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Clustering types
« Partitional Clustcring: Given a set of items (points) X = {xl, . ,xn}, we wish to partition X by assigning
each element to one out of k clusters C1, ..., Ck in such a way to maximize (or minimize) a given cost J.

ThC numbcr k? ()fClU.SECI‘S COuld bC givcn or ShOUld h’clVC to bC COl’l’lpU.th.

» Hierarchical clustering: Given a set of items (points) X = {xi,...,xp}, we wish to derive a set of nested
partitions of X, from the partition composed by all singletons (one cluster for each node) to the one composed
by a single item (the whole set).

Partitional clustering

Given a dataset X = (xq,...,%,), withx; € R4 (i =1,...,n).

We wish to derive a clustering, that is a partition of X into subsets of similar elements (chat is elements which
are “near” according to a predefined distance measure) called clusters.

A clustering is represented as follows:

1. Each cluster is represented by a point in feature space denoted as prototype. The clustering is then repre-
sented by the set of cluster prototypes (my, ..., mg), withm; € Rd(j =1,...,k)

2. Each element is assigned to exactly one cluster. In particular, we assume that the assignment of each item x;,
is encoded by means of a 1-to-k encoding. That is, as a vector of k binary flags r;; € {0,1}, 5 =1,... k. If
x; is assigned the t-th cluster, then 7y = Land rj; = 0 for j # ¢

A cost function is defined which associates a cost value to each clustering, and has to be minimized by the

clustcring algorithm. The usual cost function is the sum of squarcd Clcmcnt—prototypc distances:
k n k n
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J(R,M) = § E Tigl|xj —myl|* = E § :TIJ(X] m;)" (x; — m;)
i=1 j=1 i=1 j=1
where

« R;j = rij, where rjs = Land rj; = 0 for j # s if x; is assigned to cluster Cy

« M; =m;, i =1,...,kis the prototype of cluster C;, which is usually the centroid of elements assigned to
the cluster
n
1
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k-means clustering

Given a dataset X = (xl, .. ,xn), X; € R?: we wish to derive k clusters with prototypes my, ..., mg and, for each
x; a vector of assignments to clusters 741, . .., 7 such that the cost
n k
— 2
J(R, M) =" rij[[xi — my|
i=1 j=1

is minimum.

Algorithm
The algorithm iterates on a sequence of steps, where at each step the current clustering is updated in two phases:
1. Given the current set of prototypes m;;, minimize the cost wrt 7;; (that is by deriving the best assignment
p yp i ij Y g &
of elements to clusters). This is obtained by minimizing, for cach x;, the value E?:l Tij [|xi — mj| 2.
The minimum is obtained for rj;, = 1 (and 735 = 0 for j # k), where ||x; — my]||” is the minimum distance.

That is, each point is assigned to the cluster represented by the nearest prototype.

2. Given the current set of assignments 735, minimize the cost wrt m;; (that is by defining the best cluster
prototypes).

. ) k 2. — .
For each cluster Cf, the cost function J = Y711 375 7ij [[x; — mj||” is a quadratic function wre my. By
secting its derivative to zero, the values of my, providing its minimum are obtained

oJ & D iy TikXi
— =2 Tik(X; — my :0:>mk:71_1
Omy, ; s ) > i1 ik

That is, the new prototype is the mean of the elements assigned to the cluster

Itis easy to check that, at cach step, J does not increase. Hence, there is a convergence to alocal minimum. However,
such convergence can be slow, and a scopping rule mu st be defined, for example by checking cost decrease at each
step.

Example of application of k-means

Figure 1: Dataset
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Figure 3: After one step

The algorithm is applied for a given number k of clusters to identify. An important issue is choosing the
best value for this parameter. The simplest way to do that is can be done by checking different values, applying the
a]gorithm for different values of k and measuring the associated qua]ity as the cost value for the clustering obtained.

This measure improves as K increases (overfitting). A value such that further increases provide limited im-
provement should be found
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Hierarchical clustering
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Figure 5: After three steps

Derivation of a binary tree. Node: cluster; are: inclusion.

The tree specifies a set of pairwise merge of clusters.

- Aggregation, starting from n singleton clusters

« Separation, starting from a single cluster of size n

Requirements: k-means requires:

« anumber K of clusters

« an initial assignment

« adistance function between elements
Hierarchical clustering requires:

« asimilarity function between clusters

Algorithm

« define n clusters (singleton)
. repeat

— compute the matrix of distances between clusters
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Figure 6: After four steps
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Figure 7: Cost values

— merge the pair of clusters which are “nearest”

« until a sing]c cluster has remained
Properties

« Each tree prefix is a partition of elements

« The algorithm provides a partial order ofclusterings

« 'The best clustering has to be found

« Monotonicity: similarity between paired clusters decreases
Dendrogram

« Tree of cluster pairings

. The height of the nodes is inversely proportional to the similarity of the paired clusters



Sir Ronald Fisher's Iris Data Set
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Cluster similarity

Many measures. Most frequent ones:
« Similarity between nearest nodes (Single linkage)

dsr,(C1,Cy) = x1ecnllixr;€c,2 d(x4,xj)

« Similarity between farthest nodes (Complete linkage)

der(C1,C2) = el d(xi, x;)

+ Mean simi]arity (Group avcragc)

d6a(Cr, Co) = 7 ra ,02, S dlxixg)

x1€C1 x2€C2

Different measures provide different dendrograms



A probabilistic approach to clustering: mixtures of distributions
1 Mixtures

A probabilistic approach to clustcring is based on the fundamental task of modciing the discribution of elements
in a parametric way p(x; 8) and inferring from the dataset X the best values of the parameter 6. This is equivalent
to what is done in the probabi]istic approach to supervised iearning, where the same is done with respect to the
conditional distribution p(t|x; 0).

The structure of the distribution p(x; @) in the case of clustering considered here is such that the values inferred
for the parameter € can be interpreted in terms of (a smooth) clustering. Such structure is a mixture of distributions,
defined as follows:

K
p(x;m, ©) = E miq(x; 0;)
=1
The set of parameters is composed of
+ the set of mixture weights 7w = {71, ..., 7} and
« the set of parameters of each mixture element ® = {61, ...,0k}

The distributions can be from different families, for cxamplc from beta and normal distributions. However, this
makes the problem very complex and sometimes useless; therefore, usually the distributions in a mixture are from
one family (C.g., all normal distributions) but with different parameters.

Linear combinations of probability distributions

« Same type of distributions ¢(x|0)

. DifFCI‘ by paramctcr Vaiucs

K
p(x|m, ©) = mq(x(6;)
k=1
Where
= (m,...,TK) ® = (6y,...,0k)

Mixing coefficients

K
0<m, <1 k=1,....K Y me=1
k=1

Terms 7y, have the properties of probabiiity values
Provide extensive capabilities to model complex distributions. For example, almost all continuous distributions
can be modeled by the linear combination of a suitable number of gaussians.



Mixture parameters estimation

Given a dataset X = (x1, . .., Xp,), the parameters 7, ® of a mixture can be estimated by maximum likelihood.
n n
L(®,7|X) = p(X|®,7) = [ p(xi|©, 7) = H 14 (x|6k)
=1 i=1k=1

or maximum log-likelihood
n n K
(O, 7|X) = logp(X|®, ) = "logp(xi|®, ) =) " log (Z ﬂ'kq(xi|0k)>
=1 i=1 k=1

.. . . . .. ~ . K
Maximization is however constrained by the conditions 0 < 7; < 1 for all 4 and Zi:l m = 1.

By applying the 1agrangian multiplicrs method, we will maximize
K
LO, 7)) =1(O,7|X) + A(1 - )
=1

Let us first consider the derivatives with respect to the weights 7, which we set to 0

0L(®,7|X) 0l(®,n|X)

— A=0
on; on;

This is equivalent to

A= T om; Lz; log (Z kg (xi|O%) )] = Z; ar, llog (kz_l WkQ(Xz\ek)ﬂ
X'L|0 ’YJ Xz
- - = Vi\Xq
Z = Z S(x0)

Zk 1 Tkq Xz‘ek i=1

where,

7k q(x|0k)

L ey

By setting the derivative wrt A to 0

ILO,7|X) D =N
— = <l(®,n\x) +A(1— Zm) =0

=1



we obtain
E T, = 1
=1

Asa consequence, Sil’lCC7 as shown abovc,

% > ilx)
i=1

it results

n

K
EZ%‘(XQ =1
=1 i=1

Mw
>/\>—‘

which implies

N ) ST 3 SRR p) pRLLILIE SF P

j=1i=1 i=1 j=1 i=1 j=1 Zk 1 meq(xil6k) i

and, finally,
LS )
= n v Vi (X

For what concerns derivatives (or gradients) wrt distribution parameters 0, it results

n

K n K
Vo, [£(©,7|X)] = V,, [Z log (Z ﬂ'kq(xiwk))] = ngj llog (Z qu(xi|0k)>]
1 =1 k=1

=1

= Z’YJ Xz 10gq(x1|0 )| =

The solution of these equations is dependent from the definition of distribution ¢(x|@). However, it will depend
also from the values y;(x;) which, as seen above, is dependent from 7 and ©.
Rcassuming, 10g likelihood maximization is in gcncral intractable analytica]ly: its solution cannot be given in

closed form. Also,
« 7 and O can be derived from i (x;)
« Also, ¥k (x;) can be derived from 7w ¢ ©
This makes it possiblc to apply an iterative approach:
« Given an estimation for w e ©...
» derive an estimation for Y (x;), from which ...
« derive a new estimation for 7 ¢ ©, from which ...

« derive a new estimation for yx(x;) ...



Gaussian mixtures

In chis case, the distributions q(x|0) are gaussians, hence we have 8), = {Hlm Ek}, the mean and covariance matrix
of the k-th gaussian.

A 1 1 1 _
q(x; pr, X)) = N(XQ My ) = WW@(P <—2(X - HT‘)TET I(X - Hr))

As shown before, given the current values ﬂ'(k), @(k), the coefficients

k-1 k-1
(kfl)(' 77](- )Q(Xi;ej(- ))

x;) =
S g 08 Y)
- 71_J(Ic—l)/\/-( i?ﬂgk_1)72§'k_1))
- (k— k k
Sl N G, B Y)

are computed.

(k—1

Moreover, given the values V5 )(xi), new values Tr(k), p,(k), Y *) are computed, with

Z(kl

The next value for p; derives in general from the solution of
75 (xi e )] =
Z/\/'x“u], \% j[N(X17l‘L]72J)]_O

which is n
i = > izt Vi(xa)xi
! §32:176(X0

Similarly, the next value for 2; derives in general from the solution of

V(X4 . N
ZN)(:IJIJ, )v j[N(Xia#']vE])] =0

which can be proved to be

&:HJWW;WM“ i) (i — )"
1 n
T S ) 2 M bk

Notice that as a result, the iterative algorithm, at each step
1. knowing Wj(k), ugk), Z;k) forj =1,..., K computes ’yj(-k)(xi) forj=1,...,Kandi=1,...,n

2. also, knowing ’yj(»k) (xi)forj=1,...,Kandi=1,...,n computes W§k+1)7 u§-k+1), Z§-k+1)
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Mixtures of Poissons

In the case of a mixture of K Poisson distributions

e_Ak)\glg
q(x;0r) = a2 M) = ——,
As a consequence, it results
(k) o
ake A
(k—1) J x;!
;) = .
’y] ( Z) K (k) Aq(«k))\g‘k)zi

Zr 17 x;!

For what regards the maximization step, the new values ) are still given by

Z(kl

while the new values /\g-k) derive by setting

k—
O—Z =1 (g TIO&Q(quJ)
Z (k=1) (z;) ( Aj+ zilogAj — logz;!)
Aj
(k=1)
= 1
> ( 5
I <~ (e
- Z (k=1) xﬁ—k;Z’yj(k V(@)
J =1

which results into (k—1)
RO Yic1 V()i
J Zn (k—1) ($)
i=17j i

These algorithms are indeed applications of a gencral schema named Expectation-Maximization
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