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Curse of dimensionality

In general, many features: high-dimensional spaces.

• sparseness of data

High dimensions lead to difficulties in machine learning algorithms (lower reliability or need of large number of
coefficients) this is denoted as curse of dimensionality

Dimensionality reduction

For any given classifier, the training set size required to obtain a certain accuracy grows exponentially wrt the
number of features. It is then important to bound the number of features, identifying the less discriminant ones

• Feature selection: identify a subset of features which are still discriminant, or, in general, still represent most
dataset variance

• Feature extraction: identify a projection of the dataset onto a lower-dimensional space, in such a way to still
represent most dataset variance

– Linear projection: principal component analysis, probabilistic PCA, factor analysis

– Non linear projection: manifold learning, autoencoders

Searching hyperplanes for the dataset

Approach: verify whether training set elements lie on a hyperplane (a space of lower dimensionality), apart from a
limited variability (which could be seen as noise)

Principal component analysis looks for a d′-dimensional subspace (d′ < d) such that the projection of elements
onto such subspace is a “faithful” representation of the original dataset. By “faithful” representation we mean that
distances between elements and their projections are small, even minimal
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PCA for d′ = 0

Objective: represent all d-dimensional vectors x1, . . . , xn by means of a unique vector x0, in the most faithful way,
that is so that

J(x0) =
n∑

i=1

||x0 − xi||2

is minimum. It is easy to show that

x0 = m =
1

n

n∑
i=1

xi

In fact,

J(x0) =
n∑

i=1

||(x0 −m)− (xi −m)||2

=

n∑
i=1

||x0 −m||2 − 2

n∑
i=1

(x0 −m)T (xi −m) +

n∑
i=1

||xi −m||2

=
n∑

i=1

||x0 −m||2 − 2(x0 −m)T
n∑

i=1

(xi −m) +
n∑

i=1

||xi −m||2

=
n∑

i=1

||x0 −m||2 +
n∑

i=1

||xi −m||2

Since
n∑

i=1

(xi −m) =

n∑
i=1

xi − n ·m = n ·m− n ·m = 0

the second term is independent from x0, while the first one is equal to zero for x0 = m

PCA for d′ = 1

A single vector is too concise a representation of the dataset: anything related to data variability gets lost: a more
interesting case is the one when vectors are projected onto a line passing throughm.

Let u1 be unit vector (||u1|| = 1) in the line direction: the line equation is then

x = αu1 +m
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where α is the distance of x from m along the line.
Also, let x̃i = αiu1 +m be the projection of xi (i = 1, . . . , n) onto the line: given x1, . . . , xn, we wish to find

the set of projections minimizing the quadratic error
The quadratic error is defined as

J(α1, . . . , αn, u1) =
n∑

i=1

||x̃i − xi||2

=

n∑
i=1

||(m+ αiu1)− xi||2

=

n∑
i=1

||αiu1 − (xi −m)||2

=

n∑
i=1

+α2
i ||u1||

2 +

n∑
i=1

||xi −m||2 − 2

n∑
i=1

αiuT1 (xi −m)

=
n∑

i=1

α2
i +

n∑
i=1

||xi −m||2 − 2
n∑

i=1

αiuT1 (xi −m)

Its derivative wrt αk is
∂

∂αk
J(α1, . . . , αn, u1) = 2αk − 2uT1 (xk −m)

which is zero when αk = uT1 (xk −m) (the orthogonal projection of xk onto the line).

The second derivative turns out to be positive

∂

∂α2
k

J(α1, . . . , αn, u1) = 2

showing that what we have found is indeed a minimum.

To derive the best direction u1 of the line, we consider the covariance matrix of the dataset

S =
1

n

n∑
i=1

(xi −m)(xi −m)T

By plugging the values computed for αi into the definition of J(α1, . . . , αn, u1), we get

J(u1) =
n∑

i=1

α2
i +

n∑
i=1

||xi −m||2 − 2
n∑

i=1

α2
i

= −
n∑

i=1

[uT1 (xi −m)]2 +
n∑

i=1

||xi −m||2

= −
n∑

i=1

uT1 (xi −m)(xi −m)T u1 +
n∑

i=1

||xi −m||2

= −nuT1 Su1 +
n∑

i=1

||xi −m||2

Since uT1 (xi −m) is the projection of xi onto the line, the product

uT1 (xi −m)(xi −m)T u1 = (uT1 (xi −m))(uT1 (xi −m))T = ||uT1 (xi −m)||2
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is the squared length of the projection of xi − m on the line, that is the squared distance, along the line, of the
projection of xi from the mean m, and the sum

n∑
i=1

uT1 (xi −m)(xi −m)T u1 = nuT1 Su1

is the sum of such squared distances, which is proportional (by a factor n) to the overall variance of the projections
of vectors xi wrt the mean m.

Minimizing J(u1) is equivalent to maximizing uT1 Su1. That is, J(u1) is minimum if u1 is the direction which
keeps the maximum amount of variance in the dataset. Hence, we wish to maximize uT1 Su1 (wrt u1), with the
constraint ||u1|| = 1.

By applying Lagrange multipliers this results equivalent to maximizing

u = uT1 Su1 − λ1(uT1 u1 − 1)

This can be done by setting the first derivative wrt u1 to 0:

∂u

∂u1
= 2Su1 − 2λ1u1 = 0

obtaining
Su1 = λ1u1

Note that:

• u is maximized if u1 is an eigenvector of S

• the overall variance of the projections is then equal to the corresponding eigenvalue

uT1 Su1 = uT1 λ1u1 = λ1uT1 u1 = λ1

• the variance of the projections is then maximized (and the error minimized) if u1 is the eigenvector of S
corresponding to the maximum eigenvalue λ1

As a consequence, the quadratic error is minimized by projecting vectors onto a hyperplane defined by the
directions associated to the d′ eigenvectors corresponding to the d′ largest eigenvalues of S. If we assume data
are modeled by a d-dimensional gaussian distribution with mean µ and covariance matrix Σ, PCA returns a d′-
dimensional subspace corresponding to the hyperplane defined by the eigenvectors associated to the d′ largest
eigenvalues of Σ: the projections of vectors onto that hyperplane are distributed as a d′-dimensional distribution
which keeps the maximum possible amount of data variability.

An example of PCA

Digit recognition (D = 28× 28 = 784)
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Choosing d′

Eigenvalue size distribution is usually characterized by a fast initial decrease followed by a small decrease

This makes it possible to identify the number of eigenvalues to keep, and thus the dimensionality of the pro-
jections. Eigenvalues measure the amount of distribution variance kept in the projection.

Let us consider, for each k < d, the value

rk =

∑k
i=1 λ

2
i∑n

i=1 λ
2
i

which provides a measure of the variance fraction associated to the k largest eigenvalues.

When r1 < . . . < rd are known, a certain amount p of variance can be kept by setting

d′ = argmin
i∈{1,...,d}

ri > p

Dimensionality reduction in co-occurrence data

Models referring to co-occurrence data: terms in documents, customer choices vs. items, people interacting each
other,. . .

They consider, given two collections V,D (for example, terms and documents, customers and items, people)
a sequence of observations W = {(w1, d1), . . . , (wN , dN )}, with wi ∈ V, di ∈ D (for example, occurrences of
terms in documents, customers accessing item description, pairs of people interacting, etc.)

Introduction to LSA

Basic assumptions

The approach of LSA (Latent Semantic Analysis) refers to three assumptions:

• ”semantic” information can be derived from the V,D matrix

• dimensionality reduction is a key aspect for such derivation

• ”terms” and ”documents” can be modeled as points (vectors) in a euclidean space

Framework

1. Dictionary V of V = |V| terms t1, t2, . . . , tV

2. Corpus D ofD = |D| documents d1, d2, . . . , dD

3. Each ”document” di is a sequence ofNi occurrences of ”terms” from V
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Model

1. A ”document” di can be seen as a multiset of Ni ”terms” in V (bag of words hypothesis in information
retrieval)

2. There exists a correspondence between V and D, and a vector space S . Each term ti has an associated vector
ui. Also, a vector vj in S is associated to each document dj

Let us define the Occurrence matrix W ∈ RV×D , where wi,j is associated to the occurrences of term ti into
document dj . The value wi,j derives from some measure of the number of occurrences of ti into dj (binary, count,
tf, tf-idf, entropy, etc.).

• Terms corresponds to row vectors (sizeD): a ”term” is defined only on the basis of the ”documents” in which
it occurs

• Documents correspond to column vector (size V ): a ”document” is defined only on the basis of the occurring
”terms”

This representation has some problems:

1. The values V,D are usually quite large

2. Vectors corresponding to ti and dj are very sparse (no relation for most ti, dj pairs)

3. Terms and documents are modeled as vectors defined on different spaces (RD and RV , respectively)

A more compact and uniform representation can be obtained by applying singular value decomposition.

LetW ∈ Rn×m be a matrix of rank r ≤ min(n,m), and let n > m. Then, there exist

• U ∈ Rn×r orthonormal (that is UTU = Ir)

• V ∈ Rm×r orthonormal (that is VVT = Ir)

• Σ ∈ Rr×r diagonal

such thatW = UΣVT .
Let us consider a matrixW ∈ Rn×m, and let us denote as r the rank (number of linearly independent rows or

columns) ofWTW ∈ Rm×m.
Several properties hold:

1. WTW is symmetric and semidefinite positive

• a matrix A is symmetric iff aij = aji for all i, j

• a matrix A is semidefinite positive iff xTAx ≥ 0 for all non null x ∈ Rn

2. All eigenvalues λ1, . . . , λr ofWTW are real and positive

3. The corresponding eigenvectors v1, . . . , vr are orthonormal (they are orthogonal and have unitary length)

Let us define the singular values σi =
√
λi, i = 1, . . . , r and let us also consider vectors ui =

1

σi
Wvi,

i = 1, . . . , r. It is easy to show that u1, . . . , ur are orthonormal
Let us also consider the following matrices

• V ∈ Rm×r having vectors v1, . . . , vr as columns

V = [v1, v2, . . . , vr]
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• U ∈ Rn×r having vectors u1, . . . , ur as columns

U = [u1, u2, . . . , ur]

• Σ ∈ Rr×r having singular values on the diagonal

Σ =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σr


It is easy to verify that

WV = UΣ

Moreover, since V is orthogonal, its is V−1 = VT and, as a consequence,

W = UΣVT

Reassuming,

• The occurrences matrixW is decomposed in the product of three matrices.

• The term matrix U, whose rows correspond to “terms”

• The document matrix VT , whose columns correspond to “documents”

• The singular values matrix Σ, which specifies the relevance of each dimension

Application of SVD: LSA

Key property: Each singular value tells us how important its dimension is. By setting less important dimensions
to zero, we keep the important information, but get rid of the “details”: this is equivalent to deleting rows (in U),
columns (inV) and rows and columns (inΣ), corresponding to such less important dimensions (i.e. smaller singular
values).

The dimension d of the new space may be predefined, and less than the rank ofW. In this case,

W ≈ W = UΣVT

The property
min

A:rank(A)=d
||W− A||2 = ||W−W||2

holds. The matrixW is the matrix that best approximatesW among all matrices of rank d according to the norm
L2 or of Frobenius

||A||2 =

√√√√ m∑
i=1

n∑
j=1

|aij |2

SVDdefines a transformation from two discrete vector spacesV ∈ ZZD andD ∈ ZZV , to one smaller continuous
vector space, T ∈ Rd.

The dimension of T is less than or equal to the rank (unknown) ofW, and it is lower bounded from the amount
of distortion acceptable in the projection.

The rows ofW (terms) are projected on a d-dimensional subspace ofRD having the set of columns ofV as basis:
this defines for each term a new representation (row of UΣ ∈ Rd) as a vector of the coordinates with respect to
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W

tV

t1
d1 dD

= U

Σ VT

(V ×D) (V × d)

(d× d) (d×D)

WT

dD

d1

t1 tV

= V

Σ UT

(D × V ) (D × d)

(d× d) (d× V )

this basis. In particular, each term is a vector wrt to that base, with set of coordinates given by UΣ ∈ Rr : value
uikσk provides a measure of the relevance of term ti in the k-th “topic”.

The rows of WT (documents) are projected on a d-dimensional subspace of RV having the set of columns of
U as basis: this defines for each document a new representation (row of VΣ ∈ Rd) as a vector of the coordinates
with respect to this basis. In particular, each document is a vector wrt to that base, with set of coordinates given
by VΣ ∈ Rr : value vjkσk provides a measure of the presence of the k-th topic in document dj .

Interpretation

Ŵ captures the largest part of the associations between terms and documentsW, neglecting the least significative
relations.

• Each term is represented as a (linear) combinations of hidden topics, corresponding to the columns of V:
terms with projections near to each other tend to appear in the same documents (or in semantically similar
documents)

• Each document is represented as a (linear) combinations of hidden topics, corresponding to the columns of
U: documents with projections near to each other tend to include the same terms (or semantically similar
terms)

LSA and clustering

Co-occurrences

• WWT ∈ ZZV×V represents the co-occurrences between terms in V (number of documents where the two
terms both occur)

• WTW ∈ ZZD×D represents the co-occurrences between documents in D (number of terms in common
between them)

By applying SVD,
WWT = UΣVTVΣUT = UΣ2UT

and
WTW = VΣUTUΣVT = VΣ2VT

8



a term clustering is obtained.

WWT

i

j

(i, j)
=

UΣ

i j

(UΣ)T

·

A reasonable measure of the proximity between terms ti and tj is given by the value of item (i, j) of WWT ,
hence of the inner product between ui (i-th row of UΣ) and uj (j-th row of UΣ). In particolar,

D(ti, tj) =
1

cos(ui, uj)
=

||ui|| · ||uj ||
uiuTj

can be assumed as a measure of the distance between terms.
Documents can also be clustered.

WTW

i

j

(i, j)
=

VΣ

i j

(VΣ)T

·

A reasonable measure of the proximity between documents di and dj is the value of item (i, j) ofWTW, hence
of the inner product between vi (i-th row of VΣ) and vj (j-th row of VΣ). In particolar,

D(di, dj) =
1

cos(vi, vj)
=

||vi|| · ||vj ||
vivTj

can be assumed as a measure of the distance between documents

Classification

Determining, given a document, to which topic (in a predefined collection) its content is most related.
Approach: construction of a vector of (possibly weighted) terms, to describe the class. It can be seen as an

additional document d (template of the class)

W can be extended by appending d as theD + 1-th column ofW (thus obtainingW ∈ ZZV×(D+1))
SVD introduces an additional vector v ∈ Rd asD + 1-th row of V, where d = UΣvT

Proximity of a document to a topic

A reasonable measure of the proximity between a document di and a class d is given by the value of item (i,D+1)

ofWTW, hence of the inner product between vi (i-th row ofi VΣ) and v ((D + 1)-th row of VΣ).

In particolar,

D(di, d) =
1

cos(vi, v)
=

||vi|| · ||v||
vivT

can be assumed as a measure of the distance between a document and a class
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W

W

tV

t1
d1 dD d

= U

Σ VT

VT

(V × (D + 1)) (V × d)

(d× d) (d× (D + 1))

v

WTW

i

=

VΣ

i

(VΣ)T

·

10


