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Curse of dimensionality
In general, many features: high-dimensional spaces.
« sparseness of data
High dimensions lead to difficulties in machine learning algorithms (lower reliability or need oflarge number of
coefficients) this is denoted as curse of dimensionality
Dimensionality reduction
For any given classifier, the training set size required to obtain a certain accuracy grows exponentially wrt the
number of features. It is then important to bound the number of features, identifying the less discriminant ones
« Feature selection: identify a subset of features which are still discriminant, or, in general, still represent most
dartaset variance
« Feature extraction: identify a projection of the dataset onto a lower-dimensional space, in such a way to still
represent most dataset variance
— Linear projection: principal component analysis, probabilistic PCA, factor analysis

— Non linear projection: manifold learning, autoencoders

Searching hyperplanes fOI‘ thC dataset

Approach: verify whether training set elements lie on a hyperplane (a space of lower dimensionality), apart from a
limited Variability (which could be seen as noise)
new feature y
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Principal component analysis looks for a d’-dimensional subspace (d’ < d) such that the projection of elements
onto such Subspace is a “faichful” representation of the original dataset. By “faichful” representation we mean that

distances between elements and their projections are small, even minimal



PCAford =0

Objective: represent all d-dimensional vectors xq,...,x, by means of a unique vector Xg, in the most faithful way,
that is so that

J(x0) = Y _|Ixo — xil|?
=1

is minimum. It is easy to show that
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the second term is indcpcndcnt from xq, while the first one is cqual to zero for xg = m

PCA ford =1

A single vector is too concise a representation of the dataset: anything related to data variability gets lost: a more
interesting case is the one when vectors are projected onto a line passing through m.
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Let uj be unit vector (||ug|| = 1) in the line direction: the line equation is then

X = Qqu] +m



where a is the distance of x from m along the line.

Also, let X; = aju; + m be the projection of x; (i = 1,...,n) onto the line: given x1, . . ., xp, we wish to find
the set ofprojcctions minimizing the quadratic error

The quadratic error is defined as
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Its derivative wrt oy, is

c?ij(al’ ce ,Oén,ul) = 2ak — 2u{(xk — m)

which is zero when ay, = uf (x, — m) (the orthogonal projection of xj, onto the line).

The second derivative turns out to be positive
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showing that what we have found is indeed a minimum.

To derive the best direction uy of the line, we consider the covariance matrix of the dataset

S=— Z(X’ —m)(x; — m)T
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By plugging the values computcd for oy; into the definition of‘J(Ozl, cey Oy, ul), we get
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Since ulT (x; — m) is the projection of x; onto the line, the product
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is the squared icngth of the projection of x; — m on the line, that is the squared distance, along the line, of the
projection of x; from the mean m, and the sum

n
Z u{(xi —m)(x; — m)Tul = nu{Sul
=1

is the sum of such squared distances, which is proportiona] (by a factor n) to the overall variance of the projections
of vectors x; wrt the mean m.

Minimizing J(uy) is equivalent to maximizing u? Suy. That is, J(u1) is minimum if uj is the direction which
g 1 q guj Suy , 1 1

kecps the maximum amount of variance in the dataset. Hence, we wish to maximize ulTSul (wrt uy), with the
constraint ||ui|| = 1.

By applying Lagrange mu]tipliers this results equivalent £o maximizing
U= u{Sul -\ (u{ul -1)
This can be done by setting the first derivative wrt uy to O:

% =28u; — 2Au; =0
Ouy

obtaining
Su; = A\ju;

Note that:
« u is maximized if uy is an eigenvector of §
« the overall variance of the projections is then equal to the corresponding eigenvalue

uipSul = ur{)\lul = Alu{ul =\

« the variance of the projections is then maximized (and the error minimized) if uy is the eigenvector of S
corresponding to the maximum eigenvalue A

As a consequence, the quadratic error is minimized by projecting vectors onto a hyperplane defined by the
directions associated to the d’ eigenvectors Corresponding to the d’ largest eigenvalues of S. If we assume data
are modeled by a d-dimensional gaussian distribution with mean g and covariance matrix X, PCA returns a d'-
dimensional subspace corresponding to the hyperplane defined by the eigenvectors associated to the d’ largest
eigenvalues of X: the projections of vectors onto that hyperplane are distributed as a d’-dimensional distribution
which keeps the maximum possib]e amount of data Variability.

An example of PCA
Digit recognition (D = 28 x 28 = 784)

Original M=1 M =10 M =50 M =250
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Choosing d’'

Eigenvalue size distribution is usually characterized by a fast initial decrease followed by a small decrease
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This makes it possible to identify the number of eigenvalues to keep, and thus the dimensionality of the pro-
jections. Eigenvalues measure the amount of distribution variance kept in the projection.

Let us consider, for each k < d, the value

b A2

Ty = =1
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which provides a measure of the variance fraction associated to the & largest eigenvalues.

When ry < ... < rqare known, a certain amount p of variance can be kept by setting
d = argmin 1r; > p
ie{1,....d}

Dimensionality reduction in co-occurrence data

Models referring to co-occurrence data: terms in documents, customer choices vs. items, people interacting each
other,. ..

They consider, given two collections V, D (for example, terms and documents, customers and items, people)
a sequence of observations W = {(wy,dy),. .., (wn,dn)}, with w; € V,d; € D (for example, occurrences of
terms in documents, customers accessing item description, pairs ofpeople interacting, etc.)
Introduction to LSA
Basic assumptions

The approach of LSA (Latent Semantic A/\llzllysis) refers to chree assumptions:

« "semantic” information can be derived from the V, D matrix

« dimensionality reduction is a key aspect for such derivation

+ "terms” and "documents” can be modeled as points (vectors) in a euclidean space

Framework

L. Dictionary Vof V' = |V| terms ¢y, to, ..., ty

2. Corpus D of D = |D| documents dy, dg, ... ,dp

3. Each "document” d; is a sequence of IV; occurrences of "terms” from V



Model

1. A "document” d; can be seen as a multiset of IV; "terms” in V (bag of words hypothesis in information
retrieval)

2. There exists a correspondence between V and D, and a vector space S. Each term ¢; has an associated vector
u;. Also, a vector v; in S is associated to each document d;

Let us define the Occurrence matrix W € RVXD, where Wy j 18 associated to the occurrences of term ¢; into
document d;. The value w; j derives from some measure of the number of occurrences of ¢; into d; (binary, count,
tf, tf-idf; entropy, etc.).

o Terms Corresponds to row vectors (size D): a "term” is defined only on the basis of the "documents” in which
it occurs

« Documents correspond to column vector (size V): a "document” is defined only on the basis of the occurring
” ”
terms

This representation has some problems:

L. The values V, D are usually quite large

2. Vectors corresponding to ¢; and dj are very sparse (no relation for most ¢;, dj pairs)

3. Terms and documents are modeled as vectors defined on different spaces (RP and RY, respectively)
A more compact and uniform representation can be obtained by applying singular value decomposition.
Let W € R™ ™ be a matrix of rank 7 < min(n,m), and let n > m. Then, there exist

. U € R™ 7 orthonormal (that is UTU = 1,

. V€ R™*7 orchonormal (chatis VVI = 1,.)

« ¥ € R™" diagonal

such that W = UZVT,
Let us consider a matrix W €
columns) of WI'W € R™*™
Several properties hold:

R™ ™ ‘and let us denote as 7 the rank (number of linearly independent rows or

1. WIw is symmetric and semidefinite positive

« amatrix A is symmetric iff a;; = aj; for all 4, j

+ amatrix A is semidefinite positive iff xI' Ax > 0 for all non null x € R™

2. All cigenvalues Aq, . . ., A of WI'W are real and positive

3. The corresponding eigenvectors v, . . ., v, are orthonormal (they are orthogonal and have unitary length)
. . ) 1
Let us define the singular values o = /A, @ = 1,...,r and let us also consider vectors u; = —Wy;,
7
i =1,...,r. Itisecasy to show thatuy, ..., u, are orthonormal

Let us also consider the following matrices

« V € R™*" having vectors vy, . . ., vy as columns

V= [V1,V2,...,V7~]



« U € R™7 having vectors ug, . . ., u, as columns
U= [uj,ug,...,u

« ¥ € R™" having singular values on the diagonal

01 0 0
0 o9 0
Y
0 0 - o,
It is casy to Verify that
WV = UX

Moreover, since V is orthogonal, its is V™1 = VI and, as a consequence,
W =uxv’?
Reassuming,
« 'The occurrences matrix W is decomposed in the product of three matrices.
« The term matrix U, whose rows correspond to “terms”
« The document matrix V2, whose columns correspond to “documents”

« 'The singular values matrix X, which specifies the relevance of each dimension

Application of SVD: LSA

Key property: Each singular value tells us how important its dimension is. By setting less important dimensions
to zero, we keep the important information, but get rid of the “details” this is equivalent to deleting rows (in U),
columns (in V) and rows and columns (in E), corrcsponding to such less important dimensions (i.e. smaller singular
values).

The dimension d of the new space may be predefined, and less than the rank of W. In this case,
WA~ W=UZv!
The property
min |[W = Al = [[W = W[
Arrank(A)=d

holds. The matrix W is the matrix that best approximates W among all matrices of rank d according to the norm
Lo or of Frobenius

SVD defines a transformation from two discrete vector spaces V) € ZP and D € ZV7 to one smaller continuous
vector space, T € R<.

The dimension of 7 is less than or equal to the rank (unknown) of W, and it is lower bounded from the amount
of distortion acceptable in the projection.

The rows of W (terms) are projected on a d-dimensional subspace of RP having the set of columns of V as basis:
this defines for each term a new representation (row of UX € R%) as a vector of the coordinates with respect to
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this basis. In particular, each term is a vector wrt to that base, with set of coordinates given by UX € R": value
U0 provides a measure of the relevance of term ¢; in the k-th “topic”.

The rows of W (documents) are projected on a d-dimensional subspace of RY having the set of columns of
U as basis: this defines for ecach document a new representation (row of VI € R?) as a vector of the coordinates
with respect to this basis. In particular, each document is a vector wrt to that base, with set of coordinates given
by VX € R": value vj,0% provides a measure of the presence of the k-th topic in document d;.

Interpretation

W captures the largest part of the associations between terms and documents W, neglecting the least significative

relations.

« Each term is represented as a (linear) combinations of hidden topics, corresponding to the columns of V:
terms with projections near to cach other tend to appear in the same documents (or in semantically similar

documents)

« Each document is rcprcscntcd as a (linear) combinations of hidden topics, corrcsponding to the columns of
U: documents with projections near to each other tend to include the same terms (or semantically similar

terms)
LSA and clustering

Co-occurrences

- wwl e zVxV represents the co-occurrences between terms in V (number of documents where the two
terms both occur)

. wiw e zPxP represents the co-occurrences between documents in D (number of terms in common
between them)

By applying SVD,
ww! = uxvivyu? = ux?u?
and
wiw = voulunv? = vyl



a term clustering is obtained.
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A reasonable measure of the proximity between terms #; and ¢ is given by the value of item (4, j) of WWT,
hence of the inner product between u; (i-th row of UX) and u; (j-th row of UX). In particolar,

U il ]

D(ti, tj) =
cos(ug, uj) uju;
can be assumed as a measure of the distance between terms.

Documents can also be clustered.
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A reasonable measure of the proximity between documents d; and dj is the value of item (i, j) OEWTW, hence
of the inner product between v; (i-th row of VX) and v; (j-th row of VX). In particolar,

s dy— L _ Il Il
417 COS(Vi,Vj) VZ‘VJ

can be assumed as a measure of the distance between documents

Classification

Dctcrmining7 given a documcnt, to which topic (ina prcdcﬁncd collection) its content is most relaced.
Approach: construction of a vector of (possibly weighted) terms, to describe the class. It can be seen as an
additional document d (tcmplate of the class)

W can be extended by appcnding d as the D + 1-ch column of W (thus obtaining W e ZVX (D+1))

SVD introduces an additional vector v € R% as D + 1-th row of V, where d = USv!

Proximity of a document to a topic

A reasonable measure of the proximity between a document d; and a class d is given by the value of item (i, D +1)
OFWTW, hence of the inner product between v; (i-th row oft VX) and ¥ (D + 1)-th row of VX).

In particolar,
_ 1 ATE
) — )

cos(vi, V) \A%

can be assumed as a measure of the distance between a document and a class
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