
Loss functions & training

Course of Machine Learning
Master Degree in Computer Science
University of Rome “Tor Vergata”

a.a. 2024-2025

Giorgio Gambosi

Loss function

In general, the loss function L : Y × Y 7→ R measures the cost of referring to y instead of the correct value t for
any subsequent action, where y and t are elements of the target space.

In supervised learning, it provides ameasure of the quality of the prediction returned by the prediction function
h:

R(x, y) = L(h(x), y)

It is a fundamental component of the empirical risk, which is the average value of the loss function applied to all
predicted value-target value pairs in the training set T :

RT (h) =
1

|T |
∑

(x,t)∈T

L(h(x), t)

This gives a measure of the quality of the predictions made by h, at least with respect to the available data (the
training set).

During the training phase, the empirical risk is minimized with respect to the prediction function h, specifically
with regard to the set of parameters θ that define the parametric function h = hθ .

This corresponds to minimizing the overall loss:

L(θ; T) =
n∑

i=1

Li(θ)

which is the sum of the loss functions Li = L(θ; xi, ti) for each data point (xi, ti).

Loss function minimization approaches

How can we tackle the problem of minimizing the loss function? Ideally, our goal is to find a global minimum of
the loss function, which would represent the best possible set of parameters for the model.

One common approach relies on calculus, specifically to setting all derivatives of the loss function with respect
to the parameters to zero:

∇L(θ; T) = 0

where∇ is the gradient operator that, given a multivariate function f(x1, . . . , xm) returns the vector of its partial
derivatives

∇f =


∂f
∂x1
...
∂f
∂xm


1

observe that the gradient at any given pointx1, . . . , xm in the domain space of f is a vector pointing in the direction
of steepest ascent from that point.

Setting the gradient to 0 means solving the system of equations:

∂

∂θi
L(θ; T) = 0 ∀i

where each partial derivative is set to zero, thereby identifying potential points where the loss could be minimal.

However, this method faces several challenges: as a first point, this system of equations often has multiple
solutions, including local minima, maxima, and saddle points, making it difficult to identify a global minimum.
Moreover, in many cases, solving these equations analytically is either extremely difficult or outright impossible.

Gradient descent

A localminimumof the empirical risk functionRT (θ) can be computed numerically bymeans of iterativemethods,
such as gradient descent. The process typically begins by initializing the parameters at a starting point, θ(0) =

(θ
(0)
0 , θ

(0)
1 , . . . , θ

(0)
d), with an initial error value given by

RT (θ
(0)).

The iterative procedure then works by modifying the current parameter values θ(i−1) in the direction of the
steepest descent of the empirical risk function RT (θ). Specifically, this means moving in the opposite direction
of the gradient of the empirical risk evaluated at θ(i−1).

At each iteration i, the parameter θ(i−1)
j is updated according to the following rule:

θ
(i)
j := θ

(i−1)
j − η

∂

∂θj
RT (θ)

∣∣∣
θ(i−1)

= θ
(i−1)
j − η

|T |
∑

(x,t)∈T

∂

∂θj
L(hθ(x), t)

∣∣∣
θ(i−1)

,

where η represents the learning rate, which controls the step size during each update.
In matrix form, this update can be written as:

θ(i) := θ(i−1) − η ∇RT (θ)
∣∣∣
θ(i−1)

= θ(i−1) − η

|T |
∑

(x,t)∈T

∇L(hθ(x), t)
∣∣∣
θ(i−1)

.

While this method allows us to approximate a local minimum, the outcome depends heavily on the initial
parameter values chosen. Some key issues to consider include:

• we are interested in finding a global minimum, but gradient descent can get stuck at local minima

• how do we handle saddle points, which are neither minima nor maxima?

• how quickly does the method converge, and what factors influence its speed?

These challenges make the minimization process complex, but gradient descent remains one of the most widely
used methods in practice for parameter optimization.

Convexity

A set of points S ⊂ Rd is convex iff for any x1, x2 ∈ S and λ ∈ (0, 1)

λx1 + (1− λ)x2 ∈ S

that is if all points on the line segment connecting x1 and x2 belong to S themselves.

2

x2

x1

λx1 + (1− λ)x2

f(t1)

t1

f(t2)

f(λt1 + (1− λ)t2)

t2λt1 + (1− λ)t2

λf(t1) + (1− λ)f(t2)

f(x)

A function f(x) is convex iff the set of points lying above the function is convex, that is, forall x1, x2 and
λ ∈ (0, 1),

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

f(x) is strictly convex iff forall x1, x2 and λ ∈ (0, 1),

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2)

Assuming L(θ; T) is convex is a relevant simplification: if f(x) is a convex function, then any local minimum
of f is also a global minimum. Moreover, if f is a strictly convex function, there exists only one local minimum for
f (and it is global). That is, solving

∇L(θ; T) = 0

provides the global minimum.
A simple but relevant case is when f(x) is quadratic. This is the case for a number of simple ML models, but

unfortunately not true for more complex models such as neural networks.
Let us remind that:

3

1. the sum of (strictly) convex functions is (strictly) convex

2. the product of a (strictly) convex function and a constant is (strictly) convex

Since
RT (h) =

1

|T |
∑

(x,t)∈T

L(h(x), t) ∝
∑

(x,t)∈T

L(θ; x, t)

this implies that

• if L(θ; x, t) is (strictly) convex then the overall cost is also (strictly) convex

• if L(θ; x, t) is convex then any local minimum of the empirical risk is also a global one

• if L(θ; x, t) is strictly convex then there exists only one minimum of the empirical risk

Some common loss functions

Loss functions for regression

Let us first consider the case of regression.

• both y and h(x) are real values

• loss is related to some type of point distance measure

Quadratic loss

The most common loss function for regression is the quadratic loss

L(y, t) = (y − t)2

t

0

y

loss
loss gradient

Quadratic loss

• Applying quadratic loss results in the empirical risk

RT (h) =
1

|T |
∑

(x,t)∈T

(h(x)− t)2

4

• in the common case of linear regression, the prediction is performed by means of a linear function h(x) =
wT x+ b: this results into an overall loss to be minimized

L(w, b; T) =
∑

(x,t)∈T

(wT x+ b− t)2

• since the quadratic function is strictly convex, the overall loss has only one local minimum (which is global)

• the gradient is linear

∂

∂wi
L(w, b; T) =

∑
(x,t)∈T

(wT x+ b− t)wi
∂

∂b
L(w, b; T) =

∑
(x,t)∈T

(wT x+ b− t)

Absolute loss

Quadratic loss is easy to deal with mathematically, but not robust to outliers, i.e. pays too much attention to
outliers.

A different loss function for regression is the absolute loss L(t, y) = |t− y|

t
−1

0

1

y

loss
loss gradient

Absolute loss

The gradient is now piecewise constant.

Huber loss

Another different loss function for regression is Huber loss which is quadratic for small values and linear after a
given threshold

L(t, y) =

{
1
2(t− y)2 |t− y| ≤ δ

δ(|t− y|)− δ
2 |t− y| > δ

5

t
−δ

0

δ

y

loss
loss gradient

Huber loss

Loss functions for classification

Essentially, two approaches, depending on what we expect the prediction return:

• prediction returns a specific class (prediction function)

• prediction returns a probability distribution on the set of classes (prediction distribution)

This implies a different definition of error

• first case: coincidence of predicted and real classes

• second case: cumulative difference between predicted probability and 0/1 for all classes

We consider the binary case, with two classes identified by target values−1 and 1.
Assume a real value is returned as a prediction

0/1 loss

The most “natural” loss function in classification is 0/1 loss

L(t, y) =

{
1 sgn(t) 6= y

0 sgn(t) = y

where sgn(x) is 1 if x > 0 and −1 otherwise.
This can be written as:

1[ty < 0]

Using 0/1 loss is problematic, since:

• it is not convex

• it is not smooth (first derivative undefined in some points or not continue)

• its gradient is 0 almost everywhere (undefined at 0): gradient descent cannot be applied

6

0
0

1

ty

0/1 loss

• if we assume a linear prediction function

RT (h) =
1

|T |
∑

(x,t)∈T

1[(wT x+ b)y < 0]

the problem is finding the values w, b which minimize the overall number of errors: this is NP-hard, hence
a computationally intractable problem.

Convex surrogate loss functions are used instead of 0/1 loss. They:

• approximate 0/1 loss from above: real 0/1 error always less than function loss

• are convex: unique local minimum = global minimum

• are smooth: may use derivatives to find minimum

The main difference between them is the relevance given to erroneous predictions

Perceptron loss

0/1 loss assigns the same cost 1 to each error.

• If we assume a prediction t is a real value: then, in the case of a misclassified element, the error can be
measured as −ty > 0. That is, L(t, y) = max(0,−yt)

• in the case of correctly classified element, the error is 0, while in the case of a wrong prediction, the error is
equal to |t|

• Main difference: relevance given to erroneous predictions. The perceptron loss penalizes predictions which
are largely wrong (for example a very negative value while correct class is 1)

• continuous, gradient continuous almost everywhere, convex (but not strictly convex), not surrogate

7

0
0

1

ty

Perceptron loss
0/1 loss

Hinge loss

• used in support vector machine training

• related to perceptron loss, but surrogate

• assume a prediction
L(t, y) = max(0, 1− yt)

• correct predictions can be penalized if “weak” (small value of t)

• continuous, gradient continuous almost everywhere, convex (but not strictly convex), surrogate

0 1
0

1

ty

Hinge loss
0/1 loss

Hinge loss LH(y, t) = max (0, 1− yt) is not differentiable wrt to y at ty = 1. The same holds for perceptron

loss at ty = 0.

For example,

∂

∂y
LH =


−t ty < 1

0 ty > 1

undefined ty = 1

8

This is a problem if gradient descent should be applied. In this case a subgradient can be used.
Given a convex function (such as hinge loss) f , at each differentiable point x the corresponding gradient∇(x)

provides a function which lower bounds f

f(x′) ≥ f(x) +∇f |x (x− x′)

If x is a singular point, where f is not differentiable and∇f |x does not exist, a subgradient∇f is any function
which lower bounds f

f(x′) ≥ f(x) +∇f |x(x− x′)

In the case of hinge loss, we may observe that any line whose slope in [−t, 0] (if t = 1, in [0,−t] if t = −1) is
a subgradient

0

0

1

ty

We may then choose the horizontal axis as the subgradient to use

Square loss in classification

• adapted to the classification case
L(t, y) = (1− yt)2

• continuous, gradient continuous, convex, not surrogate

• largely wrong predictions can be too penalized

• symmetric around 0: even largely correct predictions are penalized

9

0
0

1

yt

Square loss
0/1 loss

Log loss (cross entropy)

• used in logistic regression

L(t, y) =
1

log 2
log(1 + e−yt)

• a smoothed version of hinge loss

• continuous, gradient continuous, convex, surrogate

• largely wrong predictions can be too penalized

0
0

1

yt

Log loss
0/1 loss

Log loss is related to the cross entropy measure widely applied in probabilistic classification
Given distributions p, q the cross entropy of q wrt p is defined as

− E
x∼p

[log q(x)] = −
∫

p(x) log q(x)dx

The cross entropy is a measure of how much p and q are different: it is related to the Kullback-Leibler divergence

KL(p||q) = −
∫

p(x) log
q(x)

p(x)
dx = −

∫
p(x) log q(x)dx+

∫
p(x) log p(x)dx = − E

x∼p
[log q(x)]−H(p)

whereH(p) = − E
x∼p

[log p(x)] is the entropy of p

10

• the entropy H(p) denotes the expected number of bits per symbol x in a transmission channel where the
distribution of symbols p(x) is known

• the cross entropy− E
x∼p

[log q(x)] denotes the total expected number of bits per symbol x in a transmission

channel where the distribution of symbols q(x) is used, instead of p(x)

• the KL divergenceKL(p||q) denotes the additional (with respect to the minimum) expected number of bits
per symbol x in a transmission channel where the distribution of symbols q(x) is used, instead of p(x)

Consider now a classifier which predicts the probability that an element is in class C1 and let

• p(x) be the probability that the element is in classC1: in the training set this is either 0 or 1, that is equal to
the target value t

• y(x) be the predicted probability of the element being in class C1

The cross entropy CE(T) between real and predicted probability distribution over the set of elements can be
estimated as the average

CE(T) = − 1

|T |
∑

(x,t)∈T

(
t log y(x)+ (1− t) log(1− y(x))

)
= − 1

|T |

(∑
(x,t)∈C1

log y(x)+
∑

(x,t)∈C0

log(1− y(x))
)

Assume now the classifier is a logistic regression, that is

y(x) = σ(wT x+ b) =
1

1 + e−(wT x+b)

then,

CE(T) =
1

|T |

(∑
(x,t)∈C1

log(1 + e−(wT x+b)) +
∑

(x,t)∈C0

log(1 + ew
T x+b)

)
Assuming now that the target encodes classes as t ∈ {−1, 1} (that is class C0 is denoted by t = −1 and class

C1 by t = 1) we have

CE(T) =
1

|T |
∑

(x,t)∈T

log(1 + e−t(wT x+b))

that, apart from the constant log 2 corresponds to the empirical risk if log loss is applied

RT (h) =
1

|T | log 2
∑

(x,t)∈T

log(1 + e−t(wT x+b))

Exponential loss

• used in boosting (Adaboost)
L(t, y) = e−yt

• penalizes wrong predictions more than log loss: penalty grows more quickly as errors become larger

• continuous, gradient continuous, convex, surrogate

11

t
0

1

yŷ

Exponential loss
0/1 loss

Computing h∗

• In most cases,Θ = Rd for some d > 0: in this case, the minimization ofRT (hθ) is unconstrained and a (at
least local) minimum could be computed setting all partial derivatives to 0

∂

∂θi
RT (hθ) = 0

that is, setting to zero the gradient of the empirical risk with respect to the vector of parameters θ

∇RT (hθ) = 0

• The analytical solution of this set of equations is usually quite hard

• Numerical methods can be applied

Gradient descent

Gradient descent performs minimization of a function J(θ) through iterative updates of the current value of θ,
starting from an initial value θ(0), in the opposite direction to the one specified by the current value of the gradient
∇J |θ(k)

θ(k+1) = θ(k) − η∇J |θ(k)

that is, for each parameter θi

θ
(k+1)
i = θ

(k)
i − η

∂J(θ)

∂θi

∣∣∣∣
θ(k)

η is a tunable parameter, which controls the amount of update performed at each step

Batch gradient descent

If minimization of the Empirical Risk is performed, gradient descent takes the form

θ(k+1) = θ(k) − η

|T |
∑

(x,t)∈T

∇L(hθ(x), t)(k)

12

that is,

θ
(k+1)
i = θ

(k)
i − η

|T |
∑

(x,t)∈T

∂

∂θi
L(hθ(x), t)

∣∣∣∣∣
θ(k)

For example, in the case of linear regression

h(x) =
d∑

j=1

θjxj + θ0

where the loss function is usually the squared distance

L(h(x), t) = (h(x)− t)2 =

 d∑
j=1

θjxj + θ0 − t

2

the gradient is

∂

∂θi
L(hθ(x), t) =

 d∑
j=1

θjxj + θ0 − t

xi i = 1, . . . , d

∂

∂θ0
L(hθ(x), t) =

 d∑
j=1

θjxj + θ0 − t


which results in the following updates

θ
(k+1)
i = θ

(k)
i − η

|T |
∑

(x,t)∈T

 d∑
j=1

θ
(k)
j xj + θ

(k)
0 − t

xi i = 1, . . . , d

θ
(k+1)
0 = θ

(k)
0 − η

|T |
∑

(x,t)∈T

 d∑
j=1

θ
(k)
j xj + θ

(k)
0 − t


This is called batch gradient descent: observe that, at each step, all items in the training set must be considered.
As we need to calculate the gradients for the whole dataset to perform just one update, batch gradient descent

can be very slow and is intractable for datasets that do not fit in memory. Batch gradient descent also does not
allow us to update our model online, i.e. with new examples on-the-fly.

In code, batch gradient descent looks something like this:

for i in range(nb_epochs):
params_grad = evaluate_gradient(loss_function , data, params)
params = params - learning_rate * params_grad

For a pre-defined number of epochs, the gradient vector params_grad of the loss function for the whole
dataset w.r.t. the parameter vector params is computed. State-of-the-art deep learning libraries provide automatic
differentiation that efficiently computes the gradient w.r.t. some parameters.

Next, parameters are updated in the direction of the gradients with the learning rate determining how big of
an update we perform.

Batch gradient descent is guaranteed to converge to the global minimum for convex error surfaces and to a local
minimum for non-convex surfaces.

13

(a) Cost vs number of iterations (b) Trajectory in feature space

Figure 1: Batch gradient descent behavior

Stochastic gradient descent

Batch gradient descent recomputes gradients for all items in the dataset before each parameter update, hence it
requires long and expensive computations, especially for large datasets (as is often the case, especially in Deep
Learning). SGD does away with this redundancy by performing one update at a time. It is therefore usually much
faster and can also be used to learn online.

Stochastic gradient descent deals with this issue by performing the parameter update at each step, on the basis
of the evaluation of the gradient at a single item (xj , tj) of the training set.

θ(k+1) = θ(k) − η∇L(hθ(xj), tj)(k)

or

θ
(k+1)
i = θ

(k)
i − η

∂

∂θi
L(hθ(xj), tj)

∣∣∣∣
θ(k)

SGD performs frequent updates with a high variance that cause the objective function to fluctuate heavily as
in Figure 2.

Batch gradient descent steadily converges to a local minimum, while SGD’ trajectory is more erratical, with
local cost increases. This on one side makes it possible to jump to new and potentially better local minima; on the
other side, it makes convergence to the exact minimummore difficult when suchminimum has been almost reached
and small updates should be made. However, it has been shown that if the learning rate is slowly decreased, the
same convergence behaviour of batch gradient descent is obtained, almost certainly converging to a local minimum.

The code fragment below simply introduces a loop over the training examples and evaluates the gradient w.r.t.
each example. It is usually suggested to shuffle the training data at every epoch, as done here.

for i in range(nb_epochs):
np.random.shuffle(data)
for example in data:

params_grad = evaluate_gradient(loss_function , example, params)
params = params - learning_rate * params_grad

In the case of linear regression this results into

θ
(k+1)
i = θ

(k)
i − η

(
d∑

r=1

θ(k)r xjr + θ
(k)
0 − t

)
xji i = 1, . . . , d

θ
(k+1)
0 = θ

(k)
0 − η

(
d∑

r=1

θ(k)r xjr + θ
(k)
0 − t

)

14

(a) Cost vs number of iterations (b) Trajectory in feature space

Figure 2: Stochastic gradient descent behavior

Mini-batch gradient descent

An intermediate case is the one when a subset Br of sizem of the items in the training is considered at each step
for gradient evaluation

θ(k+1) = θ(k) − η

m

∑
(x,t)∈Br

∇L(hθ(x), t)|θ(k)

that is,

θ
(k+1)
i = θ

(k)
i − η

m

∑
(x,t)∈Br

∂

∂θi
L(hθ(x), t)|θ(k)

This is calledmini-batch gradient descent.
This approach

• reduces the variance of the parameter updates, which can lead to more stable convergence wrt SGD

• limits the amount of items considered for gradient evaluation before a parameter update is performed.

Observe that the size m of mini-batches is itself a tunable parameter. Common values range between 50 and
256, but can vary for different applications.

Mini-batch gradient descent is typically the algorithm of choice when training a neural network and the term
SGD usually is employed also when mini-batches are used.

In code, instead of iterating over examples, we now iterate over mini-batches of sizem:

for i in range(nb_epochs):
np.random.shuffle(data)
for batch in get_batches(data, batch_size=m):

params_grad = evaluate_gradient(loss_function , batch, params)
params = params - learning_rate * params_grad

In the case of linear regression it is clearly

θ
(k+1)
i = θ

(k)
i − η

m

∑
(x,t)∈Br

 d∑
j=1

θ
(k)
j xj + θ

(k)
0 − t

xi i = 1, . . . , d

θ
(k+1)
0 = θ

(k)
0 − η

m

∑
(x,t)∈Br

 d∑
j=1

θ
(k)
j xj + θ

(k)
0 − t



15

(a) Cost vs number of iterations (b) Trajectory in feature space

Figure 3: Mini-batch gradient descent behavior

Open issues

The approaches considered up to now differ by the number of items considered for gradient evaluation at each step,
before a parameter update is performed. However, they not guarantee good convergence, due to a few challenges
that need to be addressed:

• Choosing a proper value for η can be difficult. A too small learning rate may lead to very slow convergence,
while a too large learning rate can affect convergence and cause the loss function to fluctuate around the
minimum, or even to diverge.

• In order to deal with this issue, we could apply some mechanism to adjust the learning rate during training
by reducing it either according to a pre-defined schedule or when the loss function decrease between epochs
falls below a threshold. Both schedules and thresholds, however, should be defined in advance and are thus
unable to adapt to the characteristics of a dataset.

• The same learning rate applies to updating all parameter.

• In many cases, such as for example in neural networks (and Deep learning) is highly non-convex, with many
local minima and saddle points. The approaches considered above could find it hard to not get trapped in
these scenarios, in particular in the case of saddle points, which are usually surrounded by a plateau, making
it hard for simple gradient descent methods to escape, as the gradient is almost zero in all dimensions.

Momentum gradient descent

This approach is based on a physical interpretation of the optimization process, interpreted as the movement of a
body of mass m = 1, under the effect of a weight force F , on the surface of the cost function J(θ). The weight
force is assumed to be F (θ) = −∇U , where U(θ) = ηJ(θ) is the potential energy of the body at point θ (we
assume the constant g of the weight force F = −mgh is then equal to η). In this model, the negative −η∇J of
the gradient is then equal to the force (and acceleration, sincem = 1) vector applied on the body at point θ.

In gradient descent, the movement of the body at a point θ is determined by the acceleration∇J at that point,
since θ(k+1) = θ(k) − η∇J |θ(k) .

In momentum gradient descent, we refer to a model which is more consistent with the situation of a body
moving on a surface under the effect of the weight force. In this model, the movement of the body at point θ is
determined by its speed v(θ) at that point, that is, θ(k+1) = θ(k)+ v(k+1), where the difference of velocity derives
from the acceleration at point θ, that is v(k+1) = v(k) − η∇J |θ(k) .

This results in the following operations at each step

16

θ(k)

θ̃(k+1)

θ(k+1)

γv(k)
−η∇J |θ(k)

v(k+1)

Figure 4: Momentum gradient descent

v(k+1)= v(k) − η
∑

(x,t)∈Br

∇L(hθ(x), t) |θ(k)= v(k−1) − η
∑

(x,t)∈Br

∇L(hθ(x), t) |θ(k−1) −η
∑

(x,t)∈Br

∇L(hθ(x), t) |θ(k)= · · ·

= v(0) − η
k∑

i=0

∑
(x,t)∈Br

∇L(hθ(x), t) |θ(i)

θ(k+1) = θ(k) + v(k+1) = θ(k)v(0) − η
k∑

i=0

∑
(x,t)∈Br

∇L(hθ(x), t) |θ(i)

that corresponds to define the update in terms of the sum of past gradients (integral of past accelerations in
physics. The momentum vi increases for dimensions whose gradients are consistently directed in the same direc-
tions, while decreasing for dimensions whose gradients change directions at each step.

Referring to that physical model makes the algorithm tend at each step to keep, at least in part, the direction
of the preceding step, since v(k+1) = v(k) − η∇J |θ(k) , thus rewarding directions which are returned consistently
in the sequence of steps. This can be clearly seen in Figure 5, where the momentum leads to a limitation to the size
of oscillations in the direction orthogonal to the one towards the minimum. This does not happen in the case of
simple gradient descent, where v(k+1) = v(k) − η∇J |θ(k) .

(a) GD without momentum (b) Momentum GD

Figure 5: Momentum effect on trajectory

In momentum gradient descent it is usually introduced a second parameter γ, which affects the fraction of v(k)

that is considered for the computation of v(k+1). In terms of physical model, this corresponds to introducing an
attrition coefficient. Applying the approach to the case of mini-batches, we get:

17

v(k+1)= γv(k) − η
∑

(x,t)∈Br

∇L(hθ(x), t)|θ(k)

θ(k+1) = θ(k) + v(k+1)

(a) Cost vs number of iterations (b) Trajectory in feature space

Figure 6: Momentum gradient descent behavior

In the case of linear regression, this results into:

v
(k+1)
i =


γv

(k)
i − η

∑
(x,t)∈Br

 d∑
j=1

θ
(k)
j xj + θ

(k)
0 − t

xi i = 1, . . . , d

γv
(k)
i − η

∑
(x,t)∈Br

 d∑
j=1

θ
(k)
j xj + θ

(k)
0 − t

 i = 0

θ
(k+1)
i = θ

(k)
i + v

(k+1)
i

Nesterov accelerated gradient descent

In momentum gradient descent, adding γv(k) to θ(k) provides an approximation

θ̃(k+1) ∆
= θ(k) + γv(k)

of the real value θ(k+1)

θ̃(k+1) = θ(k) + γv(k)

v(k+1) = γv(k) − η∇J |θ(k)
θ(k+1) = θ(k) + v(k+1)

Nesterov accelerated gradient follows the same approach of momentum GD, with the only difference that,
at each step, the gradient is not evaluated at the current point θ(k). Instead, gradient evaluation is done with an

18

θ(k)

θ
(k+1)
NGD

θ̃(k+1)

θ
(k+1)
MGD

v
(k+1)
NGD

γv(k)

−η∇J |θ̃(k+1)

−η∇J |θ(k)

v
(k+1)
MGD

Figure 7: Nesterov vs momentum GD steps

approximated look-ahead, at point θ̃(k+1), which is expected to be nearer to point at the next step θ̃(k+1). In such
a way, changes of v (and of θ) are anticipated with respect to what happens in momentum gradient descent.

θ̃(k+1) = θ(k) + γv(k)

v(k+1) = γv(k) − η∇J |θ(k+1)

θ(k+1) = θ(k) + v(k+1)

• The same approach of momentum gradient descent is applied, with the gradient estimation performed not
at the current point θ(k), but approximately at the next point θ(k+1)

• The approximation derives by considering θ̃(k) = θ(k) + γv(k) instead of θ(k+1)

• The updates of v and θ are considered in advance with respect to momentum GD

(a) Cost vs number of iterations (b) Trajectory in feature space

Figure 8: Nesterov accelerated gradient descent behavior

Dynamically updating the learning rate

The learning rate η is a crucial parameter in gradient descent

• Too large: overshoots local minimum, loss increases

19

Figure 9: Comparison of MGD and NGD trajectories

• Too small: makes very slow progress, can get stuck

A good learning rate allows making steady progress toward local minimum. However, a learning rate whose value
is the same along all process would result in the possibility of too short steps at the beginning (if η is small) or too
long steps as the local minimum neighborhood is reached.

These contrasting requirements can be satisfied by gradually decreasing of the learning rate according to a
learning rate schedule, that is updating η at each step, or epoch, by applying a predefined rule.

• Step decay drops the learning rate by a constant factor c everyK steps (or epochs). That is, everyK epochs
decay η =

η

c

• Exponential decay: at each iteration, η(k) = η(0)e−αk

•
1

t
decay: η(k) =

η(0)

1 + αk

The main problem with learning rate schedules is that their hyperparameters must be defined in advance and
they depend heavily on the type of model and problem. Another problem is that the same learning rate is applied
to all parameter updates.

It seems preferrable, instead, to update each parameter θi independently from the other ones, with a learning
rate ηi which is dynamically updated according to the history of values of the derivative of the cost function wrt θi.

This makes it possible, for parameters with large derivatives in the preceding steps to be associated to smaller
learning rates, in such a way that the following updates are limited. On the contrary, parameters which were almost
constant in the last steps will be assigned higher learning rates, to make updates more sensitive to small values of
the derivative.

Adagrad

In gradient descent the update of parameter θj is the following

θ
(k+1)
j = θ

(k)
j − η

∂J(θ)

∂θj

∣∣∣
θ(k)

where the learning rate η is equal for all parameters.
We now rewrite this update in terms of the parameter update∆θj,k, as a sequence of three steps:

20

gj,k =
∂J(θ)

∂θj

∣∣∣
θ(k)

∆j,k = −ηgj,k

θ
(k+1)
j = θ

(k)
j +∆j,k

Adagrad modifies this behavior for what regards the computation of∆j,k by adapting the learning rate to the
parameters, performing larger updates for infrequent and smaller updates for frequent parameters.

In Adagrad, each parameter update refers to a learning rate η(k)j , that is

∆j,k = −η
(k)
j gj,k

where η(k)j is dependent on the parameter itself and a common predefined learning rate η

η
(k)
j =

η√
Gj,k + ε

and

Gj,k =
k∑

i=0

g2j,i

is the sum of the squared derivatives of the loss function wrt to θi computed for all previous iterations. ε is a small
smoothing constant, introduced to avoid null denominators.

This results into

∆j,k = − η√
Gj,k + ε

gj,k

The update of θj at the (k + 1)-th iteration is then defined as

gj,k =
∂J(θ)

∂θj

∣∣∣
θ(k)

Gj,k = Gj,k−1 + g2j,k

∆j,k = − η√
Gj,k + ε

gj,k

θ
(k+1)
j = θ

(k)
j +∆j,k

whereGj,k = 0 if k < 0.
As it can be seen, learning rates decrease at each step, with the ones associated to parameters which had large

gradients in the past decreasing more. The learning rates of parameters which had large gradients in the past (hence
were characterised by large variations in value) will be decreased faster, and the values of such parameters will be less
modified. The opposite happens for parameters whose values remained almost constant in the past: their learning
rates will be larger, “pushing” them more quickgly towards a stable value

However, in both cases, since the denominator of ηj however increases at each iterations, the learning rate
monotonically decreases towards values small enough to forbid real updates of the solution.

21

One of Adagrad’s main benefits is that it eliminates the need to manually tune the learning rate. Most imple-
mentations use default values η ' 0.01 and ε ' 10−8, but tuning of such values can be performed to improve the
method performances.

Adagrad’s main weakness is its accumulation of the squared gradients in the denominator: since every added
term is positive, the accumulated sum keeps growing during training. This in turn, as observed above, causes the
learning rate to shrink and eventually become infinitesimally small, at which point the algorithm is no longer able
to acquire additional knowledge. The following algorithms aim to resolve this flaw.

RMSprop

RMSprop is an extension of Adagrad that seeks to reduce its aggressive, monotonically decreasing learning rate.
Instead of accumulating all past squared gradients, RMSprop restricts the window of accumulated past gradients
to some fixed size w.

In RMSprop, we replace the sum over past squared gradients Gj,k with its decaying version G̃j,k . That is, the
sum of past squared derivatives is still considered, but with a decreasing relevance of long past ones. This is obtained
through a decay, obtained by applying a coefficient 0 < γ < 1

G̃j,k = γG̃j,k−1 + (1− γ)g2j,k

= γ(γG̃j,k−2 + (1− γ)g2j,k−1) + (1− γ)g2j,k = γ2G̃j,k−2 + (1− γ)(γg2j,k−1 + g2j,k)

= · · ·

= (1− γ)
k∑

i=0

γk−ig2j,i

since we assume G̃j,k = 0 if k < 0.
η
(k)
j is now defined as

η
(k)
j = − η√

G̃j,k + ε

It is recursively defined by referring to a decaying sum of all past squared derivatives. The sum G̃j,k at step k
depends (as a fraction γ, similarly to Momentum GD) only on the previous sum and the current gradient.

This results into the following step, at the k + 1-th iteration

gj,k =
∂J(θ)

∂θj

∣∣∣
θ(k)

G̃j,k = γG̃j,k−1 + (1− γ)g2j,k

∆j,k = − η√
G̃j,k + ε

gj,k

θ
(k+1)
j = θ

(k)
j +∆j,k

RMSprop is characterized by the two parameters η, γ, ε: common values for such parameters are γ ' 0.9,
η ' 0.1 and ε ' 10−8.

22

Adadelta

Adadelta is an extension of RMSprop in which no value η has to be arbitrarily defined: it is instead substituted by
the decayed sum of previous squared updates, with the same decay γ applied for derivatives

Gj,k = γGj,k−1 + (1− γ)∆2
j,k = (1− γ)

k∑
i=0

γk−i∆2
j,i

assuming, again,Gj,k = 0 if k < 0.
The update rule is then defined as

gj,k =
∂J(θ)

∂θj

∣∣∣
θ(k)

G̃j,k = γG̃j,k−1 + (1− γ)g2j,k

∆j,k = −

√
Gj,k−1 + ε√
G̃j,k + ε

gj,k

Gj,k = γGj,k−1 + (1− γ)∆2
j,k

θ
(k+1)
j = θ

(k)
j +∆j,k

If we consider the Root Mean Square, smoothed by ϵ and decayed by γ, of a sequence ai, i = 0, . . . , n

RMS(a0, . . . , an) =
√

γna0 + γn−1a1 + γn−2a2 + · · ·+ an + ε

then, an interpretation of the update rule is that the current gradient is weighted by the ratio of the RMS of the
past k − 1 updates and the RMS of the past k − 1 derivatives (plus the current one), that we may assume is a
measure of the expected effect of a unit of parameter increase on the update of the loss function.

Common default values of the method parameters are γ ' 0.95, and ε ' 10−8. They show empirically that
Adam works well in practice and compares favorably to other adaptive learning-method algorithms.

Adam

Adam (Adaptive Moment Estimation) is another method that computes adaptive learning rates for each parame-
ter. In addition to storing the exponentially decaying sum G̃j,k of past squared derivatives g2j,k like Adadelta and
RMSprop (to be used in the same way as in such methods), Adam also keeps an exponentially decaying sum H̃j,k

of past (non squared) derivatives gj,k, as a substitute to the derivative gj,k in the iteration step.

G̃j,k = γG̃j,k−1 + (1− γ)g2j,k

H̃j,k = βH̃j,k−1 + (1− β)gj,k

Since it is assumed that H̃j,k = G̃j,k = 0 if k < 0 and γ, β values are usually both close to 1, the methods
presents a tendency (bias) to return small values of H̃j,k and G̃j,k, especially during the initial time steps.

This issue is managed by applying a bias correction:

23

Ĝj,k =
G̃j,k

1− γk

Ĥj,k =
H̃j,k

1− βk

Parameters are updated just as we have seen in Adadelta and RMSprop, which yields the Adam update rule:

gj,k =
∂J(θ)

∂θj

∣∣∣
θ(k)

G̃j,k = γG̃j,k−1 + (1− γ)g2j,k

H̃j,k = βH̃j,k−1 + (1− β)gj,k

Ĝj,k =
G̃j,k

1− γk

Ĥj,k =
H̃j,k

1− βk

∆j,k = − η√
Ĝj,k + ε

Ĥj,k

θ
(k+1)
j = θ

(k)
j +∆j,k

Common default values of the method parameters are η ' 0.001, γ ' 0.9, β ' 0.999, and ε ' 10−8. They
show empirically that Adam works well in practice and compares favorably to other adaptive learning-method
algorithms.

Second order methods

Maxima (or minima) of J(θ) can be found by searching points where the gradient (all partial derivatives) is zero.
Any iterative method to compute zeros of a function (such as Newton-Raphson) can then be applied on the

gradient∇J(θ)
The basic idea of Newton’s method is to use both the first-order derivative (gradient) and second-order deriva-

tive (Hessian matrix) to approximate the objective function with a quadratic function, and then solve the minimum
optimization of the quadratic function. This process is repeated until the updated variable converges.

The one-dimensional Newton’s iteration formula is shown as

θ
(k+1)
j = θ

(k)
j − J ′(θ)

J ′′(θ)

∣∣∣
θ(k)

More general, the high-dimensional Newton’s iteration formula is

θ(k+1) = θ(k) −
(
H(J)−1∇J

) ∣∣∣
θ(k)

whereH(J) is the Hessian matrix of J(θ). More precisely, if the learning rate (step size factor) is introduced, the
iteration formula is shown as

∆(k) = −
(
H(J)−1∇J

) ∣∣∣
θ(k)

θ(k+1) = θ(k) + ηt∆
(k),

24

where∆(k) is the Newton’s direction, η is the step size. This method can be called damping Newton’s method.
Geometrically speaking, Newton’s method operates by fitting the local surface of the current position with a

quadratic surface, while gradient descent fits the current local surface with a plane.
Newton’s method is an iterative algorithm that requires the computation of the inverse Hessian matrix of the

objective function at each step, which makes the storage and computation very expensive.
To overcome the expensive storage and computation, approximate algorithms were considered such as quasi-

Newtonmethods. The essential idea of all quasi-Newtonmethods is to use a positive definite matrix to approximate
the inverse of the Hessian matrix, thus simplifying the complexity of the operation.

G
D

M
G
D

A
dagrad

R
M
Sprop

A
dadelta

A
dam

g
j,k

=
∂
J
(θ)

∂
θ
j ∣∣∣θ

(k
)

g
j,k

=
∂
J
(θ)

∂
θ
j ∣∣∣θ

(k
)

g
j,k

=
∂
J
(θ)

∂
θ
j ∣∣∣θ

(k
)

g
j,k

=
∂
J
(θ)

∂
θ
j ∣∣∣θ

(k
)

g
j,k

=
∂
J
(θ)

∂
θ
j ∣∣∣θ

(k
)

g
j,k

=
∂
J
(θ)

∂
θ
j ∣∣∣θ

(k
)

⇓
v
j,k

+
1
=

γ
v
j,k

−
η
g
j,k

⇓
⇓

⇓
⇓

⇓
⇓

G
j,k

=

k
∑i=

0

g
2j,i

⇓
⇓

⇓

⇓
⇓

⇓
G̃

j,k
=

γ
G̃

j,k−
1
+
(1

−
γ
)g

2j,k

=
(1

−
γ
)

k
∑i=

0

γ
k−

ig
2j,i

G̃
j,k

=
γ
G̃

j,k−
1
+
(1

−
γ
)g

2j,k

=
(1

−
γ
)

k
∑i=

0

γ
k−

ig
2j,i

G̃
j,k

=
γ
G̃

j,k−
1
+
(1

−
γ
)g

2j,k

=
(1

−
γ
)

k
∑i=

0

γ
k−

ig
2j,i

⇓
⇓

⇓
⇓

⇓
Ĝ

j,k
=

g̃
j,k

1
−
γ
k

⇓
⇓

⇓
⇓

⇓
H̃

j,k
=

β
H̃

j,k−
1
+
(1

−
β
)g

j,k

=
(1

−
β
)

k
∑i=

0

β
k−

ig
j,i

⇓
⇓

⇓
⇓

⇓
Ĥ

j,k
=

H̃
j,k

1
−
β
k

∆
j,k

=
−
η
g
j,k

∆
j,k

=
v
j,k

+
1

∆
j,k

=
−

η
√

G
j
,k
+
ε g

j,k
∆

j,k
=

−
η

√
G̃

j
,k
+
ε g

j,k
∆

j,k
=

−
√

G
j
,k−

1
+
ε

√
G̃

j
,k
+
ε
g
j,k

∆
j,k

=
−

η
√

Ĝ
j
,k
+
ε Ĥ

j,k

⇓
⇓

⇓
⇓

G
j,k

=
γ
G

j,k−
1
+
(1

−
γ
)∆

2j,k

=
(1

−
γ
)

k
∑i=

0

γ
k−

i∆
2j,i

⇓

θ
k
+
1

j
=

θ
kj
+
∆

j,k
θ
k
+
1

j
=

θ
kj
+
∆

j,k
θ
k
+
1

j
=

θ
kj
+
∆

j,k
θ
k
+
1

j
=

θ
kj
+
∆

j,k
θ
k
+
1

j
=

θ
kj
+
∆

j,k
θ
k
+
1

j
=

θ
kj
+
∆

j,k

Table
1:Table

ofG
D
variants

