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Clustering types

• Partitional clustering: Given a set of items (points) X = {x1, . . . , xn}, we wish to partition X by assigning
each element to one out of k clusters C1, . . . , Ck in such a way to maximize (or minimize) a given cost J .
The number k of clusters could be given or should have to be computed.

• Hierarchical clustering: Given a set of items (points) X = {x1, . . . , xn}, we wish to derive a set of nested
partitions ofX, from the partition composed by all singletons (one cluster for each node) to the one composed
by a single item (the whole set).

Partitional clustering

Given a dataset X = (x1, . . . , xn), with xi ∈ Rd(i = 1, . . . , n).

We wish to derive a clustering, that is a partition of X into subsets of similar elements (that is elements which
are “near” according to a predefined distance measure) called clusters.

A clustering is represented as follows:

1. Each cluster is represented by a point in feature space denoted as prototype. The clustering is then repre-
sented by the set of cluster prototypes (m1, . . . ,mk), with mj ∈ Rd(j = 1, . . . , k)

2. Each element is assigned to exactly one cluster. In particular, we assume that the assignment of each item xi,
is encoded by means of a 1-to-k encoding. That is, as a vector of k binary flags rij ∈ {0, 1}, j = 1, . . . , k. If
xi is assigned the t-th cluster, then rit = 1 and rij = 0 for j ̸= t

A cost function is defined which associates a cost value to each clustering, and has to be minimized by the
clustering algorithm. The usual cost function is the sum of squared element-prototype distances:

J(R,M) =
k∑

i=1

n∑
j=1

rij ||xj −mi||2 =
k∑

i=1

n∑
j=1

rij(xj −mi)
T (xj −mi)

where

• Rij = rij , where ris = 1 and rij = 0 for j ̸= s if xi is assigned to cluster Cs

• Mi = mi, i = 1, . . . , k is the prototype of cluster Ci, which is usually the centroid of elements assigned to
the cluster

mi =
1

ni

n∑
j=1

rijxj
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k-means clustering

Given a dataset X = (x1, . . . , xn), xi ∈ Rd: we wish to derive k clusters with prototypesm1, . . . ,mk and, for each
xi a vector of assignments to clusters ri1, . . . , rik such that the cost

J(R,M) =

n∑
i=1

k∑
j=1

rij ||xi −mj ||2

is minimum.

Algorithm

The algorithm iterates on a sequence of steps, where at each step the current clustering is updated in two phases:

1. Given the current set of prototypes mij , minimize the cost wrt rij (that is by deriving the best assignment
of elements to clusters). This is obtained by minimizing, for each xi, the value

∑k
j=1 rij ||xi −mj ||2.

The minimum is obtained for rik = 1 (and rij = 0 for j ̸= k), where ||xi −mk||2 is the minimum distance.
That is, each point is assigned to the cluster represented by the nearest prototype.

2. Given the current set of assignments rij , minimize the cost wrt mij (that is by defining the best cluster
prototypes).

For each cluster Ck, the cost function J =
∑n

i=1

∑k
j=1 rij ||xi −mj ||2 is a quadratic function wrt mk . By

setting its derivative to zero, the values of mk providing its minimum are obtained

∂J

∂mk
= 2

n∑
i=1

rik(xi −mk) = 0 ⇒ mk =

∑n
i=1 rikxi∑n
i=1 rik

That is, the new prototype is the mean of the elements assigned to the cluster

It is easy to check that, at each step, J does not increase. Hence, there is a convergence to a localminimum. However,
such convergence can be slow, and a stopping rule mu st be defined, for example by checking cost decrease at each
step.

Example of application of k-means

Figure 1: Dataset
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Figure 2: Initial clustering

Figure 3: After one step

The algorithm is applied for a given number k of clusters to identify. An important issue is choosing the
best value for this parameter. The simplest way to do that is can be done by checking different values, applying the
algorithm for different values of k andmeasuring the associated quality as the cost value for the clustering obtained.

This measure improves as K increases (overfitting). A value such that further increases provide limited im-
provement should be found
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Hierarchical clustering

Aim
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Figure 4: After two steps

Figure 5: After three steps

Derivation of a binary tree. Node: cluster; arc: inclusion.

The tree specifies a set of pairwise merge of clusters.

• Aggregation, starting from n singleton clusters

• Separation, starting from a single cluster of size n

Requirements: k-means requires:

• a numberK of clusters

• an initial assignment

• a distance function between elements

Hierarchical clustering requires:

• a similarity function between clusters

Algorithm

• define n clusters (singleton)

• repeat

– compute the matrix of distances between clusters
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Figure 6: After four steps

Figure 7: Cost values

– merge the pair of clusters which are “nearest”

• until a single cluster has remained

Properties

• Each tree prefix is a partition of elements

• The algorithm provides a partial order of clusterings

• The best clustering has to be found

• Monotonicity: similarity between paired clusters decreases

Dendrogram

• Tree of cluster pairings

• The height of the nodes is inversely proportional to the similarity of the paired clusters
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Cluster similarity

Many measures. Most frequent ones:

• Similarity between nearest nodes (Single linkage)

dSL(C1, C2) = min
x1∈C1,x2∈C2

d(xi, xj)

• Similarity between farthest nodes (Complete linkage)

dCL(C1, C2) = max
x1∈C1,x2∈C2

d(xi, xj)

• Mean similarity (Group average)

dGA(C1, C2) =
1

|C1| · |C2|
∑
x1∈C1

∑
x2∈C2

d(xi, xj)

Different measures provide different dendrograms
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A probabilistic approach to clustering: mixtures of distributions

1 Mixtures

A probabilistic approach to clustering is based on the fundamental task of modeling the distribution of elements
in a parametric way p(x;θ) and inferring from the dataset X the best values of the parameter θ. This is equivalent
to what is done in the probabilistic approach to supervised learning, where the same is done with respect to the
conditional distribution p(t|x;θ).

The structure of the distribution p(x;θ) in the case of clustering considered here is such that the values inferred
for the parameterθ can be interpreted in terms of (a smooth) clustering. Such structure is amixture of distributions,
defined as follows:

p(x;π,Θ) =

K∑
i=1

πiq(x;θi)

The set of parameters is composed of

• the set of mixture weights π = {π1, . . . , πK} and

• the set of parameters of each mixture elementΘ = {θ1, . . . , θK}

The distributions can be from different families, for example from beta and normal distributions. However, this
makes the problem very complex and sometimes useless; therefore, usually the distributions in a mixture are from
one family (e.g., all normal distributions) but with different parameters.

Linear combinations of probability distributions

• Same type of distributions q(x|θ)

• Differ by parameter values

p(x|π,Θ) =
K∑
k=1

πkq(x|θk)

where
π = (π1, . . . , πK) Θ = (θ1, . . . , θK)

Mixing coefficients

0 ≤ πk ≤ 1 k = 1, . . . ,K
K∑
k=1

πk = 1

Terms πk have the properties of probability values
Provide extensive capabilities tomodel complex distributions. For example, almost all continuous distributions

can be modeled by the linear combination of a suitable number of gaussians.
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Mixture parameters estimation

Given a dataset X = (x1, . . . , xn), the parameters π,Θ of a mixture can be estimated by maximum likelihood.

L(Θ,π|X) = p(X|Θ,π) =

n∏
i=1

p(xi|Θ,π) =

n∏
i=1

K∑
k=1

πkq(x|θk)

or maximum log-likelihood

l(Θ,π|X) = log p(X|Θ,π) =
n∑

i=1

log p(xi|Θ,π) =
n∑

i=1

log

(
K∑
k=1

πkq(xi|θk)

)

Maximization is however constrained by the conditions 0 ≤ πi ≤ 1 for all i and
∑K

i=1 πi = 1.

By applying the lagrangian multipliers method, we will maximize

L(Θ,π, λ) = l(Θ,π|X) + λ(1−
K∑
i=1

πi)

Let us first consider the derivatives with respect to the weights π, which we set to 0

∂L(Θ,π|X)
∂πj

=
∂l(Θ,π|X)

∂πj
− λ = 0

This is equivalent to

λ =
∂l(Θ,π|X)

∂πj
=

∂

∂πj

[
n∑

i=1

log

(
K∑
k=1

πkq(xi|θk)

)]
=

n∑
i=1

∂

∂πj

[
log

(
K∑
k=1

πkq(xi|θk)

)]

=

n∑
i=1

q(xi|θj)∑K
k=1 πkq(xi|θk)

=

n∑
i=1

γj(xi)
πj

=
1

πj

n∑
i=1

γj(xi)

where,

γk(x) =
πkq(x|θk)∑K
j=1 πjq(x|θj)

By setting the derivative wrt λ to 0

∂L(Θ,π|X)
∂λ

=
∂

∂λ

(
l(Θ,π|X) + λ(1−

K∑
i=1

πi)

)
= 0
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we obtain
K∑
i=1

πi = 1

As a consequence, since, as shown above,

πj =
1

λ

n∑
i=1

γj(xi)

it results

K∑
j=1

πj =
1

λ

K∑
j=1

n∑
i=1

γj(xi) = 1

which implies

λ =

K∑
j=1

n∑
i=1

γj(xi) =
n∑

i=1

K∑
j=1

γj(xi) =
n∑

i=1

K∑
j=1

πjq(xi|θj)∑K
k=1 πkq(xi|θk)

=

n∑
i=1

1 = n

and, finally,

πk =
1

n

n∑
i=1

γk(xi)

For what concerns derivatives (or gradients) wrt distribution parameters θ, it results

∇θj
[L(Θ,π|X)] =∇θj

[
n∑

i=1

log

(
K∑
k=1

πkq(xi|θk)

)]
=

n∑
i=1

∇θj

[
log

(
K∑
k=1

πkq(xi|θk)

)]

=

n∑
i=1

γj(xi)∇θj
[log q(xi|θj)] = 0

The solution of these equations is dependent from the definition of distribution q(x|θ). However, it will depend
also from the values γj(xi) which, as seen above, is dependent from π andΘ.

Reassuming, log likelihood maximization is in general intractable analytically: its solution cannot be given in
closed form. Also,

• π andΘ can be derived from γk(xi)

• Also, γk(xi) can be derived from π eΘ

This makes it possible to apply an iterative approach:

• Given an estimation for π eΘ...

• derive an estimation for γk(xi), from which ...

• derive a new estimation for π eΘ, from which ...

• derive a new estimation for γk(xi) ...
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Gaussian mixtures

In this case, the distributions q(x|θ) are gaussians, hence we have θk = {µk,Σk}, the mean and covariance matrix
of the k-th gaussian.

q(x;µr,Σr)
∆
= N (x;µr,Σr) =

1

(2π)d/2
1

|Σr|1/2
exp
(
−1

2
(x− µr)

TΣ−1
r (x− µr)

)
As shown before, given the current values π(k),Θ(k), the coefficients

γ
(k−1)
j (xi) =

π
(k−1)
j q(xi;θ

(k−1)
j )∑K

r=1 π
(k−1)
r q(xi;θ

(k−1)
r )

=
π
(k−1)
j N (xi;µ

(k−1)
j ,Σ

(k−1)
j )∑K

r=1 π
(k−1)
r N (xi;µ

(k−1)
r ,Σ

(k−1)
r )

are computed.

Moreover, given the values γ(k−1)
j (xi), new values π(k),µ(k),Σ(k) are computed, with

π
(k)
j =

1

n

n∑
i=1

γ
(k−1)
j (xi)

The next value for µj derives in general from the solution of

n∑
i=1

γj(xi)
N (xi;µj ,Σj)

∇µj
[N (xi;µj ,Σj)] = 0

which is

µj =

∑n
i=1 γj(xi)xi∑n
i=1 γj(xi)

Similarly, the next value for Σj derives in general from the solution of

n∑
i=1

γj(xi)
N (xi;µj ,Σj)

∇Σj
[N (xi;µj ,Σj)] = 0

which can be proved to be

Σj =
1∑n

i=1 γj(xi)

n∑
i=1

γj(xi)(xi − µj)(xi − µj)
T

=
1∑n

i=1 γj(xi)

n∑
i=1

γj(xi)xixTi − µjµ
T
j

Notice that as a result, the iterative algorithm, at each step

1. knowing π(k)
j ,µ

(k)
j ,Σ

(k)
j for j = 1, . . . ,K computes γ(k)j (xi) for j = 1, . . . ,K and i = 1, . . . , n

2. also, knowing γ(k)j (xi) for j = 1, . . . ,K and i = 1, . . . , n computes π(k+1)
j , µ(k+1)

j , Σ(k+1)
j
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Mixtures of Poissons

In the case of a mixture ofK Poisson distributions

q(x;θk) = q(x;λk) =
e−λkλx

k

x!
,

As a consequence, it results

γ
(k−1)
j (xi) =

π
(k)
j

e
−λ

(k)
j λ

(k)
j

xi

xi!∑K
r=1 π

(k)
r

e−λ
(k)
r λ

(k)
r

xi

xi!

.

For what regards the maximization step, the new values π(k) are still given by

π
(k)
j =

1

n

n∑
i=1

γ
(k−1)
j (xi)

while the new values λ(k)
j derive by setting

0 =
n∑

i=1

γ
(k−1)
j (xi)

∂

∂λj
log q(xi;λj)

=
n∑

i=1

γ
(k−1)
j (xi)

∂

∂λj
(−λj + xi logλj − logxi!)

=
n∑

i=1

γ
(k−1)
j (xi)

(
−1 +

xi
λj

)

= −
n∑

i=1

γ
(k−1)
j (xi) +

1

λj

n∑
i=1

γ
(k−1)
j (xi)xi

which results into

λ
(k)
j =

∑n
i=1 γ

(k−1)
j (xi)xi∑n

i=1 γ
(k−1)
j (xi)

These algorithms are indeed applications of a general schema named Expectation-Maximization
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