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1 Factor Analysis

Factor analysis is one of the simplest and most fundamental generative latent models, the first one we consider here
where both the observed variable x and the latent variable z are real. At the same time, the model is also simple
enough to make it possible to make it feasible to compute the conditional probability p(z|x).

In particular, the model assume that each element xi ∈ RD in the observable dataset is related to the value of
a latent variable (also called a factor here) zi ∈ Rd through:

• a linear projection from the d-dimensional space Rd of z to theD-dimensional space RD of x

• a translation of the result within RD

• an additional (smaller) random translation within RD

This is specified by the equation
x = Wz+ µ+ ϵ

where (see Figure 1)

• z ∈ Rd is a latent variable whose distribution is assumed gaussian with 0mean and unitary covariancematrix:
hence p(z) = N (z; 0, I)

• W ∈ RD×d is a linear projection of any point in Rd to a point in RD

• µ ∈ RD is a translation of points in RD

• ϵ ∈ RD is a gaussian noise for the final random translation: noise covariance on different dimensions is
assumed to be 0. That is, its distribution is N (ϵ; 0,Ψ), where Ψ ∈ RD×D is a diagonal matrix, with Ψii

the noise variance along the i-th dimension.

Background on Multivariate Gaussian Distribution

Let us consider the following situation, where x and z are two random variables:

1. z is normally distributed z ∼ N (µz,Σz)

2. there exist A ∈ RD×d, b ∈ RD such that the conditional distribution of x given z is a gaussian p(x|z) =
N (Az+ b,Σxz)
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Figure 1: The latent variables ϵ and z are normally distributed on the observed and the latent space, respectively:
they can be both seen as random noise p(ϵ) = N (ϵ; 0,Ψ) and p(z) = N (z; 0, I). The observed variable x is
deterministically dependent from them as x = Wz+µ+ϵ. However, a probabilistic dependence from z alone can
be expressed through the conditional distribution p(x|z) = N (x|z;Wz+ µ,Ψ).

this is denoted as linear gaussian model and, in this framework, both the marginal distribution of x and the inverse
conditional distribution of z|x are also Gaussian. In particular

• For the marginal distribution, p(x) = N (µx,Σx), with

µx = Aµz + b

Σx = Σxz + AΣzAT

• For the conditional distribution, z|x = N (µz|x,Σz|x), with

µz|x = (Σz
−1 + ATΣxz

−1A)
−1

(ATΣ−1
xz (x− b) + Σ−1

z µx)

Σz|x = (Σz
−1 + ATΣ−1

xz A)
−1

The Factor Analysis Model

As already stated, the prior distribution of the latent variable is assumed to be a multivariate Gaussian distribution.

p(z) = N (z; 0, I)

and the observed value x is obtained from z through

1. the linear projection of z byW ∈ RD×d,

2. applying some linear translation µ ∈ RD , and

3. adding a Gaussian noise ϵ ∈ RD with mean 0 and covarianceΨ ∈ RD×D .

As a consequence, the conditional distribution of x given z is

p(x|z) = N (x;Wz+ µ,Ψ)

Factor Analysis is then a linear Gaussian model with µz = 0, Σz = I, A = W, b = µ, Σx|z = Ψ. By applying
its properties, we get:

• the marginal distribution, p(x) = N (x;µ,WWT +Ψ)
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• the inverse conditional distribution, p(z|x) = N (z|x;µz|x,Σz|x), with

Σz|x = (I+WTΨ−1W)
−1 ∆

= G ∈ Rd×d

µz|x = GWTΨ−1(x− µ) ∈ Rd

This distribution can be exploited tomap points onto the latent space. In particular, the conditional expectation

µz|x = GWTΨ−1(x− µ) ∈ Rd

can be assumed as the point in latent space corresponding to x ∈ RD .

Maximization of likelihood in FA

The log-likelihood of the observed dataset in the model is

log p(X|W,µ,Ψ) =

n∑
i=1

log p(xi|W,µ,Ψ) =

n∑
i=1

logN (xi;µ,Ψ+WWT )

= −nd

2
log(2π)− n

2
log |Ψ+WWT | − 1

2

n∑
i=1

(xi − µ)(Ψ+WWT )
−1

(xi − µ)T

Setting the gradient wrt µ to 0 results into

µ =
1

n

n∑
i=1

xi
∆
= x ∈ RD

However, no closed form solution for W and Ψ can be obtained by setting the corresponding gradients to 0.
Iterative techniques such as EM can then be applied tomaximize the log-likelihoodwith respect to these parameters.

Expectation-Maximization for FA

By definition, the algorithm operates by alternatively computing (in the E-step)

p(Z|X;θ(k)) =
n∑

i=1

p(z|xi;θ(k))

given the parameter value θ(k) and then (in the M-step) maximizing

E
p(Z|X;θ(k))

[ log p(X,Z;θ) ] =
n∑

i=1

E
p(z|xi;θ

(k))

[ log p(xi, z;θ) ]

with respect to the parameter θ, obtaining the new value θ(k+1).

M-step Let us first observe that in the case of FA, we have θ = (W,µ,Ψ).

For what regards maximization wrt µ, we already observed that the optimum value for such parameter is

x =
1

n

n∑
i=1

xi ∈ RD
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regarding maximization wrtW andΨ, we skip some technical details, stating, without proof, that

W =

(
n∑

i=1

(xi − x)µ̂T
i

)(
n∑

i=1

µ̃i

)−1

∈ RD×d

Ψ = diag

(
S− 1

n
W

n∑
i=1

µ̃i(xi − x)T
)
∈ RD×D

where

1. µ̂i and µ̃i are the expectations wrt distribution p(z|xi;W,µ,Ψ) of z and zzT , respectively

µ̂i
∆
= E

p(z|xi;W,µ,Ψ)

[ z ] =
∫
Z
zp(z|xi;W,µ,Ψ)dz ∈ Rd

µ̃i
∆
= E

p(z|xi;W,µ,Ψ)

[
zzT

]
=

∫
Z
zzT p(z|xi;W,µ,Ψ)dz ∈ Rd×d

2. the diag operator sets to 0 all non diagonal elements

3. S is the scatter matrix of X

S ∆
=

1

n

n∑
i=1

(xi − x)(xi − x)T ∈ RD×D

E-step The conditional expectations µ̂i and µ̃i are computed here. They can be shown to be

µ̂i = GWTΨ−1(xi − x)

µ̃i = µ̂iµ̂
T
i + G

where, as shown above,
G = (I+WTΨ−1W)

−1

The EM algorithm in factor analysis is then summarized as follows. The centroid of data, x, is computed and,
from it, all xi. Then, at every step k, we iteratively solve as:

for i = 1, . . . , n :

µ̂
(k)
i ←  G(k)(W(k))

T
(Ψ(k))

−1
(xi − x)

µ̃
(k)
i ← µ̂

(k)
i (µ̂

(k)
i )T + G(k)

W(k+1) ←

(
n∑

i=1

(xi − x)(µ̂(k)
i )

T

)(
n∑

i=1

µ̃
(k)
i

)−1

Ψ(k+1) ← 1

n
diag

(
S−W(k+1)

n∑
i=1

µ̂
(k)
i (xi − x)T

)

G(k+1) ←
(
I+ (W(k+1))

T
(Ψ(k+1))

−1
W(k+1)

)−1

until convergence.
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2 Probabilistic PCA

Probabilistic PCA is defined through a simplification of the factor analysis model. In particular, all the rest being
equal, the noise covariance matrix is assumed to have equal variance for all dimensions. That is,

Ψ = σ2I ∈ RD×D

The resulting model is described graphically in Figure 2.
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Figure 2: The latent variables ϵ and z are normally distributed on the observed and the latent space, respectively:
they can be both seen as random noise p(ϵ;σ2) = N (ϵ; 0, σ2I) and p(z) = N (z; 0, I). The observed variable x is
deterministically dependent from them as x = Wz+µ+ϵ. However, a probabilistic dependence from z alone can
be expressed through the conditional distribution p(x|z) = N (x;Wz+ µ, Iσ2).

Expectation-Maximization for Probabilistic PCA

Expectation maximization can be applied to maximize the log-likelihood of the observed dataset X wrt the param-
etersW, µ, σ2.

Being PPCA a particular case of factor analysis, the E and M steps can be derived from the ones defined for FA,
substituting the new noise covariance matrix σ2I to the more generalΨ.

This results in the following:

µ̂i = βGWT (xi − x)

µ̃i = µ̂iµ̂
T
i + G

where β = 1
σ2 is the precision.

It can be proved that the algorithm behaves, at each step, as follows

for i = 1, . . . , n :

µ̂
(k)
i ← β(k)G(k)(W(k))

T
(xi − x)

µ̃
(k)
i ← µ̂

(k)
i µ̂

(k−1)
i

T + G(k)

W(k+1) ←

(
n∑

i=1

(xi − x)(µ̂(k)
i )

T

)(
n∑

i=1

µ̃
(k)
i

)−1

β(k+1) ← nD

(
n∑

i=1

||xi − x||2 − 2µ̂
(k)
i

TW(k+1)(xi − x) + tr
[
µ̃
(k)
i (W(k+1))TW(k+1)

])−1
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Maximization of the observed set log-likelihood

The probabilistic PCA model also makes it possible to analytically maximize its likelihood directly and, as a con-
sequence, to express the linear projection of any p-dimensional point onto the d-dimensional subspace in a closed
form.

The log-likelihood of the dataset in the model is

log p(X;W,µ, σ2) =
n∑

i=1

log p(xi;W,µ, σ2)

= −nD

2
log(2π)− n

2
log |Σx| −

1

2

n∑
i=1

(xi − µ)Σ−1
x (xi − µ)T

Maximization wrt µ can be easily done by setting the corresponding gradient to zero, which results into

µ∗ =
1

n

n∑
i=1

xi

Maximization wrtW is more complex: however, a closed form solution exists:

W∗ = Ud(Ld − σ2I)1/2 ∈ RD×d

where

• Ud is theD×dmatrix whose columns 1, . . . , d are the eigenvectors corresponding to the d largest eigenvalues
of the scatter matrix

S ∆
=

1

n

n∑
i=1

(xi − x)(xi − x)T ∈ RD×D

• Ld is the d× d diagonal matrix of the d largest eigenvalues λ1, . . . , λd

The columns ofW∗ are the eigenvectors 1, . . . , d, each i scaled by the square root of the difference λi − σ2.

Indeed, any rotation of W∗ in latent space is a solution of the likelihood maximization problem. Hence, the
general solution is given by

W∗ = Ud(Ld − σ2I)1/2R

where R is an arbitrary d× d orthogonal matrix, corresponding to a rotation in Rd.
For what concerns the maximization wrt σ2, it results

σ2 =
1

D − d

D∑
i=d+1

λi

Since eigenvalues provide measures of the dataset variance along the corresponding eigenvector direction, this
corresponds to the average variance along the discarded directions.
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