT xi + w0 − ti)
2 +

n

2β

The ML estimation for w, w0 (linear regression coefficients) is obtained as the solution of the (d + 1, d + 1) linear
system

n∑
i=1

(wT xi + w0 − ti)xik = 0 k = 1, . . . , d

n∑
i=1

(wT xi + w0 − ti) = 0

The ML estimation for β is obtained by

−1

2

n∑
i=1

(wT xi + w0 − ti)
2 +

n

2β
= 0 =⇒ βML =

(
1

n

n∑
i=1

(wT xi + w0 − ti)
2

)−1

Maximizing the likelihood of the observed dataset tends to result into an estimate too sensitive to the dataset
values, hence into overfitting. The obtained estimates are suitable to model observed data, but may be too special-
ized to be used to model different datasets.

An additional function P (θ) can be introduced with the aim to limit overfitting and the overall complexity of
the model. This results in the following function to maximize

C(θ|X) = l(θ|X)− P (θ)

as a common case, P (θ) = γ
2∥θ∥

2, with γ a tuning parameter.

Maximum a posteriori estimate

Inference through maximum a posteriori (MAP) is similar to ML, but θ is now considered as a random variable
(following a bayesian approach), whose distribution has to be derived from observations, also taking into account
previous knowledge (prior distribution). The parameter value maximizing

p(θ|T ) =
p(T |θ)p(θ)

p(T )

is then computed.

θ∗
MAP = argmax

θ

p(θ|T ) = argmax
θ

p(T |θ)p(θ) = argmax
θ

L(θ|T )p(θ) = argmax
θ

(l(θ|T ) + ln p(θ))

which results into

θ∗
MAP = argmax

θ

(
n∑

i=1

ln p(xi|θ) + ln p(θ)

)
or

θ∗
MAP = argmax

θ

(
n∑

i=1

ln p(ti|xi,θ) + ln p(θ)

)
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MAP and gaussian prior

Assume θ is distributed around the origin as a multivariate gaussian with uniform variance and null covariance.That
is,

p(θ) ∼ N (θ|0, σ2) =
1

(2π)d/2σd
e−

∥θ∥2

2σ2 ∝ e−
∥θ∥2

2σ2

From the hypothesis,

θ∗
MAP = argmax

θ

p(θ|T ) = argmax
θ

(l(θ|T ) + ln p(θ))

= argmax
θ

(
l(θ|T ) + ln e−

∥θ∥2

2σ2

)
= argmax

θ

(
l(θ|T )− ∥θ∥2

2σ2

)
which is equal to the penalty function introduced before, if γ = 1

σ2

Collection X of n binary events, modeled as a Bernoulli distribution with unknown parameter ϕ. Initial knowledge
of ϕ is modeled as a Beta distribution:

p(ϕ|α, β) = Beta(ϕ|α, β) = Γ(α+ β)

Γ(α)Γ(β)
ϕα−1(1− ϕ)β−1

Log-likelihood

l(ϕ|X) =
n∑

i=1

(xi lnϕ+ (1− xi) ln(1− ϕ)) = n1 lnϕ+ n0 ln(1− ϕ)

∂

∂ϕ

(
l(ϕ|X) + lnBeta(ϕ|α, β)

)
=

n1

ϕ
− n0

1− ϕ
+

α− 1

ϕ
− β − 1

1− ϕ
= 0 =⇒

ϕ∗
MAP =

N1 + α− 1

n0 + n1 + α+ β − 2
=

n1 + α− 1

n+ α+ β − 2

The function
Γ(x) =

∫ ∞

0

tx−1e−tdt

is an extension of the factorial to the real numbers field: in fact, for any integer x,

Γ(x) = (x− 1)!

Applying bayesian inference

Once the posterior distribution

p(θ|X) = p(X|θ)p(θ)
p(X)

=
p(X|θ)p(θ)∫
θ p(X|θ)dθ

is available, MAP estimate computes the most probable value (mode) θMAP of the distribution. This may lead to
inaccurate estimates, as in the figure below:
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x

p
(x

)

A better estimation can be obtained by applying a fully bayesian approach and referring to the whole posterior
distribution, for example by deriving the expectation of θ w.r.t. p(θ|X),

θ∗ = Ep(θ|X)[θ] =
∫
θ
θp(θ|X)dθ

Collection X of n binary events, modeled as a Bernoulli distribution with unknown parameter ϕ. Initial knowledge
of ϕ is modeled as a Beta distribution:

p(ϕ|α, β) = Beta(ϕ|α, β) = Γ(α+ β)

Γ(α)Γ(β)
ϕα−1(1− ϕ)β−1

Posterior distribution

p(ϕ|X, α, β) =
∏N

i=1 ϕ
xi(1− ϕ)1−xip(ϕ|α, β)

p(X)

=
ϕN1(1− ϕ)N0ϕα−1(1− ϕ)β−1

Γ(α)Γ(β)
Γ(α+β) p(X)

=
ϕN1+α−1(1− ϕ)N0+β−1

Z

Hence,
p(ϕ|X, α, β) = Beta(ϕ|α+N1, β +N0)

Model selection

In the process described, a model (structure, hyper-parameter values) must be identified, in some way. How can we
deal with this problem?

This is performed throughmodel selection: identify, in a set of possible models, the one which we expect is best
to represent the available data.

Indeed, the one whose best (or a good) instantiation is best to represent the available data

We need a way to compare models (not their instantiations), given the dataset

Model selection in practice

Validation

Test set Dataset is split into Training set (used for learning parameters) and Test set (used for measuring effec-
tiveness). Good for large datasets: otherwise, small resulting training and test set (few data for fitting and
validation)
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Cross validation Dataset partitioned into K equal-sized sets. Iteratively, in K phases, use one set as test set and
the union of the otherK − 1 ones as training set (K-fold cross validation). Average validation measures.

As a particular case, iteratively leave one element out and use all other points as training set (Leave-one-out
cross validation).

Time consuming for large datasets and for models which are costly to fit.

Information measures

Faster methods to compare model effectiveness, based on computing measures which take into account data fitting
and model complexity.

Akaike Information Criterion (AIC) Let θ be the set of parameters of the model and let θML be their maximum
likelihood estimate on the dataset X. Then,

AIC = 2|θ| − 2 log p(X|θML) = 2|θ| − 2max
θ

l(θ|X)

lower values correspond to models to be preferred.

Bayesian Information Criterion (BIC) A variant of the above, defined as

BIC = |θ| − log |X|2 log p(X|θML) = |θ| log |X| − 2max
θ

l(θ|X)

Language models

A language model is a (categorical) probability distribution on a vocabulary of terms (possibly, all words which
occur in a large collection of documents).

A language model can be applied to predict the next term occurring in a text. The probability of occurrence of
a term is related to its information content and is at the basis of a number of information retrieval techniques.

It is assumed that the probability of occurrence of a term is independent from the preceding terms in a text
(bag of words model).

Given a language model, it is possible to sample from the distribution to generate random documents statisti-
cally equivalent to the documents in the collection used to derive the model.

• Let D = {t1, . . . , tn} be the dictionary, that is set of terms occurring in a given collection C of documents,
after stop word (common, non informative terms) removal and stemming (reduction of words to their basic
form).

• For each i = 1, . . . , n letmi be the multiplicity (number of occurrences) of term ti in C

• A language model can be derived as a categorical distribution associated to a vector ϕ̂ = (ϕ̂1, . . . , ϕ̂n)
T of

probabilities: that is,

0 ≤ ϕ̂i ≤ 1 i = 1, . . . , n
n∑

i=1

ϕ̂i = 1

where ϕ̂j = p(tj |C)
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Learning a language model by ML

Applying maximum likelihood to derive term probabilities in the language model results into setting

ϕ̂j = p(tj |C) =
mj∑n
k=1mk

=
mj

N

whereN =
∑n

i=1mi is the overall number of occurrences in C after stopword removal.

According to this estimate, a term t which never occurred in C has zero probability to be observed (black swan
paradox). Due to overfitting the model to the observed data, typical of ML estimation.

Solution: assign small, non zero, probability to events (terms) not observed up to now. This is called smoothing.

Bayesian learning of a language model

We may apply the dirichlet-multinomial model:

• this implies defining a Dirichlet prior Dir(ϕ|α), with α = (α1, α2, . . . , αn) that is,

p(ϕ1, . . . , ϕn|α) =
1

∆(α1, . . . , αn)

n∏
i=1

ϕαi−1
i

• the posterior distribution of ϕ after C has been observed is then Dir(ϕ|α), where

α = (α1 +m1, α2 +m2, . . . , αn +mn)

that is,

p(ϕ1, . . . , ϕn|α) =
1

∆(α1 +m1, . . . , αn +mn)

n∏
i=1

ϕαi+mi−1
i

The language model ϕ̂ corresponds to the predictive posterior distribution

ϕ̂j = p(tj |C,α) =

∫
p(tj |ϕ)p(ϕ|C,α)dϕ =

∫
ϕjDir(ϕ|α)dϕ = E

ϕ∼Dir(·|α)
[ϕj ]

that is, the expectation of ϕj w.r.t. the distribution Dir(ϕ|α). Then,

ϕ̂j =
αj∑n
k=1αk

=
αj +mj∑n

k=1(αk +mk)
=

αj +mj

α0 +N

The αj term makes it impossible to obtain zero probabilities (Dirichlet smoothing).

The non informative prior here is αi = α for all i, which results into

p(tj |C,α) =
mj + α

α|D|+N

where |D| is the vocabulary size.
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Naive bayes classifiers

A language model, which is generative, can be applied to derive document classifiers into two or more classes as
described above:

• given two classesC1, C2, assume that, for any document d, the probabilities p(C1|d) and p(C2|d) are known:
then, d can be assigned (for example) to the class with higher probability

• how to derive p(Ck|d) for any document, given a collection C1 of documents known to belong to C1 and a
similar collection C2 for C2? We apply Bayes’ rule:

p(Ck|d) ∝ p(d|Ck)p(Ck)

the evidence p(d) is the same for both classes, and can be ignored from the collections

• we have still the problem of computing p(Ck) and p(d|Ck) from the collections C1 and C2

The prior probabilities p(Ck) (k = 1, 2) can be easily estimated from C1, C2: for example, by applying ML, we
obtain

p(Ck) =
|C1|

|C1|+ |C2|

For what concerns the likelihoods p(d|Ck) (k = 1, 2), we observe that d can be seen, according to the bag of
words assumption, as a multiset of nd terms

d = {t1, t2, . . . , tnd
}

By applying the product rule, it results

p(d|Ck) = p(t1, . . . , tnd
|Ck) = p(t1|Ck)p(t2|t1, Ck) · · · p(tnd

|t1, . . . , tnd−1, Ck)

The naive Bayes assumption

Computing p(d|Ck) is much easier if we assume that terms are pairwise conditionally independent, given the class
Ck, that is, for i, j = 1. . . . , nd and k = 1, 2,

p(ti, tj |Ck) = p(ti|Ck)p(t2|Ck)

as, a consequence,

p(d|Ck) =

nd∏
j=1

p(tj |Ck)

The probabilities p(tj |Ck) are available for all terms if language models have been derived for C1 and C2,
respectively from documents in C1 and C2.

By applying these considerations, we obtain a Naive Bayes classifier which behaves as follows, in order to classify
a document d:

1. let t1, . . . , tm be the bag of words representaion of d, wherem = |D|

2. for each i = 1, . . . ,m and k = 0, 1 compute p(ti|Ck)

3. for k = 0, 1 compute, by applying the naive Bayes assumption, p(d|Ck)

4. assign d to class Cr where r = argmax
k∈{0,1}

p(d|Ck)p(Ck)

Observe that the same approach can be applied to the classification of items x = (x0, . . . , xd). In this case, the
Naive Bayes assumption is that features are conditionally independent given the class, hence p(x|Ck) =

∏d
i=0 p(xi|Ck).
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Feature selection by mutual information

The set of probabilities in a language model can be exploited to identify the most relevant terms for classification,*
that is terms whose presence or absence in a document best characterizes the class of the document.

To measure relevance, we can apply the set of mutual informations {I1, . . . , In}

Ij =
∑
k=1,2

p(tj , Ck) log
p(tj , Ck)

p(tj)p(Ck)

=
∑
k=1,2

p(Ck|tj)p(tj) log
p(Ck|tj)
p(Ck)

= p(tj)KL(p(Ck|tj)||p(Ck))

here, KL is a measure of the amount of information on class distributions provided by the presence of tj . This
amount is weighted by the probability of occurrence of tj .

Since p(tj , Ck) = p(Ck|tj)p(tj) = p(tj |Ck)p(Ck), Ij can be estimated as

Ij = p(tj |C1)p(C1) log
p(tj |C1)

p(tj)
+ p(tj |C2)p(C2) log

p(tj |C2)

p(tj)

= ϕj1π1 log
ϕj1

ϕj1π1 + ϕj2π2
+ ϕj2π2 log

ϕj2

ϕj1π1 + ϕj2π2

where ϕjk is the estimated probability of tj in documents of class Ck and πk is the estimated probability of a
document of class Ck in the collection.

A selection of the most significant terms can be performed by selecting the set of terms with highest mutual
information Ij .

*As done before, these considerations can be extended to any set of features. Just consider the number of occurrences of a term as a
particular type of feature.
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