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1 The case of untreatable p(z|x) and variational inference

1.1 Situation recap

Let us reassume the situation for what concerns inference in a variable latent model.
We wish to find the value 8* which maximizes the likelihood p(%; 8) (or p(X; ) in the general case) of observed
data, that is
0" = argmax log p(x; 6)
0

However, this may be unfeasible, and we may only refer to the joint distribution p(i, Z; 9) while ignoring the value
Z of the latent variable corresponding to X. That is, we cannot maximize instead the joint likelihood

0" = argmax log p(x,z; 0)
]
even marginalizing the latent variable

0" = argmax / log p(x, z; 0)dz
] zZ

is unfeasible due to the multidimensional integral introduced.

Our approach has been then to consider, instead of z, the expectation of z wrt the distribution p(z; ) of z as
defined for a given (current) value of the parameter 8. That s,

“=argmax E [logp(x,z;0)] = argmax / p(z; é) logp(x,z;0)dz
0 2~p(20) I] =z

or even betrer, since by hypothcsis x and z are not independent, the expectation of p(x,z; @) wrt to z ~ p(z[x; 0)

0" =argmax E [logp(x, 7 0)] = argmax / p(z|%; é) log p(x, z; 0)dz
0 2p(2[5:6) 2] =z

In the simpler cases, p(z|x; @) can be computed and also  E [log p(, z; @) ] can be optimized, either analytically
wmp(al5i0)
or by means of gradient methods: this is the case of the base expectation maximization algorithm. If computing
p(z|x; @) is unfeasible, a distribution g(z|%; ¢) must be derived which approximates sufficiently well p(z|x; ).
In the case that the maximization of E [logp(x,z;0)] (or of E [logp(x,z;0)]) cannot be performed
wmalli)

2rop(2]5;6)

ana ytically, a gradient based iterative method can be applied for a certain number ofsteps to return an approximate
maximum: this is called Generalized EM.



1.2 Variational inference

The main idea of variational methods is to turn inference into an optimization problem.

Suppose we are given an intractable probability distribution p(z) that we need then to approximate in some
way, that is derive a method which makes it possible to compute approximate values of p(z) for any z. Such an
approximation of p could be pursued by applying different approaches:

« numerically, by sampling methods
« analytically, by introducing approximate distributions (the case considered here)

Variational techniques apply the second approach, trying to solve an optimization problem over a class of
tractable distributions F in order to find a ¢ € F that is most similar (according to some measure, such as for
example KL divergence) to p. We will then refer to g (rather than p) in order to get an approximate solution.

1.3 Mean field theory

There are two main hypotheses that, when applied for choosing the form of distributions in F, make the probiem
simpler.

1. assuming that F is a parametric family of distributions with the same functional form, that is ¢(z; w). Here,
the restriction turns the probicm into a simpicr parameter optimization one. It providcs a particular frame-
work in dependance of the specified parametric family: for example, if ¢(z; w) is assumed to be multivariate

Gaussian, we are dealing with the Gaussian variational inference.

2. assuming that g(z) factorizes on disjoint subsets of components of the latent variable, that is q(z) = H:il qi(z;)
for some partition z1, . .., zy, of z. This is known as mean field variational inference since it is rooted in a
framework of statistical physics called mean field theory. Observe that maximizing the ELBO is still a vari-
ational optimization task here, but adding the first hypothesis above results into a parametric framework

. —_— m . .. .
where g(zw) = [71; ¢;(zj; wj).

The variable z is then governcd by its own variational factors, the distributions ¢; (zl) All the distributions are
independent of each other and we have to optimize each of them. The final optimal distribution which approximates
the posterior p(z) is the product of all such independent distributions.

2 Variational EM

In the case we consider here, we are dcaling with a latent variable model p(x, z; @) and we are interested to maximize
the log-likelihood log p(x; @) wrt 6. In this framework, we introduced an iterative algorithm where each step has

thC foilowing structures:

1. Given a current value 0%) of 0, we compute a good approximation of p(z[x; 0% consider the ELBO

L(g,%.6") = B|logp(x.:6") | = E[logq(»)] < logp(x: 6")
a(z)

q()

as a functional of ¢ and find a distribution ¢'*) which provides the best possible ELBO wrt the log-likelihood
log p(x; 9(k>), that is cthe one such that ﬁ(q<k) ,X, 0(]“)) is maximum, or equivalently IC(q(k> ,X, 9<k)) is mini-
mum. As alrcady shown, this is cquivaicnt to finding the best approximation to the conditional distribution

p(z]%;6™)).

2. Maximize the expectation

with respect to 6.



The distribution of interest here is then conditional distribution of the latent variable given the observations
p(z[%; @) which has to be approximated in the first step and which is strictly related to the likelihood of the obser-

;0
vations since p(x; ) = M
p(z|x; 6) .

According to the variational approach sketched above, the basic idea here is dchning a family F of tractable
discributions over the latent variable z. Each g(z) € F is a candidate approximation to the posterior. Our goal
is to ﬁndAthC best candidate which maximizes the ELBO L(q, X, 9), that is the distribution ¢*(z) € F such that
L(q",%,0) is as close as possible to the log-likelihood of X given 6.

In the description of the EM algorithm provided above, the k-th E-step returns the distribution q(k’) (z) maxi-
mizing £(q,%,0")), and thus minimizing D, (q(2)]p(z[%; 9(1"”))), which would be obtained by setting

This is not possible, however, in the case that the posterior distribution p(z]x; 0) is untreatable. In this case,
we have to maximize £(gq(z), %, ) by varying ¢(z) only within some predefined family F of tractable functions
and, as a consequence, obtaining ¢ b eF

That is, the E-step is defined as

¢ (2) = argmax £(q, %, 0")
qeEF

Since, in most cases, p(z|%; 8)) is not included in the family F of distributions, then

Dicr, (47 @)l Ip(el;0))) > 0

and
logp(x;0")) > £(¢™,x,0%)

L™ 5,00 logp(x;6)

Figure 1: After E-step

£, 601)
£(g™®),%,0%)) log p(x; 0)

Figure 2: After M-step
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Figure 3: New log-likelihood decomposition
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Figure 4: After new E-step

For what regards the M-step of the algorithm, we maximize the lower bound

Q(q",x,0) = E [p(x,0)]

aF) ()

with respect to 6.

By the same arguments seen in the case of EM, we have the situation reported in figures 1-4

2.1 Mean field theory and variational EM

Among all distributions ¢(z) having the mean field form, we now seck that distribution for which the ELBO
L(q,x, 0) is largest. This is done by optimizing with respect to each of the factors in turn. To achieve this, let us

dCﬁl’lC

A
Z_j = (Zl,. ey 2152541y - 7Zm)

and

-i(2-) 2 H q;(z5)
JFi



let us also denote as Z the domain of z, as Z; the domain of z; and as Z_; the domain of z_;.
Itis possiblc to prove that, for any factor zj:

i <. 7 9(1\?))
< e(k) —Ell Tp()‘7/7
L(q,%,0") qm[ )

- / a;(z,) ( / (2 ;) logp(x, Z;e““))dz,) dz; — / qj(2;)log q;(z))dz; + f;
z; z z,
where f; is a constant with respect to ¢;(z;)

The term

/Z q-;(z-;) logp(x, 20" dz_,

is the expectation of the log likelihood of the complete dataset log p(%, z; 0") wre all factors zs except zj, cach
distributed according to the current distribution gs. That is,

/Z q'j(l’,i) logp(i, Z3 0<k))d/,] = I |:1ng(§7 z; e(ls))]
~J

q_ (z_.)
]

Clearly, being all factors except z; marginalized out in the integral, the term is a function onj.
Let us now define the distribution p(x, z; %)) as
E, () [logp(x,20")
e q_]u_])[ ogp(%,26 7)) |

B(x,2;;00)) 2

fZ eEq_j(L_j)[logp(i,z;e(k))]d

7.
f J

As a consequence, we have

/Z 4-5(z.;) logp(x, 2 0%))dz.; = log (s, 23;0M) + C

J

E, |1 %,2;0(F)
where C' = log fzv e q‘f(“f)[ ogp (e )]dz]-
J

We wish to maximize the ELBO £(g,%,0%)) = L(q1, . .., gm, %, 0%)) wre q;, hence we consider it as a func-
tional of g;, obtaining

ﬁ(qwx,@(k)):/ qj (7)) (IOgﬁ(?ﬂj;H(’{))ﬂLC) dlj—/ qj(z;)log qj(z;)dz; + f;

J Z;

= —Dicr (a()lp(x,23:6))) + f; +C

L(q,x, 9(]“)) is then maximized, with respect to g, when Dk, (qj (25)]1P(%, 25 0(k>)) is minimal and in par-
ticular when
Dxr (Qj(zj)\\ﬁ(i, Zj;W‘)) =0

that is

< ,-0(k
eEq_J(L_])[IOgP(M/-ﬁ( ))]

. — N‘T’ 79“‘) —
q;j (z) = p(x Zj ) fZ @E"-J(”—j[1°gp(§”";9<k))]d

Z
i J



Algorithm 1: CAVI

Input: A model p(x, z), an observation x
Output: A variational density q(z) = [[}2; g;(z;)

Initialize: Variational factors q; (Zj)
while the ELBO has not converged do
forje{l,...,m}do

Set q;j(z) o exp{]E{L‘/(lj) []ogp(zj |2, % é) } }
end
Compute ELBO(q) = E,, [logp(i, z; é) } —IE,,[logg(z)]
end

return ¢(z)

Observe now that since
logp(x,z; 0)) = log p(zj]z_;,5;6") + log p(z_;,x;0"))

it results
NG 1 wpk . —pk
eEq_Ju_J)[lng(\,m@( N] _ eEq_j<z_J>[logp(zglt_jﬂ«ﬁ( >)]eEq_].(z_ﬂ[l%p(z_j,\ﬁ( >)]

and

1, =gk
eE‘I*j(Z*j) [logp(zj \z_].,x,@ )]

E, ( )|logp(zjlz_.,50(F)
ij e i [ J ]dzj

P(x, ;00 =

the condition
10)°9% (Qj(lj)\lﬁ(i Zj;H“')) =0

is verified also when

(z) eEq-.f("-.f)[10gp(zj|z‘j’i;9(m)] (2)
q;(z) =
’ [, [ogp(asle; 0] o

J

J

This observations lead to the definition of the Coordinate ascent variational inference (CAVI), one of the most
commonly used algorithms for variational inference in mean field models, which iteratively optimizes each factor
q; while others are fixed.

The algorithm is applied at each E-step, and iterates through factors, at each step updating the current factor
qj (Zj) using Equation (2). CAVI then goes uphill on the ELBO, towards a local optimum wrt to q(z) of the ELRO
for the given observation x with parameter value ) assuming the set of distributions which factorize as q(z) =
Hﬁl qj(Zj) is considered.

Variational Autoencoder

As noticed, computing a different qi(zi) = q(zi; (,Z')Z) for each item ¥; in the dataset can be costly, since it requires

computing a different parameter value for each item in a usually large dataset. Amortization consider instead a

single conditional distribution q(z[%; @), with a single parameter value to be inferred: we explicitly apply this

approach here.



Let us first observe that since

osp(5:6) = [ atesi)log 250

which results into
logp(x;8) — Dicr (q(zlx; @)[p(2l;0)) = E Tlogp(x| 8)] — DL (a(z]x; d)[|p(2 0))

Observe that we wish to maximize the log likelihood log p(x; ) while approximating p(z|%; 0) with q(z|x; @) as
good as possible, that is minimizing their divergence, hence maximizing —D g1, (q(z|x; @)||p(z]x; €)). In summary,
we wish to find 8 and ¢* which maximize the left hand side of the equation above.

Equivalently, we may then aim to maximize the rigbt hand side

E [logp(x|z0)] — Dgr (q(z[%; )| |p(z; 6))

2~q(2]%5 )

with respect to both € and ¢.
In order to compute the first term, we may consider the approximation of the expectation provided by the
average of m values z1 . . ., Zy, sampled from ¢(z[%; ¢). That is,

1 & . .
M]Ew[ ogp(x|z; 0) | E Z ogp(x]zi; 0) where  z; ~ q(z]x5;9),i=1,....,m

In particular, we may consider the case m = 1, when only one value z is sarnplcd, thus obtaining a rougb approxi-
mation of the original expectation

E [logp(x

2~q(2]%5 )

z;0) ] =~ logp(x|z; 0) where 7 ~ q(z[x; @)
which resules in the following function to be maximized

logp(x|2;0) — Dicr, (q(z|%; @)||p(z; 6))

where z is assumed sampled from ¢(z|x; ¢).

The first term requires that, given an observed item X, its probability is high even when conditioned by the
latent value z that the model associates to it (at least probabilistically). That is, we wish to have values ¢*, 6" that
make it likely to associate (through (ﬁ*) a latent variable value 7 to X, that makes the conditional probability (also
through 6%) of X as high as possible.

The second term requires that distributions g(z[%; ¢) are not very different each other for different observed
values ¥ and in particular that all of them are as similar as possible to a prior distribution p(z; 0), independent
from X, whose parameters are often considered as constant, that is of type p(z). This provides a regularizing effect,
since it combats the tendency of the model, during inference, to excessively adapt to observed data.

The whole situation at inference time can be seen as an encoding-decoding process, where:



Figure 5: Categorical DLVM with z € {1,...,5}

L. given the observation X, a latent variable value Z is produced by sampling from ¢(z|x; ¢): we call this encoding

X asz

2. given the latent value Z, a value X in the observations space is produced by sampling from p(x|z; €) : we call
this decoding z as x

We wish that ¢, 6 make the probability that X is equal to X as high as possible, while also having simple, not
too specialized, distributions ¢(z[x; ¢). Observed that this second requirement, by resulting in p(z) similar to all
q(z|%; @*), makes it possiblc to safcly producc new values in observations space which are not statistically distin-
guishable from the ones available and used at inference time, by simply first sampling 2 from p(z) and then, as
before, x from p(x|z; 0).

DCCP latent Variable models

In a DLVM we assume that the discributions involved in the model are of a given type, with parameters computed
by predefined parametric functions, computed by (deep) neural networks.

For example, if the space of observations is defined on a discrete set of possible values, p(z|z) could be a Cate-
gorical distribution, with the value of the corresponding parameters (i.e. the posterior probabilities of each value)
is obtained by applying a given function Dy (Z)7 parametric on 0, oz According to the approach, the function
Dg(z) is assumed computed by a deep neural necwork Dyg.

More in detail, let p(x|z) = C(x; ), where C(x; ) is a catcgorical distribution with vector 7 ofprobability
values. We assume 7 = Ng(z) where Ng is a neural network with parameters @ (Figure 5).

Moreover, if we assume that p(z) is also given, for example a standard 3-variate gaussian, we may generate new
values for x by (Figure 6):

1. sampling z from p(z)
2. sampling & from p(z|z) = C(x; Ng(2))

The same considerations can be done for the approximate conditional distribution q(z|x; @), that could be
assumed to be of a given type according to the definition of the latent space. For example, if the latent space is R¥,
q(z]x) could be a k Gaussian distribution, with the value of the Corresponding parameters (i.e. expectation vector
and covariance matrix) obtained by applying given functions Mg(+) and Vg (+), parametric on ¢, to . According
to the approach, the functions are assumed computed by a deep neural network €g.

This results into the situation given in Figure 7, denoted as a variational autoencoder at inference time. Ob-

served that the covariance matrix of q(z|x; @) = N(z; Mg(x), Vg (x)) is assumed diagonal.
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Figure 6: Sampling new values in a Gaussian-categorical DLVM withz € R3 and x € {1,...,5}
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Figure 7: Variational encoder as DLVM

Autoencoders

The variational encoder introduced above can be seen as a probabilistic version of a neural network architecture
named autoencoder, which is mainly designed to encode the input into a compressed and meaningful represen-
tation, and then decode it back such that the reconstructed input is similar as possible to the original one. Their
main purpose is learning in an unsupervised manner an “informative” representation of the data that can be used
for various implications such as clustering.

Formally, an n/p/n autoencoder can be defined in terms of

« aclass of encoder functions &, from R™ to RP
« aclass of decoder functions D, from R? to R™
« areconstruction loss function £ : R™ x R™ — R
The problem is finding a pair of encoder and decoder functions e* € £, d* € D such that

(€*,d*) = argmin E[L(x,d(e(x)))] (3)
ec€,deD

that is, we are interested in finding the encode-decoder pair which minimizes the (expected) difference between
the input x and the result of the sequence of encoding and decoding d(e(x)). The reconstruction loss is usually set

to be the fa-norm, that is L(x,y) = |[x —y|[* = >, (z; — i)



Figure 8: General structure of an autoencoder.
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Figure 9: Neural network implementation of an autoencoder.
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Figure 10: Structure of a linear autoencoder.

Figure 8 providcs an illustration of the autoencoder model.

As we may see, starting from x, the encoder derives a new vector z of a different (usually smaller) size: this is
called a latent representation of x In the most popular form of autoencoders, e and d are implemented by neural
networks.

In the special case that £ and D are classes of linear operations, we get a linear autoencoder: in this case, each
component of z is a linear combination of components of x, and each component ofy is a linear combination
of components of z. In the case of a linear autoencoder the same latent representation as Principal Component
Analysis (PCA) is achieved. Therefore, an autoencoder is in fact a gcncralization of PCA, where instead ofﬁnding
a low dimensional hyperplane in which the data lies, it is able to learn a non-linear manifold. In addition, the
autoencoder is cxplicitly optimizcd for the data reconstruction from the code. A good intermediate representation
not only can capture latent variables, but also benefits a full decompression process.

Asusual in Machine Learning, the set of functions to be considered are defined as classes ofparamctric functions
with parameters @ for the encoder and ¢ for the decoder. The loss function is then minimized wrt the encoder and
the decoder parameters:

(0%, ¢™) = argmin E[L(x,d(e(x; 0), @))]
0.¢
The parametric functions are usually implemented as neural networks.

Since in training, one may just get the identity operator for e and d, which keeps the achieved representation the
same as the input, some additional regularization is required. The most common option is to make the dimension
of the representation smaller than the input. This way, a bottleneck is imposed. This option also directly serves
the goal of getting a low dimensional representation of the data. This representation can be used for purposes such
as data compression, feature extraction, etc. Its important to note that even if the bottleneck is comprised of only
one node, then overfitting is still possible if the capacity of the encoder and the decoder is large enough to encode
cach sample to an index.

In cases where the size of the hidden layer is equal or greater than the size of the input, there is a risk that the
encoder will simply learn the identity function. To prevent it without creating a bottleneck (i.e. smaller hidden
layer) several options exists for regularization that would enforce the autoencoder to learn a different representation
of the input.

Inference in VAE

Inference in a VAE is made as usual for all neural networks, by applying backpropagation, that is computing the
gradient of the loss function wrt all parameters (arc weights) in the backward direction7 starting from the final

1



laycr towards the input laycr. Due to the Complcxity of the loss function, gradicnts are computcd numcrically,
i.e. without deriving an analytic form of the gradient, by applying automatic differentiation, a technique which
makes it possiblc to compute gradicnt values starting from a proccdural (that is algorithmic) dcscription of the loss
function.

Applying backpropagation is also a critical issue due to the presence of a sampling step in the computation
pipeline, which does not allow to backpropagate values. This problem is tackled by expressing the sampling opera-
tion in a more suitable way, where sampling is a side, unparameterized, operation.

Reparameterization Trick

The expectation term in the loss function invokes generating samples from z ~ ¢(z|x; ¢). Sampling is a scochastic
process and therefore we cannot backpropagate the gradient to update ¢. To make it trainable, the reparameteri-
zation trick is introduced.

The trick consists in modifying the network to perform the stochastic choice of € wrt a parameterless distribu-
tion, such as N'(+; 0, 1), and then applying a parameterized function to the value obtained.

It is in fact often possiblc to express the random variable z as produccd by the application of a deterministic
parametric function z = Tg(x, €), where € is an auxiliary independent random variable, and the transformation
function 7:1, paramcterizcd by ¢ converts € to z. 'This makes the stochastic choice a constant component in the
computation performed by the network, which is then not involved into backpropagation.

For example, in the common case where q(z[%; @) is amultivariate Gaussian witha diagonal covariance structure
with variances in vector o2

the trick computes Z as
i=p+ooe e~N(0,I)
where @ is the element-wise product.

Loss function

Variational distribution Data example should

should be similar to prior ELBO[O, ¢| have high probability
Dic |al(z/%:9) p(2)| log [p(x]7: )]
q(z[%; @)
X —> éd) K Z=p+o0é p(Xli;O)
i l
Sample
N (e;0,1) 22005 2

Figurc 11: charametrization trick makes sampling a side unparamcterized step with respect to the main compu-
tation pipeline
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