
Some notes on Statistical Learning Theory

Course of Machine Learning
Master Degree in Computer Science
University of Rome “Tor Vergata”

a.a. 2024-2025

Giorgio Gambosi

Statistical learning theory studies from the theoretical point of view the effect of the chosen set of hypotheses
and of the training set size on the quality (in terms of risk) of the predictor derived from learning.

As said above, a learning algorithm A takes a set T of pairs in X × Y and returns a predictor AT computing a
function hT : X 7→ Y .

Indeed,A requires the specification of a search space, that is a class of functionsH over which the selection of
hT is performed: this is called Hypothesis class or Inductive bias.

A particular and relevant learning algorithm is Empirical risk minimization (ERM), which consists in returning,
given a dataset T , the predictorH which minimizes the training error,

ERM(T ) = hT = argmin
h

RT (h)

Being a particular learning algorithm, ERM requires itself the specification of the class of functions H over
which the minimization is performed

ERM(T ,H) = hT ,H = argmin
h∈H

RT (h)

A fundamental question in learning theory is over which hypothesis classes applying a learning algorithm A,
and in particular ERM , will not result in a likely limited risk, for different training sets.

Finite search space, realizability, and 0-1 loss

The simplest type of restriction on H is assuming the number of possible predictors is upper bounded. In this
case, choosing hT will not overfit, provided T is sufficiently large, that is a sufficient number of examples of the
application of f is available¹.

Let us limit first ourselves to the case that there exists a predictor in h∗ ∈ H which does not make any error in
classifying items in X , that is such that

RpM ,f (h
∗) = E

pM ,f
[L(h∗(x), f(x)) ] = E

pM ,f
[ |x ∈ X : h∗(x) 6= f(x)| ] = 0

This is denoted as realizability assumption and, since the 0-1- loss is a non negative function, it implies that² it
correctly classifies all the elements in any subset of X , that is for any possible set X of elements sampled from X ,
which implies that for any training set T = (X, t), where ti = f(xi) by assumption, it results

¹Our considerations will be limited here to the task of binary classification with 0 − 1 loss function, and we will refer to the simpler
scenario where there is a functional, albeit unknown, relation between items and target values, i.e. classes.

²With probability 1, since the expectation equal to 0 does not rule out the possibility of single points (that is sets of measure 0) in X
misclassified by h∗.
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Figure 1: Sketch of the situation. Above, the case of a deterministic relation between item and target value. We
assume a set X of items has been sampled from the population X under probability distribution pM (x) and the
corresponding target values t are associated by applying the (unknown) function f . ERM (indeed, any learning
algorithm) selects, given the resulting training set T = (X, t), a predictor hT from the hypothesis classH, which is
a subset of the set F of all possible predictors. When applied to T , the selected predictor has minimum empirical
risk RT (hT ), while when the expectation over all possible training sets, sampled selecting X according to pM ,
is taken into account, the risk RpM ,f (hT ) is not necessarily the minimum one: this means that hT behaves well
on known data and more poorly when applied to new data (overfitting). Observe that under the realizability
hypothesis, RT (hT ) = 0. Below, the same is shown in the more general case when a probabilistic relation is
assumed between items and target values. Here the same training set T is assumed sampled from the population
X × Y under distribution p(x, t) = pM (x)pC(t|x).

RT (h
∗) =

1

|T |
∑

(x,t)∈T

L(h∗(x), t) =
|(x, t) ∈ T : h∗(x) 6= t|

|T |
= 0

Realizability also implies that for any training set T the predictor returned by ERM is optimal when applied to
T , that isRT (hT ) = 0: this derives from the observation that, given T , there exists at least one predictor (that is
h∗) which correctly classifies all elements in it. Since ERM returns a predictor, say it hT , which best classifies such
elements it must beRT (hT ) = 0. Note that, as a special case, it might be hT = h∗, that is ERM returns precisely
h∗: in this case, the predictor returned by ERM on T is optimal on the whole elements population X . However, it
may also happen that hT 6= h∗, which implies that the predictor returned by ERM on T is optimal on T (that is
RT (hT ) = 0), but it may return incorrect predictions on some elements not in T (that is,RpM ,f (hT ) > 0).

Given ε > 0 let us make the following definitions:

• a predictor h ∈ H is bad if its risk is greater than ε, i.e. RpM ,f (h) > ε; that is, a bad predictor is one that it
is expected to misclassify an unacceptable fraction of items (where unacceptable stands for greater than ε);
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let us denote asHB the set of predictors inH which are bad.

• a set X ⊂ X is bad if there exists at least one optimal predictor H on the training set T = (X, t), where
items in that is with RT (h) = 0, which is bad, that is such that Rp(hT ) > ε. If that predictor is the one
actually returned by ERM, i.e. hT = h, than the dataset is very bad.

Assume now that, given |H|, we want to study for which values of T size n the probability that our training
set (assuming that it results from independently sampling each element from X with distribution pM and setting
ti = f(xi)) is a bad one is sufficiently small, for example, less than a given δ ∈ (0, 1). Hence,

P
T ∼pn

[
∃h̃ ∈ HB : RT (h̃) = 0

]
≤ δ

this can be proved to be true if
δ ≥ |H|e−εn

that is, if

n ≥ 1

ε
ln

|H|
δ

(1)

This tells us that the probability that T is a bad dataset can bemade arbitrary small by (logarithmically) increas-
ing the dataset size. Observe that n has to be increased (logarithmically) also if the hypotheses class size increases
or if the definition of bad predictor is made stricter by decreasing the amount ε of accepted misclassifications.

PAC Learning

The considerations above can be made more precise by introducing the concept of Probably Approximatey Correct
(PAC) Learning, with respect to the case of a binary classification problem using 0-1 loss as a measure of error.

Definition 1 (PAC Learnability). A hypothesis classH is PAC learnable if there exists a functionmH : (0, 1)2 7→ IN
and a learning algorithm A such that for every ε, δ ∈ (0, 1)³ for every distribution pM over X and for every function
X 7→ Y if the realizable assumption holds with respect toH, pM and f (that isRpM ,f (h

∗) = 0) then when A is applied
on a training set T of size n ≥ mH(ε, δ), generated sampling n i.i.d. pairs from p, the algorithm returns a predictor hT
that, with probability at least 1− δ (over the choice of T ), has risk RpM ,f (hT ) ≤ ε.

Theaccuracy parameter ε determines how far the output classifier can be from the optimal one (this corresponds
to the “approximately correct”), and a confidence parameter δ indicating how likely the classifier is to meet that
accuracy requirement (corresponds to the “probably” part of “PAC”).

The sample complexitymH is a function of the accuracy (ε) and the confidence (δ) and determines theminimum
number of examples which are required to guarantee that an approximately (ε) correct predictor is probably, that
is with probability (1 − δ), selected out of H. Observe that the sample complexity also depends on properties of
H: for example, as seen above, for a finite class it grows as ln|H|.

In particular, equation 1 states that, ifH is finite and the realizability assumption is verified, by having at our
disposal a dataset whose size n is large enough we are sure that with probability 1− δ a good predictor (whose risk
is less than ε) is returned by applying a specific algorithm A, that is ERM. This implies that if no assumption is
made on the learning algorithm applied the number of required examples (that is the sample complexity) could be
smaller, thus resulting into

mH(ε, δ) ≤
⌈
1

ε
ln

|H|
δ

⌉

³Note that, since the 0-1 loss function is bounded in (0, 1), the risk cannot be larger than 1, which results in ε < 1.
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Optimal Prediction and Risk Minimization

Let us now try to extend the PAC-learnability definition to more general frameworks: in particular, we wish to gen-
eralize to the probabilistic case when items and corresponding target values are related only through a conditional
distribution pC(x, t). In this probabilistic framework, the optimal prediction is one that minimizes the risk:

h∗(x) ∆
= argmin

y∈Y
E

t∼pC(·|x)
[L(y, t) ] = argmin

y∈{0,1}
pC(t 6= y|x)

The optimal predictor h∗ is also called Bayes predictor, and denoted as hBayes. However, observe that applying
hBayes requires the knowledge of the conditional distribution pC(t|x) (or of the function f , if the assumption of the
existence of function f is made), which we assume unknown. This makes the bayesian predictor out of reach given
the assumptions hypothesized in ML, where we only assume that a training sample T of p(x, t) is given.

Since the bayesian predictor is optimal, we know that, for any learning algorithmA (includingERM ) and for
any training set T , the risk of the predictor hT returned byA when applied on T will be greater then (or equal at
least) than the minimal possible error, that of hBayes, that isRp(hT ) ≥ Rp(hBayes).

Moreover, it is possible to prove (by the No Free Lunch theorem which will be introduced shortly) that if no
prior assumptions about p(x, t) is made, then there exists no learning algorithm that guarantees that, for any T ,
the predictor hT returned is as good as the bayesian one. In this situation, what we may require is that the learning
algorithm for most datasets returns a predictor hT with risk greater, but not too much greater, than Rp(h

∗), the
risk of the best predictorh∗ ∈ H, which in general has itself risk greater thanhBayes. In doing this, we also generalize
to the case when the realizability assumption does not hold.

Definition 2. A hypothesis classH is agnostic PAC learnable if there exists a functionmH : (0, 1)2 7→ IN and a learning
algorithm such that for every ε, δ ∈ (0, 1) and for every distribution p over X × Y , when the learning algorithm is applied
on a training set T of size n ≥ mH(ε, δ) generated by sampling n i.i.d. pairs from p, the algorithm returns a predictor H
that, with probability of at least 1− δ (over the choice of T ), has risk

Rp(h
∗) ≤ Rp(h) ≤ Rp(h

∗) + ε

where Rp(h
∗) = min

h′∈H
Rp(h

′).

Agnostic PAC learning offers a more general framework than PAC learning. Clearly, if the realizability assump-
tion holds, Agnostic PAC Learnability reduces to PAC Learnability. However, when the realizability assumption
does not hold, no learning algorithm can guarantee an arbitrarily small error for all T . However, if agnostic PAC
learnability holds, some algorithm is able to return, in most cases, a predictor fromH not much worse that the best
one in the class. On the contrary, in PAC learning we require that hT behaves well in absolute terms.

The above definition can be further extended to the case of general (not 0-1) loss function as follows:

Definition 3 (Agnostic PAC Learnability for General Loss Functions). A hypothesis classH is agnostic PAC learnable
with respect to a loss function l, if there exists a functionmH : (0, 1)2 7→ IN and a learning algorithm such that for every
ε, δ ∈ (0, 1) and for every distribution p over X × Y , when the learning algorithm is applied on a training set S of size
n ≥ mH(ε, δ) generated sampling n i.i.d. pairs from p, the algorithm returns a predictorH that, with probability of at least
1− δ (over the choice of S), has risk

Rp(h
∗) ≤ Rp(h) ≤ Rp(h

∗) + ε

where Rp(h) = E(x,y)∼p [ l(h(x), y) ].

Recall now that ERM, given a hypothesis class H, operates, at least conceptually, as follows: upon receiving
a training set T , the learner evaluates for each predictor h ∈ H the risk RT (h) and outputs a predictor hT ∈
H that minimizes this value. The underlying assumption is that the predictor hT ∈ H will also minimize (or
closely approximate the minimum of) the true riskRp(h) (orRpm,f (h)) with respect to the actual data probability
distribution.
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For this assumption to hold, it is crucial to ensure that the empirical risks of all predictors in H are good
approximations of their true risks. In other words, we require that, uniformly over all predictors in the hypothesis
class, the empirical risk closely aligns with the true risk. This concept is formalized in the following definition:

A training set T is said ε-representative (with respect toH, the loss function l, and the distribution p(x, t)) if,
for every h ∈ H, the following condition holds:

|RT (h)−Rp(h)| ≤ ε

This formulation establishes a quantitative measure of how well the empirical risk approximates the true risk
across the entire hypothesis class, providing a foundation for analyzing the effectiveness of the ERM learning
paradigm.

Definition 4 (ε-representative sample). A training set T is considered ε-representative (with respect to domain X × Y ,
hypothesis classH, loss function l, and distribution p(x, t)) if the following condition holds for all predictors inH:

∀h ∈ H, |RT (h)−Rp(h)| ≤ ε

Assume now that a training set T is ε
2 -representative (w.r.t. H, l, p): then for every h ∈ H

Rp(hT ) ≤ Rp(h) + ε

That is, if hT is returned by ERM on T , its behaviour is not too worse than the best predictor inH

Rp(hT ) ≤ Rp(h
∗) + ε

where as usual h∗ = argmin
h∈H

Rp(h).

This result establishes a crucial link between the representativeness of the training sample and the performance
of the hypothesis selected by the ERM algorithm, providing a theoretical foundation for the effectiveness of this
learning approach.

How can be exploit this observation to ensure that ERM is a good learning algorithm, at least in the PAC
sense? It is sufficient to show that with probability 1− δ the sampling of the dataset from X ×Y with probability
distribution p(x, t) results in a training set which is ε

2 -representative. The following definition will be useful to this
task.

Definition 5 (Uniform Convergence). A hypothesis classH has the uniform convergence property (w.r.t. a loss function
l) if there exists a function mUC

H : (0, 1)2 7→ IN such that for every ε, δ ∈ (0, 1) and for every probability distribution
p(x, t), if T is a dataset of n ≥ mUC

H (ε, δ) i.i.d. pairs, each one sampled from X × Y with probability p, then, with
probability of at least 1− δ, T is ε-representative.

The function mUC
H returns the (minimal) sample complexity necessary for the uniform convergence property.

That is, the minimum number of examples  necessary to ensure that with probability at least 1 − δ the predictor
obtained by ERM on T has risk equal to the risk of the best predictor inH, plus at most 2ε.

In other terms, if a class of predictorsH has the uniform convergence property with a functionmUC
H then the

class is agnostically PAC learnable with sample complexity mH(ε, δ) ≤ mUC
H ( ε2 , δ). Furthermore, in that case,

ERM is a successful agnostic PAC learner forH.
In summary, we have seen that finite hypothesis classes possess the uniform convergence property. This means

that if we have a finite set of candidate predictors, we can guarantee that with high probability the empirical risk
will be representative of the true risk. Consequently, the ERM rule is a sound approach for learning from finite
hypothesis classes in an agnostic PAC framework.
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ection*PAC learnability of finite classes
LetH be a finite hypothesis class, let X ×Y be a domain, and let l : X ×Y 7→ [0, 1] be a loss function. Then,

H enjoys the uniform convergence property with sample complexity

mUC
H (ε, δ) ≤

⌈
1

2ε2
ln

2|H|
δ

 
⌉

As a consequence,H is agnostically PAC learnable using the ERM algorithm with sample complexity

mH(ε, δ) ≤ mUC
H

(ε
2
, δ
)
≤

⌈
1

ε2
ln

2|H|
δ

 
⌉

That is, if the number of possible predictors ism, then by sampling⌈
1

ε2
ln

2|H|
δ

 
⌉
=

⌈
2(lnm− ln δ + ln 2)

ε2
 
⌉

i.i.d. examples fromX ×Y , each one under probability distribution p(x, y), and applyingERM on the resulting
dataset, we obtain with probability 1 − δ a predictor whose expected loss over pairs in X × Y is the one of best
predictor among the n considered, plus at most ε.

Observe that the number of examples grows logarithmically wrt n while decreases (logarithmically) wrt to δ
and (as a square root) wrt ε.

While this result only applies to finite hypothesis classes, there is a simple trick that allows us to get a very good
estimate of the practical sample complexity of infinite hypothesis classes.

Consider a hypothesis class that is parameterized by d parameters. For example, let X = R, Y = {−1,+1},
and the hypothesis class, H, be all functions of the form hθ(x) = sgn(x − θ). That is, each hypothesis is param-
eterized by one parameter, θ ∈ R, and the hypothesis outputs 1 for all instances larger than θ and outputs −1
for instances smaller than θ. This is a hypothesis class of an infinite size. However, if we are going to learn this
hypothesis class in practice, using a computer, we will probably maintain real numbers using floating point repre-
sentation, say, of 64 bits. It follows that in practice, our hypothesis class is parameterized by the set of scalars that
can be represented using a 64 bits floating point number. There are at most 264 such numbers; hence the actual
size of our hypothesis class is at most 264. More generally, if our hypothesis class is parameterized by d numbers,
in practice we learn a hypothesis class of size at most 264d. By the above considerations, we obtain that the sample
complexity of such classes is bounded by 

128d+ 2 ln 2
δ

ε2
=

128d+ 2 ln 2− 2 ln δ
ε2

  This upper bound on the sample complexity has the deficiency of being dependent on the specific representation
of real numbers used by our machine. In the folllowing we will introduce a rigorous way to analyze the sample
complexity of infinite size hypothesis classes. Nevertheless, the discretization trick can be used to get a rough
estimate of the sample complexity in many practical situations.

Relevance of the inductive bias

Whenever we choose a hypothesis classH, we actually make use of some prior knowledge about our data. We only
choose the class because we believe (or hope) that it contains a good (i.e. low-risk) predictor for the task we are
considering.

This begs the question whether such prior knowledge is a necessary condition for learning, or whether there
can exist a “universal learner”. Recall that a learning task is defined by an unknown probability distribution p over
the set of all possible examples and labelingsX ×Y , and given a training set of size n, we want to find a hypothesis
h ∈ H that has a low risk with high probability. So a universal learner would correspond to an algorithmA∗ and a
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sample complexityn such thatA∗ finds a low risk predictorHwith high probability, whatever is the distribution p.
TheNo-Free-Lunch theorem we now introduce states that no universal learner exists. More precisely, the theorem
asserts that, for binary classification tasks, there is a distribution on which every learner fails. By failing we mean
that the learner, after receiving i.i.d. examples from that distribution, returns with “high” probability a predictor
whose risk is itself “high”, while in the same situation, some other learner could return a predictor with a much
lower risk. In other words, the theorem shows that no learner can succeed on all learnable tasks—every learner fails
on some tasks where others succeed.

Theorem 1 (No Free Lunch). Let A be any learning algorithm (for binary classification with 0 − 1 loss) over the domain

X , and let n be an integer n <
|X |
2
. Then there exists a distribution pA over X × {0, 1} such that:

1. There exists a predictor h∗ : X 7→ {0, 1} with RpA(h
∗) = 0 (that is the realizability assumption holds on

X 7→ {0, 1} if pairs are distributed according to pA).

2. With probability at least 1/7 over the choice of a dataset T of size n of i.i.d. pairs, each sampled according to pA, we
have that RpA(hA,T ) ≥ 1/8, where hA,T is the predictor returned byA when applied on T .

This theorem states that for every learner, there exists a task (a distribution on X × Y) on which it fails, even
though that task can be successfully learned by another learner.

How does the No-Free-Lunch result relate to the need for prior knowledge?
Let us consider anERM predictor over the hypothesis classF of all the functions f from an infinite-sizeX to

{0, 1}. This class represents lack of prior knowledge: every possible function from X to Y = {0, 1} is considered.
According to the No Free Lunch theorem, any learning algorithm that chooses a predictor from hypotheses in

F , and in particular theERM algorithm, will fail on some learning task. Therefore, the absence of prior knowledge
results in the class F that is not PAC learnable.

Assume in fact, by contradiction, that F is PAC learnable. Recalling the definition of PAC learnability, this
means that there must exist a learning algorithm AF and a function mF : (0, 1)2 7→ IN such that for any ε, δ
with 0 < ε, δ < 1 and for any distribution p on X × {0, 1} for which there exists an optimal predictor h∗ ∈ F
(with risk Rp(h

∗) = 0) then, if AF is applied to a dataset of size n ≥ mF (ε, δ) distributed according to pn, the
algorithm returns with probability greater than 1 − δ a predictor whose risk is “small”, i.e. at most ε. That is, it
returns with probability smaller than δ a predictor whose risk is “high”, i.e. greater than ε.

Let us now assume ε < 1/8 and δ < 1/7. By the No Free Lunch theorem, for any n <
|X |
2

(that is for any
n, since X has infinite size) and for every learning algorithm A there must exist a distribution pA such that there
exists h∗ ∈ F with riskRpA(h

∗) = 0 (as required in the definition of PAC learning) and that, with probability at
least 1/7 > δ, has risk RpA(A(S)) ≥ 1/8 > ε.

This clearly holds also for the algorithmAF whose existence is assumed by the hypothesis of PAC learnability
of F : as a consequence, there exists a distribution pAF such that there exists a predictor h∗ with null risk and that
the predictor returned byAF has probability greater than δ to have “high”, that is greater than ε, risk. This clearly
contradicts the assumption of PAC learnability of F .

Recall that PAC-learnability requires that there is an algorithm A and a sample complexitymH(ε, δ) for any
ε > 0, 0 < δ < 1, such that Rp(hA,S) ≤ ε with probability at least 1 − δ. The above theorem tells us that,
if we do not restrict ourselves to a subset of all functions from X to {0, 1} (i.e. choose a hypothesis space), there
will always be a probability distribution p that makes any learning algorithm return a “bad” predictor with high
probability, even though there exists one with zero error. This implies that no algorithm will be able to PAC-learn
this target function.

As a direct consequence if follows that, for some infinite domain X , the set of all functions from X to {0, 1}
cannot be PAC-learnable. No matter what training set size n we pick, |X | will always be larger than 2n. So we can
always apply the above theorem.

From the No Free Lunch Theorem we can conclude that choosing a suitable hypothesis class is crucial for
learning a given concept. This way we restrict ourselves to a subset of all possible functions from X {0, 1}, which
helps us avoiding unfavourable distributions andmight allow us to find a low-error hypothesis with high probability.
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On the other handwemight exclude the best hypotheses from our set of candidates, as it might not be amember
of our hypothesis class. So we might find a good approximation for the best hypothesis in our class, but this best
hypothesis in the class might be a bad approximation for the true target predictor. This dilemma is often referred
to as the Bias-Complexity Tradeoff .

If we choose a hypothesis class H and get a training set T as input, ERM returns a predictor hT minimizing
such that the empirical riskRp(h) is minimal.

Now we can decompose this risk as follows:

Rp(hT )−Rp(hBayes) = (Rp(hT )−Rp(h
∗)︸ ︷︷ ︸

estimation error

+(Rp(h
∗)−Rp(hBayes))︸ ︷︷ ︸

approximation error

= εV + εB

where h∗ is the best predictor in H (that is such that Rp(h
∗) = min

h∈H
Rp(h

∗), while hBayes is the absolute best

predictor for the task (that is such thatRp(hBayes) = min
h∈F

Rp(h
∗), where F is the set of all possible predictors).

More in detail:

• ϵB is the minimum risk achievable by any h ∈ H: this is only determined by the inductive bias, and in-
dependent from the training set. It is a property of the class of hypotheses considered with respect to the
prediction task. This is called bias

• ϵV is the difference between the above minimum risk in H and the risk associated to the best predictor in
H with respect to the training set: it is related to the fact that empirical risk minimization only provides
an estimate of the best predictor achievable for the given inductive bias. It is a measure of how well the
predictor computed from a particular training set approximates the best possible one. Its expectation with
respect to all possible training sets is a measure of how much a predictor derived from a random training set
may result in poorer performances with respect to the best possible one. This is called variance

The choice ofH is subject to a bias-variance tradeoff: higher bias tend to induce lower variance, and vice versa
(see Figure 3).

• High bias and low variance implies that all predictors which can be obtained from different training sets tend
to behave similarly, with a similar risk (low variance). However, all of them then to behave poorly (high bias),
sinceH is too poor to include a satisfactory predictor for the task considered. This results into underfitting

• Low bias and high variance implies that lot of predictors are available inH, and among them a good one is
usually avaliable (low bias). However, quite different predictors can be obtained from different training sets,
which implies that it may easily happen that, while a very good performance can be obtained on the training
set, the resulting predictor can behave quite differently and more poorly that the best possible one, which
implies overfitting

See Figure 4 for an illustration. If we choose a very large space H, then the approximation term will become
small (the Bayes classifier might even be contained inH or can be approximated closely by some element in it). The
estimation error, however, will be rather large in this case: the spaceH will contain complex functions which will
lead to overfitting. The opposite effect will happen if the function classH is very small.

Learning theory studies how rich we can make the classH while still maintaining a reasonable estimation error.
In many cases, empirical research focuses on designing good classes of predictors for a given domain. Here, ”good”
means classes for which the approximation error should not be excessively high. The idea is that, even if we are not
experts and do not know how to construct the optimal predictor, we still have some preliminary knowledge of the
specific problem, which allows us to design classes of predictors for which both the approximation error and the
estimation error are not too high.

In practice, one typically has a set of predictors with associated sets of hyper-parameters: a type of predictor
and an assignment of values to the corresponding hyper-parameters define a class of parametric predictors, from
which a specific predictor is selected through a learning algorithm such as ERM.
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Figure 2: Illustration of estimation and approximation error.

Figure 3: Graphical representation of bias and variance

The identification of this class, by evaluating and selecting a type of predictor and the values of the correspond-
ing hyper-parameters, is calledmodel selection.

The Vapnik-Červonenkis Dimension

The Vapnik-Červonenkis dimension (VC-dimension) is a measure of the complexity of a given hypothesis class. The
measure is introduced to characterize infinite hypothesis classes in terms of their learnability.

We know that finite hypothesis classes are PAC-learnable and that the sample complexity depends on the size of
the class. However, there also exist infinite hypothesis classes that are PAC-learnable, such as the class of threshold
functions on real numbers

Hθ = {1[x < θ]; θ ∈ R}.

This hypothesis class is PAC-learnable with a sample complexity ofmH(ε, δ) ≤ d1ε log
2
δ e.

Thus, finiteness is sufficient but not necessary for learnability. To define a more general and useful measure of
complexity, we first need a few other definitions.

Given a subset C = {c1, ..., cm} ⊂ X of X , we define the restriction HC of H to C as the set of functions
f : C 7→ {0, 1} that can be derived from predictors in H (i.e., such that for each f ∈ C there exists a predictor

9



Figure 4: Bias and variance vs model complexity

h ∈ H for which f(ci) = h(ci), i = 1, . . . ,m). If we describe each function from C to {0, 1} as a vector in
{0, 1}|C|, we can formally write it as

HC = {(h(c1), ...h(cm)) : h ∈ H}.

If HC is the set of all functions from C to {0, 1} (and thus |HC | = 2|C|), this means that for every binary
labeling of the elements of C (and thus for every separation of the elements into two distinct classes, or even for
every possible binary classification task on C), there exists a predictor in H that separates the two classes, in the
sense that it correctly predicts the target values of each element ci. In this case, we say thatH shatters C .

For example, consider the class Hθ of threshold functions introduced above. Consider a set C = {c1}: then,
if we set θ = c1 + 1, we have hθ(c1) = 1, and if we take θ = c1 − 1, we have hθ(c1) = 0. Therefore, HC is the
set of all functions from C to {0, 1}, andH shatters C . If we now consider a set C = {c1, c2}, where c1 ≤ c2, no
h ∈ H can represent the labeling c1 = 0, c2 = 1, because any threshold that assigns label 0 to c1 must also assign
label 0 to c2. Therefore, not all functions from C to {0, 1} are included inHC , so C is not shattered byH.

We now define the VC-Dimension VCdim(H) of a hypothesis classH as the size of the largest subset C ⊂ X
that is shattered byH.

Themotivation behind this definition is the following. From the No-Free-Lunch theorem, we know that the set
of all functions from a domain to {0, 1} is not PAC-learnable. However, the proof of this statement is based on the
assumption that we are considering all possible functions: it is reasonable to assume that introducing limitations
on the hypothesis class might bring advantages.

To illustrate the concept of VC-Dimension, let us consider a few examples:

• Let Hthr be the class of threshold functions on R (tahat is functions hθ such that hθ(x) = 1 if x ≥ θ and
hθ(x) = 0 otherwise). It is easy to see that for an arbitrary set C = c1 of size 1, Hthr shatters C (just set
θ = c1 if c1 has label 1 and θ = c1 + 1 if the label is 0); therefore, VCdim(Hthr) ≥ 1. It is also possible to
check that there exist sets C = {c1, c2} of size 2 that H does not shatter (consider the case c1 < c2 with
labeling c1 = 1, c2 = 0). Therefore, we conclude that VCdim(Hthr) = 1.

• Let Hrect be the set of all axis-aligned rectangles in the Euclidean plane. If we want to prove that a certain
numberd is indeed theVC-Dimension of a hypothesis classHrect, we need to prove two things: VCdim(Hrect) ≥
d and VCdim(Hrect) < d+ 1.

In this case, VCdim(Hrect) = 4. For the first inequality, we simply need to find a set of 4 points shattered
by axis-aligned rectangles. Consider 4 equidistant points on a circle.

It is easy to see (Figure 5) that any partition of the 4 points into positive (green) and negative (red) can be
shattered by an axis-aligned rectangle.
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Figure 5: The two possible cases of shattering a set of 4 elements using axis-aligned rectangles.

Figure 6: The impossibility of shattering a set of 5 elements using axis-aligned rectangles.

To prove that VCdim(Hrect) < 5, we need to show that no set of size 5 is shattered. To this end, consider an
arbitrary set of 5 points (Figure 6) and their bounding box (indicated by the dashed green rectangle). There
must be at least one point inside the bounding box (or on one of its sides). Now, if we label the other 4 points
as positive and the fifth as negative, any axis-aligned rectangle that contains all the positive points must also
contain the negative point. Therefore, no set of size 5 is shattered byHrect.

LetHint be the class of intervals on R, preciselyHint = {ha,b : a, b ∈ R, a < b}, where ha,b : R → {0, 1}
is a function such that ha,b(x) = 1[a < x < b]. Consider the set C = {1, 2}. In this case,Hint shatters C
(Fig. 7), and therefore VCdim(Hint) ≥ 2. Now, take an arbitrary set C = {c1, c2, c3} and assume without
loss of generality that c1 ≤ c2 ≤ c3. In this case, the labeling (1, 0, 1) cannot be obtained from an interval,
soHint does not shatter C . Therefore, we conclude that VCdim(Hint) = 2.

• Let Hfin be a finite class. As observed, in order to shatter a set C we need 2|C| predictors (since 2|C| is the
number of different labelings). Also, observe that |Hfin

C | ≤ |Hfin|. As a consequence, C cannot be shattered
by Hfin if |Hfin| < 2|C|, since this implies |Hfin

C | < 2|C|. This results into VCdim(Hfin) ≤ log2|H|. The
PAC learnability of finite classes then derives from themore general property PAC learnability of classes with
finite VC-dimension. However, note that the VC-dimension of a finite classHfin can be significantly smaller
than log2(|H

fin|). For example, let X = {1, . . . , k} for some integer k, and consider the class of threshold
functions onH. Then, |H| = k but VCdim(H) = 1. Since k can be arbitrarily large, the difference between
log2(|H|) and VCdim(H) can be arbitrarily large.

Figure 7: Shattering of a 2-element set using intervals.
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The main reason for interest in studying the VC-dimension is the existence of the so-called Fundamental The-
orem of Statistical Learning, which provides a direct connection between the VC-dimension and the PAC learn-
ability of a hypothesis class.

Theorem 2 (Fundamental Theorem of Statistical Learning). LetH be a class of hypotheses h : X → {0, 1} for binary
classification, and let the 0− 1 loss be the considered cost function. Then, the following statements are equivalent:

1. H has a finite VC-dimension.

2. H is agnostic PAC-learnable, and there exist constants c1 < c2 such that its sample complexity mH(ε, δ) is upper
and lower bounded as

c1
ε2

(
d+ ln

1

δ

)
≤ mH(ε, δ) ≤

c2
ε2

(
d+ ln

1

δ

)
Moreover, this property holds also when ERM is applied (that is, it is a successful agnostic PAC-learning algorithm for
H).

3. H is PAC-learnable, and its sample complexitymH(ε, δ) is upper and lower bounded as

c1
ε

(
d+ ln

1

δ

)
≤ mH(ε, δ) ≤

c2
ε

(
d+ ln

1

δ

)
Moreover, this property holds also when ERM is applied (that is, it is a successful PAC-learner forH).
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