
Latent variable models

Course of Machine Learning
Master Degree in Computer Science
University of Rome “Tor Vergata”

a.a. 2024-2025

Giorgio Gambosi

Inference and maximum likelihood

The construction of a model of a probability distribution given a finite sample of data drawn from that distribution
is one of the central problems in pattern recognition and machine learning.

A standard approach to the problem involves parametric models in which a specific form for the density is
proposed which contains a number of parameters. Values for these parameters are then determined from an obser-
vation x consisting of a data vector on domain X , which is assumed to be an instantiation of a random variable x,
distributed according to some (unknown) distribution p(x;θ) with parameter θ = (θ1, . . . , θm).¹

We have then an inference problem, aiming to find a “good” way tomodel x, that is finding a specific probability
distribution that better represents x. In our context, since p(x;θ) has been arbitrarily assumed, the task is to
estimate the value θ∗ so that p(x;θ∗) better represents x, assuming that we are bound to use the distribution
p(x;θ). A common approach here is to define θ∗ as the value of θ such that the probability of x is maximum if
p(x;θ∗) is the assumed distribution of x. This estimate of the parameters of the available sample is called point
estimation.

Given a parameter value θ̂, the evidence p(x; θ̂) of x is the joint probability p(x; θ̂) of x. This is also denoted
as likelihood L(θ|x) when seen as a function of θ.

The best value θ∗ of θ to model x can be computed by maximizing the likelihood wrt θ, that is

θ∗ = argmax
θ

L(θ|x)

or, equivalently,
θ∗ = argmax

θ

logL(θ|x) = argmax
θ

l(θ|x)

where l(θ|x) ∆
= logL(θ|x) is the log-likelihood of x.²

If the model is simple enough that equation³

∇θl(θ|x) =∇θ log p(x|θ) = 0

has a finite set of closed-form solutions {θ∗0,θ∗1, . . . , θ∗r}, the values l(θ∗0|x), l(θ∗1|x), . . . , l(θ∗r |x) can be computed
and compared to find the global maximum.

¹Observe that we may interpret p(x;θ) as a function p(x; θ̂) of x given the value of the parameter θ or as a function p(x;θ) of θ given
an observed value of x.

²The equality holds because both functions have the same stationary points (since d
dx

log f(x) = 1
f(x)

d
dx

f(x) and f(x) is bounded)
and f(x1) > f(x2) iff log f(x1) > log f(x2), since log is a monotone increasing function.

³This corresponds to the system of equations ∂l(θ|x)
∂θi

= 0 for i = 1, . . . , n
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Even in the case that closed-form solutions cannot be computed, if the likelihood L(θ|x) can be evaluated for
any θ its gradient can be also computed (either by expressing it analytically or through automatic differentiation)
for any θ, and gradient ascent methods such as

θ(i+1) = θ(i) + η∇θL(θ|x)
∣∣
θ(i)

can be iteratively applied to converge to some stationary point.
Values for parameters are indeed usually determined from a whole set of observations, that is a data set X =

{x1, . . . , xn} consisting of n data vectors on X . Such values are assumed to be independent instantiations of x,
distributed according to the same (unknown) distribution p(x;θ).

The hypothesis of independence between the data points in X implies then that

L(θ|X) ∆
= p(X;θ) =

n∏
i=1

p(xi;θ)

θxi

n

Figure 1: The dataset consists of a set of n independent realizations of the random variable x distributed according
to a given parametric distribution p(x;θ) with parameter θ.

The best value θ∗ of θ to model X can then be computed by maximizing either the likelihood

L(θ|X) =
n∏

i=1

p(xi;θ)

or the log-likelihood

l(θ|X) =
n∑

i=1

log p(xi;θ)

of the whole dataset wrt θ, and the same considerations made above for the case of a single data item (which can
actually be seen as a dataset of size 1) apply, by referring to L(θ|x) instead of L(θ|X)

Inferring θ∗ only provides a limited information about X⁴, since it just amounts to identify how to best rep-
resent the available data within a chosen probabilistic framework for x. In unsupervised learning, however, we are
interested to identifying patterns and structures in a set of observations X, such as for example clusters of similar
items or hidden dependence among features.

In order to deal with these tasks, more sophisticated models can be exploited, including additional random
variables which provide the information we wish to extract from data.

The goal of such models is to express the distribution p(x) of the variables x1, . . . , xd in terms of a (usually
smaller) vector of additional variables z = (z1, . . . , zq) on domain Z . This is achieved by first decomposing the
joint distribution p(x, z) into the product of the marginal distribution p(z) of the additional variables and the
conditional distribution p(x|z) of the data variables given the additional ones.

⁴In the following we will refer to a set X of observations, which in a particular case shall be a single observation x.
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Latent variable models

Thismore general, albeit complex, approach is based on referring to a probabilisticmodel defined on a set of random
variables larger than the set of the ones observed in the dataset.

More in detail, we refer to a probabilistic model p(x, z;θ), where θ = ϕ ∪ψ defined on:

• an observed random variable x, whose instantiations can be observed

• a latent random variable z, whose instantiations cannot be observed.

In the general case, both the domain X of x and the domain Z of z are continuous. Later, we shall also deal
with the simpler case when Z is discrete, where integrals shall be substituted by sums.

Since p(x, z;θ) = p(x|z;θ)p(z;θ) we assume that θ can be partitioned into two disjoint sets of parameters
ϕ,ψ, where ϕ affects the distribution p(z;ϕ) of the latent variable, while ψ affects the conditional distribution
p(x|z;ψ). Hence, we may write

p(x, z;θ) = p(x|z;ψ)p(z;ϕ)

Observe that even if we assume that, by hypothesis, the joint distribution p(x, z;θ)⁵ is manageable (in the sense
that its value can be easily computed for any x, z,θ and also that its gradient wrt θ is easy to derive) computing the
evidence p(x|θ) may be hard or even unfeasible, since

p(x;θ) =
∫
Z
p(x, z;θ)dz =

∫
Z
p(x|z;ψ)p(z;ϕ)dz

and the usually multidimensional integral can be impossible to derive analytically and unfeasible to compute nu-
merically since any approximation may require considering a very large number of points.

The same considerations apply also for what regards computing the inverse conditional distribution of z given
x. In fact, since

p(z|x;θ) = p(x, z;θ)
p(x;θ)

this requires computing the evidence p(x;θ).
We make the following assumption:

Hypothesis 1 For all values x, z, θ̂ it is feasible to compute the joint probability p(x, z; θ̂). Moreover, it is also
feasible to compute local maxima wrt θ of such distribution, or of its logarithm, either because the equation
∇θp(x, z;θ) = 0 is solvable or because such gradient can be evaluated for all θ̂, making it possible to apply
numerical methods like gradient descent.

This clearly makes it possible to compute a (local) maximum θ∗ of such probability (that is of the likelihood
and the log likelihood)

θ∗ = argmax
θ

p(x, z;θ) = argmax
θ

log p(x, z;θ) = argmax
θ

l(θ|x, z)

Moreover, we shall consider the following additional hypothesis, dealing with the simple case when it holds and
the more complex and more general case when it does not hold.

Hypothesis 2 It is feasible, for all x, θ̂, to compute the marginal probability

p(x; θ̂) =
∫
Z
p(x, z; θ̂)dz

⁵Or equivalently both the prior distribution p(z;ϕ) of the latent variable and the conditional distribution p(x|z;ψ) of the observed
variable given the latent one
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As a consequence, the gradient ∇θp(x;θ)|θ=θ̂ can be evaluated, either by deriving it in closed form or by
applying automatic differentiation. This makes finding (local) maxima of the likelihood feasible, at least by
means of gradient descent methods.

Equivalently, in this case, it is also feasible to compute the inverse conditional probability p(z|x; θ̂) =

p(x, z; θ̂)
p(x; θ̂)

. Hence, the values of both parameters θi and latent observations zi can be inferred: the first

ones through MLE, while the other ones by exploiting the knowledge of p(z|x; θ̂).

Generation in latent variable models

Once a latent variable model p(x, z;θ) is given, new elements in X can be generated by first sampling the latent
variable distribution p(z), thus obtaining a value z and then sampling the conditional distribution p(x|z), as shown
in Figure 2⁶. A different generation policy is when, starting from a value x ∈ X , we wish to generate a new
value x ∈ X which is related (similar, in many practical case) to x. This can be performed by first sampling the
inverse conditional distribution p(z|x), obtaining a latent variable value z dependent on x, and then sampling the
conditional distribution p(x|z), thus obtaining x.

Z p(z)X

p(x|z1)

p(x|z2)

p(x|z3)

z1

z2

z3

x1

x2

x3

Figure 2: Generation of new items in a latent variable model

Inference in latent variable models

In terms of inference, we consider two random variables:

1. An observed random variable x, whose instantiation x is available.

2. An additional latent variable z whose instantiation z is not observable.

and define the complete dataset (x, z), including both instantiations. We remark that only x is actually available.
In general, we may also refer to a dataset X of n observations x1, . . . , xn, which are considered as instantiations

of x under the hypothesis that each of them has been independently generated according to the previous procedure.

⁶We shall not consider here the problem of how to tackle the task of sampling points from any given distribution.
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Thus, the existence of a set Z of n latent instantiations z1, . . . , zn of z is assumed, where xi was sampled from
p(x|zi;ψ) and zi was sampled from p(z;ϕ).

It is easy to show that, under such hypothesis, the dataset distributions p(X), p(Z), p(X,Z), p(X|Z) and p(Z|X)
are immediately related to the corresponding distributions for x and z. In particular:

p(Z) =
n∏

i=1

p(zi)

p(X|Z) =
n∏

i=1

p(xi|zi)

p(X,Z) =
n∏

i=1

p(xi, zi)

p(X) =
n∏

i=1

p(xi)

p(Z|X) =
n∏

i=1

p(zi|xi)

As done before, we shall refer in the following to the case of a dataset X,Z of n pairs {(x1, z1), . . . , (xn, zn)},
where the case of a single instantion (x, z) of the random variables x, z is just the case n = 1.

ϕ

ψ

zi

xi
n

Figure 3: The dataset is composed of a set of n independent realizations of a pair of random variables x, z, with
the latent variable z distributed according to a given parametric distribution p(z;ϕ) with parameter ϕ, while x is
dependent on z and distributed according to a given conditional parametric distribution p(x|z;ψ) with parameter
ψ.

Since we assume that for each i = 1, . . . , n, xi is observed while zi is unknown, the knowledge of the value of
the latent variable is only probabilistic: it may be modeled by the distribution p(z|x; θ̂) as

p(zi|xi; θ̂) =
p(xi|zi;ψ)p(zi;ϕ)

p(xi;θ)
=

p(xi|zi;ψ)p(zi;ϕ)∫
Z p(xi, z; θ̂)dz

Assume now that, as it happens in general, Hypothesis 2 does not hold, hence the evidence p(xi|θ) is unfeasible to
compute, thus making unfeasible also the computation of p(zi|xi;θ).

According to the maximum likelihood approach, we are interested to maximizing the observed dataset likeli-
hood or its log-likelihood

l(θ|X) = log p(X;θ) =
n∑

i=1

log p(xi;θ)

since X is the dataset actually available.
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The latent variable model we are using implies instead that the likelihood of the complete dataset could be
maximized

l(θ|X,Z) = log p(X,Z;θ) =
n∑

i=1

log p(xi, zi;θ)

where Z is not available.

The Evidence Lower Bound

Let us first consider the case of a single observation x (modeling a single observation), and consider any probability
distribution q(z). Then, for any θ̂

log p(x; θ̂) = log p(x; θ̂)
∫
Z
q(z)dz

=

∫
Z
q(z) log p(x; θ̂)dz

=

∫
Z
q(z) log

p(x, z; θ̂)
p(z|x; θ̂)

dz

=

∫
Z
q(z)

(
log p(x, z; θ̂)− log p(z|x; θ̂)

)
dz

=

∫
Z
q(z)

(
log

p(x, z; θ̂)
q(z)

− log
p(z|x; θ̂)
q(z)

)
dz

=

∫
Z
q(z) log

p(x, z; θ̂)
q(z)

dz−
∫
Z
q(z) log

p(z|x; θ̂)
q(z)

dz

= L(q, x, θ̂) +K(q, x, θ̂)

where

L(q, x, θ̂) ∆
= −DKL

(
q(z)||p(x, z; θ̂)

)
K(q, x, θ̂) ∆

= DKL

(
q(z)||p(z|x; θ̂)

)
and

DKL (p1(z)||p2(z))
∆
= E

p1(z)

[
log

p1(z)
p2(z)

]
=

∫
Z
p1(z) log

p1(z)
p2(z)

dz

is the Kullback-Leibler divergence⁷ between p1(z) and p2(z), which measures the difference between the two dis-
tributions.

In our case,

• L(q, x, θ̂) is the negative of the KL divergence between q(z) and the joint distribution p(x, z; θ̂)

• K(q, x, θ̂) is the KL divergence between q(z) and the real posterior distribution p(z|x; θ̂)

⁷We remark that this is the definition of KL divergence in the continuous case. If z is a discrete variable the integral is substituted by a
sum on Z , as usual.
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As we may see, for what concerns in general L(q, x,θ) and K(q, x,θ),

• they are not functions of z, which is marginalized by the integrations

• they are functions of x; however, we consider a fixed value here, since it is the assumed observation x = x

• they are functions of θ

• they are functionals of the distribution q on z; we remark however that, even if both of them depend on q,
their sum is independent from that distribution.

The following basic properties ofKL divergence will be useful

DKL (p1(z)||p2(z)) ≥ 0

DKL (p1(z)||p2(z)) = 0 iff p1(z) = p2(z)∀z

as a consequence, it results that for all x,

L(q, x, θ̂) ≤ log p(x; θ̂) whatever the distribution q

This is due to the first property above, since that implies that

K(q, x, θ̂) = DKL

(
q(z)||p(z|x; θ̂)

)
≥ 0

and, then
L(q, x, θ̂) = log p(x; θ̂)−K(q, x, θ̂) ≤ log p(x; θ̂)

Thus, for any observations x and parameter values θ̂, L(q, x, θ̂) is indeed a lower bound for log p(x; θ̂), regardless
of the distribution q(z).

L(q, x, θ̂) is called the evidence lower bound (ELBO) for θ̂ and x.
Observe also that for all x and for any q

L(q, x, θ̂) = E
q(z)

[
log p(x, z; θ̂)

]
− E

q(z)
[ log q(z) ]

which shows that, given the distribution q, the ELBO differs by a constant (the entropy of q(z)), from the expecta-
tion of the log joint distribution log p(x, z; θ̂) wrt z, assumed distributed according to q(z).

As shown in Figure 4, different distributions q1, q2, q3 provide different lower bounds L(q1, x, θ̂), L(q2, x, θ̂),
L(q3, x, θ̂) to log p(x; θ̂) for all x.

Given the observation x, a general way to deal with the iterative maximization of log p(x;θ) wrt θ can be
introduced by exploiting the ELBO as follows:

1. Given a current value θ(k) of θ, consider the ELBO as a functional of q

L(q, x,θ(k)) = E
q(z)

[
log p(x, z;θ(k))

]
− E

q(z)
[ log q(z) ] ≤ log p(x;θ(k))

and find a distribution q(k) which provides the best possible ELBO wrt log p(x;θ(k)), that the one such that
L(q(k), x,θ(k)) is maximum, or equivalently K(q(k), x,θ(k)) is minimum (Figure 5).

2. Consider the resulting ELBO as a function of θ

L(q(k), x,θ) = E
q(k)(z)

[ log p(x, z;θ) ]− E
q(k)(z)

[
log q(k)(z)

]
as a function of θ and maximize it wrt such parameter. Here,
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x

log p(x; θ̂)

L(q1, x, θ̂)
L(q2, x, θ̂)
L(q3, x, θ̂)

Eq1

[
log p(x, z; θ̂)

]
Eq2

[
log p(x, z; θ̂)

]
Eq3

[
log p(x, z; θ̂)

]

Figure 4: Each distribution qi provides a different ELBO to the log-likelihood, given a value θ̂ of the parameter.

• the first term Eq(k)(z)[ log p(x, z;θ)) ] is the expectation of the log-likelihood log p(x, z;θ) of x, z wrt z
assumed distributed as q(k)(z): this is a function of θ

• the second term −Eq(k)(z)

[
log q(k)(z)

]
is the entropyH

[
q(k)(z)

]
of q(k)(z).

Since the second term is a constant wrt θ, this is equivalent to the maximization of the expectation

Q(q(k), x,θ) ∆
= E

q(k)(z)

[ log p(x, z;θ) ]

with respect to θ.

In summary,

1. compute
q(k) = argmax

q
L(q, x,θ(k))

2. compute
θ(k+1) = argmax

θ

L(q(k), x,θ) = argmax
θ

Q(q(k), x,θ)

By construction, we have that

log p(x;θ(k)) ≥ L(q(k), x,θ(k))
log p(x;θ(k+1)) ≥ L(q(k), x,θ(k+1)) ≥ L(q(k), x,θ(k))

This however does not guarantee, in general, that

log p(x;θ(k+1)) ≥ log p(x;θ(k))

that is the monotone increase of the log-likelihood (Figure 7). However this property can be guaranteed in some
cases.

Observe that the gap between the ELBO L(q, x,θ(k)) and the log-likelihood log p(x;θ(k)) is equal to 0 if

DKL

(
q(z)||p(z|x;θ(k))

)
= 0
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x

L(q1, x,θ(k))

x

log p(x;θ(k))

L(q1, x,θ(k))
L(q2, x,θ(k))
L(q3, x,θ(k))

Figure 5: Different distributions provide different lower bounds to the log-likelihood, given the value θ(k) of the
parameter.

x

L(q(k), x,θ(k))

L(q(k), x,θ(k+1))

L(q(k), x,θ′)

x

log p(x;θ(k))

L(q(k), x,θ(k))
L(q(k), x,θ′)

L(q(k), x,θ(k+1))

log p(x;θ(k+1))

Figure 6: Different parameter values provide ELBO’s to different log-likelihoods, given the same distribution q(k).

which is true if q(z) = p(z|x;θ(k)) for all z, that is if q is indeed the conditional distribution p(z|x;θ(k)).
In the general case when we are dealing with a set X of observations, we have that

log p(X;θ) =
n∑

i=1

log p(xi;θ))

=

n∑
i=1

E
qi(z)

[
log

p(xi, z;θ))
p(z|xi;θ))

]

=

n∑
i=1

L(qi, xi,θ)) +
n∑

i=1

K(qi, xi,θ))

∆
= L(q,X,θ)) +K(q,X,θ))

where q = (q1, . . . , qn).
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x

L(q(k), x,θ(k))

L(q(k), x,θ(k+1))

L(q(k), x,θ′)

x

log p(x;θ(k))

L(q(k), x,θ(k))
L(q(k), x,θ′)

L(q(k), x,θ(k+1))

log p(x;θ(k+1))

Figure 7: An example of step with not increasing log-likelihood.

Hence, the ELBOL(q,X,θ) on the dataset log-likelihood log p(X;θ)) is the sum of the ELBO’sL(qi, xi,θ) on
the log-likelihood log p(xi;θ) for each observed item. The ELBO is also equal to the log-likelihood iffK(q,X,θ) =
0, that is if qi(z) = p(z|xi;θ)) for i = 1, . . . , n.

In this framework, the above approach requires, at each step:

1. at the first step, to derive the set of distributions q(k) by identifying for each xi ∈ X the best distribution
q
(k)
i (z), that is the one such thatL(q(k)i , xi,θ(k)) is maximum (or equivalentlyK(q

(k)
i , xi,θ(k)) is minimum)

2. at the second step, to find the value θ(k+1) which maximizes

L(q(k),X,θ) =
n∑

i=1

L(q(k)i , xi,θ)

with respect to θ.

A common approach here, in order not to deal with a set {q1, . . . , qn} of distributions of z, is to consider a
unique distribution of z conditional on x, that is q(z|x), that is such that qi(z) = q(z|xi). This is called amortization.
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