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1 The case of a treatable p(z|x) and the EM algorithm

Given a single observation x, in the case of hypothesis 2 holding,¹ that is if the conditional probability p(z|x;θ) is
easy to evaluate, then the approach described above results into:

• first computing
q(k)(z) = p(z|x;θ(k))

• next, deriving
θ(k+1) = argmax

θ

Q(p(z|x;θ(k)), x,θ) = argmax
θ

E
p(z|x;θ(k))

[ p(x, z;θ) ]

The idea here is to address the maximization of the log-likelihood log p(x, z;θ) of the joint distribution – that
is not possible since the value z of the latent variable is unknown by definition – by referring to the expectation of
p(x, z; θ̂) with respect to z ∼ p(z|x; θ̂).

The method is usually described by the following two steps for each iteration:

Expectation. Given a current value θ(k) of θ, derive the expectation of the joint distribution p(x, z;θ)with respect
to z, distributed as p(z|x;θ(k)): this is a function

E
p(z|x;θ(k))

[ p(x, z;θ) ]

of θ

Maximization. Maximize the functionQ(θ;θ(k), x) = Ep(z|x;θ(k))[ p(x, z;θ) ] wrt θ, obtaining a new value

θ(k+1) = argmax
θ

E
p(z|x;θ(k))

[ p(x, z;θ) ]

Such value provides a new conditional distribution p(z|x;θ(k+1)) and a new function of θ to maximize.

Q(θ;θ(k+1), x) = E
p(z|x;θ(k))

[ log p(x, z;θ) ]

The iterative algorithm then starts from any initial value, say θ(1), of θ and performs a sequence of steps, where
the k-th step computes θ(k+1) from θ(k) by applying the Expectation and the Maximization step in sequence.

¹Observe that in this case the gradient of the log-likelihood can also be evaluated, and a local maximum θ∗ can be computed, making
the distribution p(z|x;θ∗) computable too. However, the EM algorithm introduced here has several advantages wrt gradient methods, such
as for example not making use of a “step” hyperparameter η, thus avoiding the consequent tuning problem.
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We now show that in this case the algorithm monotonically increases (or at least does not decrease) the log-
likelihood log p(x;θ(k)) as k increases. We already saw how this is extended to the case of a dataset X with more
that one items, by applying amortization, that is considering conditional distributions q(z|x).

As we know, for any distribution q and parameter value θ̂, the ELBO decomposition of the log-likelihood holds.

log p(x; θ̂)

K(q, x, θ̂)

L(q, x, θ̂)

Figure 1: Log-likelihood decomposition

The situation is visualized in Figure 1 where, for a given θ̂, the gap from the black line to the red line corresponds
to the log-likelihood of the observable value, which is independent from the distribution q(z). The gap between the
black and the dashed line (which in any case lies between the black and red ones) corresponds instead to L(θ̂, x, θ̂)
and depends also on the choice of q.

We already saw that, given θ̂, setting q(z) = p(z|x; θ̂) provides the maximum lower bound of log p(x; θ̂)
attainable, since by definition

K(p(z|x; θ̂), x, θ̂) = 0

The k-th step of the iteration thus includes the following substeps:

E-step

We set q(k)(z) = p(z|x;θ(k)), obtaining the following situation, sketched in Figure 2,

K(q(k), x,θ(k)) = 0

log p(x;θ(k)) = L(q(k), x,θ(k)) = L(p(z|x;θ(k)), x,θ(k))

and there is no gap between the blue and red line in Figure 2.

log p(x;θ(k))L(p(z|x;θ(k)), x,θ(k))

Figure 2: After the E-step

M-step

Since
log p(x;θ) = L(q, x,θ) +K(q, x,θ)
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for any x and any distribution q, this is in particular true for the special case when q(z) = q(k)(z) = p(z|x;θ(k)),
which implies, in the notation defined above,

log p(x;θ) = L(p(z|x;θ(k)), x,θ) +K(p(z|x;θ(k)), x,θ)

with the usual lower bound
log p(x;θ) ≥ L(p(z|x;θ(k)),θ)

holding.
Let us consider the maximization of such lower bound with respect to θ.
As already observed, since in general we may decompose L(p(z|x;θ(k)), x,θ) as follows

L(p(z|x;θ(k)), x,θ) = E
p(z|x;θ(k))

[ log p(x, z;θ) ] +H
[
p(z|x;θ(k))

]
and since the entropy

H
[
p(z|x;θ(k))

]
is independent from θ, this is equivalent to maximizing

Q(θ;θ(k), x) = E
p(z|x;θ(k))

[ log p(x, z;θ) ]

with respect to θ.
Let us now consider

θ(k+1) = argmax
θ

Q(θ;θ(k), x)

Since θ(k+1) is the value of θ which provides the maximum value for L(p(z|x;θ(k)), x,θ), we have

L(p(z|x;θ(k)), x,θ(k+1)) ≥ L(p(z|x;θ(k)), x,θ)

for all possible values θ. As a particular case, it holds then that (see Figure 3)

log p(x;θ(k))L(p(z|x;θ(k)), x,θ(k))
L(p(z|x;θ(k)), x,θ(k+1))

Figure 3: After the M-step

L(p(z|x;θ(k)), x,θ(k+1)) ≥ L(p(z|x;θ(k)), x,θ(k)) = log p(x;θ(k))

Since in general p(z|x;θ(k)) ̸= p(z|x;θ(k+1)), we have DKL

(
p(z|x;θ(k)||p(z|x;θ(k+1))

)
> 0 and, as a con-

sequence, the lower bound is strict and in particular (see Figure 4)

log p(x;θ(k+1)) > L(p(z|x;θ(k)), x,θ(k+1))
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log p(x;θ(k))L(p(z|x;θ(k)), x,θ(k))

L(p(z|x;θ(k)), x,θ(k+1))

K(p(z|x;θ(k)), x,θ(k+1))

log p(x;θ(k+1))

Figure 4: Decomposition of the new log-likelihood with q(k+1)(z) = p(z|x;θ(k))

log p(x;θ(k))L(p(z|x;θ(k)), x,θ(k))

L(p(z|x;θ(k+1)), x,θ(k+1)) log p(x;θ(k+1))

Figure 5: After a new E-step, where q(k+1)(z) = p(z|x;θ(k+1))

We may then verify that, after an E-step followed by an M-step, the estimated log-likelihood becomes larger.
In particular, it increases from

log p(x;θ(k)) = L(p(z|x;θ(k)), x,θ(k))

to

log p(x;θ(k+1)) = L(p(z|x;θ(k)), x,θ(k+1)) +K(p(z|x;θ(k)), x,θ(k+1))

≥ L(p(z|x;θ(k)), x,θ(k+1))

≥ L(p(z|x;θ(k)), x,θ(k))= log p(x;θ(k))

where the last equality is just ≤ in the general case.
It is easy to see that, in the case of a dataset X = {x1, . . . , xn}, the k-th step of the iteration includes the

following substeps:

E-step

We set q(k)(z|x) = p(z|x;θ(k)), which results into q(k)i (z) = p(z|xi;θ(k)).
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M-step

Since for any q and θ

log p(X;θ) =
n∑

i=1

L(q, xi,θ) +
n∑

i=1

K(q, xi,θ)

the usual lower bound holds

log p(X;θ) ≥
n∑

i=1

L(p(z|xi;θ(k)),θ)

The decomposition

L(p(z|x;θ(k)), x,θ) = E
p(z|x;θ(k))

[ log p(x, z;θ) ] +H
[
p(z|x;θ(k))

]
implies that

n∑
i=1

L(p(z|xi;θ(k)), xi,θ) =
n∑

i=1

E
p(z|xi;θ

(k))

[ log p(xi, z;θ) ] +
n∑

i=1

H
[
p(z|xi;θ(k))

]
= E

p(Z|X;θ(k))
[ log p(X,Z;θ) ] +

n∑
i=1

H
[
p(z|xi;θ(k))

]
and since we already observed that the entropy term

n∑
i=1

H
[
p(z|xi;θ(k))

]
is independent from θ, this is equivalent to maximizing

Q(θ;θ(k),X) = E
p(Z|X;θ(k))

[ log p(X,Z;θ) ] =
n∑

i=1

E
p(z|xi;θ

(k))

[ log p(xi, z;θ) ]

with respect to θ.

Mixtures as latent variable models

Discrete mixture models can be seen also as latent variable models where hypothesis 2 holds and the EM algorithm
can then be applied.

We remind that in a mixture model the marginal distribution is defined as²

p(x;π,Θ) =
K∑
i=1

πiq(x;θi)

A mixture can be modeled, in terms of latent variables, according to the graphical model in Figure 6, where
for each element xi a discrete scalar latent variable zi is introduced with domain {1, . . . ,K} which is assumed
distributed according to a categorical distribution p(z) = Cat(z;π), such that πk = p(z = k). We shall denote
as ψ the set of all parameters, i.e. ψ = π ∪Θ.

By introducing the latent variable z ∈ Z = {1, . . . ,K}, we define the joint distribution

p(x, z;ψ) = p(z;π)p(x|z;θ)

²We remark that the symbol q refers to a completely different distribution than the one considered above, and in the ELBO discussion.
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π

Θ

zi

xi
n

zi ∼ Cat(z;π)

xi ∼ q(x;θzi)

Figure 6: Graphical model of a mixture

The corresponding marginal probability is given by

p(x;ψ) =
K∑
i=1

p(z = i;π)p(x|z = i;Θ)

from which the interpretations πi = p(z = i;π) and q(x;θi) = p(x|z = i;Θ) of the mixture components result.
As we may check, the conditional probability p(z|x) can be computed here, assuming the distributions q(x|z)

can be evaluated. In fact, for j = 1, . . . ,K ,

p(z = j|x;ψ) = p(x|z = j;ψ)p(z = j;ψ)

p(x;ψ)
=

q(x;θj)πj∑K
r=1 q(x;θr)πr

This makes it possible to apply the EM algorithm, since, as shown before, in correspondence to the k-th ex-
pectation step the conditional probabilities p(z|xi;ψ(k)) are considered for i = 1, . . . , n, each defined by theK
values

p(z = j|xi;ψ(k))
∆
= γ

(k)
j (xi)

for j = 1, . . . ,K . That is, by the values

γ
(k)
j (xi) =

q(xi;θ
(k)
j )π

(k−1)
j∑K

r=1 q(xi;θ
(k)
r )π

(k)
r

must be computed.
From the discussion on the expectation-maximization algorithm, this results into the following function to be

maximized in the M-step:

Q(ψ;ψ(k),X) =
n∑

i=1

K∑
j=1

log p(xi, z;ψ)p(z = j|xi;ψ(k))

=

n∑
i=1

K∑
j=1

γ
(k)
j (xi) log (πjq(xi;θj))

=
n∑

i=1

K∑
j=1

γ
(k)
j (xi) logπj +

n∑
i=1

K∑
j=1

γ
(k)
j (xi) log q(xi;θj)

First, let us take a look at the maximization wrt the component probabilities πj .
As already shown, the maximization with respect to π provides

π(k+1)
r =

1

n

n∑
i=1

γ(k)r (xi)
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Let us now remind that the maximization wrt component parameters θr results into

∇θrL(Θ, λ) =
n∑

i=1

γ
(k)
r (xi)

q(xi;θr)
∇θrq(xi;θr) = 0

Gaussian mixtures

In this case, we have θr = {µr,Σr}, the mean and covariance matrix of the r-th gaussian

q(x;µr,Σr)
∆
= N (x;µr,Σr) =

1

(2π)d/2
1

|Σr|1/2
exp

(
−1

2
(x− µr)

TΣ−1
r (x− µr)

)

In the E-step, given the current values π(k),Θ(k), the coefficients γ(k)j (xi) are computed as already shown
when gaussian mixtures were introduced, that is as

γ
(k)
j (xi) =

π
(k)
j N (xi;µ

(k)
j ,Σ

(k)
j )∑K

r=1 π
(k)
r N (xi;µ

(k)
r ,Σ

(k)
r )

In theM-step, new valuesπ(k+1),Θ(k+1) are computed bymaximization ofQ(π,θ;π(k),θ(k),X). As already
shown this results into:

π(k+1)
r =

1

n

n∑
i=1

γ(k)r (xi)

The maximization wrt µj corresponds to solving

n∑
i=1

γ
(k)
j (xi)

N (xi;µj ,Σj)
∇µj

N (xi;µj ,Σj) = 0

which we already saw is

µj =

∑n
i=1 γj(xi)xi∑n
i=1 γj(xi)

As a consequence, we have

µ
(k+1)
j =

∑n
i=1 γ

(k)
j (xi)xi∑n

i=1 γ
(k)
j (xi)

Similarly, the next value for Σj derives in general from the solution of

n∑
i=1

γj(xi)
N (xi;µj ,Σj)

∇Σj
N (xi;µj ,Σj) = 0

which can be proved to be

Σj =
1∑n

i=1 γj(xi)

n∑
i=1

γj(xi)(xi − µj)(xi − µj)
T

=
1∑n

i=1 γj(xi)

n∑
i=1

γj(xi)xixiT − µjµ
T
j
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As a consequence, we have then

Σ
(k+1)
j =

1∑n
i=1 γ

(k)
j (xi)

n∑
i=1

γ
(k)
j (xi)xixiT − µ(k+1)

j µ
(k+1)
j

T

Notice that, indeed,

1. knowing π(k)
j ,µ

(k)
j ,Σ

(k)
j for j = 1, . . . ,K makes it possible, in the E-step, to compute γ(k)j (xi) for j =

1, . . . ,K and i = 1, . . . , n

2. also, knowing γ(k)j (xi) for j = 1, . . . ,K and i = 1, . . . , n allows, in theM-step, to compute π(k+1)
j ,µ(k+1)

j ,

Σ
(k+1)
j

Mixtures of Poissons

In the case of amixture ofK Poisson distributions bothZ andX are discrete, thus implying that p(z) and p(x|z) are
both discrete distributions (in this case categorical and Poisson distributions). In terms of marginal distribution,
we have a mixture, again:

p(x;π,Λ) =

K∑
i=1

πiq(x;λi)

with

q(x;λk) =
e−λkλx

k

x!
,

In the EM algorithm, the expectation step requires computing

γ
(k)
j (xi) =

π
(k)
j

e
−λ

(k)
j λ

(k)
j

xi

xi!∑K
r=1 π

(k)
r

e−λ
(k)
r λ

(k)
r

xi

xi!

.

For what regards the maximization step, the new values π(k+1) are still given by

π
(k+1)
j =

1

n

n∑
i=1

γ
(k)
j (xi)

while the new values λ(k+1)
j derive by setting

0 =

n∑
i=1

γ
(k)
j (xi)

∂

∂λj
log q(x;λj)

∣∣∣
x=xi

=

n∑
i=1

γ
(k)
j (xi)

∂

∂λj
(−λj + x logλj − logx!)

∣∣∣
x=xi

=

n∑
i=1

γ
(k)
j (xi)

(
−1 +

xi
λj

)

= −
n∑

i=1

γ
(k)
j (xi) +

1

λj

n∑
i=1

γ
(k)
j (xi)xi

which results into

λ
(k+1)
j =

∑n
i=1 γ

(k)
j (xi)xi∑n

i=1 γ
(k)
j (xi)
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