Ensemble methods

Course of Machine Learning
Master Degree in Computer Science
University of Rome “Tor Vergata”
a.a. 2024-2025

Giorgio Gambosi

Ensemble methods try to improve performance by combining multiple models, in some way, instead of using a
single model.

« train a committee of L different models and make predictions by averaging the predictions made by each
model on dataset samplings (bugging)

« train different models in sequence: the error function used to train a model depend on the performance of

previous models (boostin g)

Bootstrap

The bootstr:np is a fundamental resampling tool in statistics. The basic underlying idea is to estimate the true
distribution of data F by the so-called empirical discribution F
Given the training data (x;,%;), 4 = 1, ..., n, the empirical distribution function F is defined as

B t) = % if 3i: (x,t) = (xi,t;)
0 otherwise

This is just a discrete probability distribution, putting equal weight % on cach of the observed training points.
A bootsrrzlp s:lmplc of size m from the training data is

* gk .
(X’L’tl) Z—].,...,m
where each (x}, t¥) is drawn uniformly at random from (x1,¢1), ..., (xp, ty), with replacement

n

This corrcsponds Cxactly tom indcpendcnt draws from F: it approximates what we would see if we could
sample more data from the true F. We often consider m = n, which is like sampling an entirely new training set.

Bagging

Classifiers (especially some of them, such as decision trees) may have low performances due to their high variance:

their behavior may largcly differ in presence of slightly different training sets (or even of the same training set).
For example, in trees, the separations made by splits are enforced at all lower levels: hence, if the data is per-

turbed s]ighdy, the new tree can have a considerably different sequence ofsplits, 1eading to a different classification

rule
« Given a training set (x4,¥;), 7 = 1,..., n, bagging averages the predictions done by classifiers of the same
type (such as decision trees) over a collection of boostrap samples. For b = 1,..., B (e.g., B = 100), n
bootstrap items (xg, yf), i =1,...,n are sampled and a classifier is fit on this set.

« At the end, to classify an input &, we simply take the most commonly prcdictcd class, among all B classifiers
« This is just choosing the class with the most votes

« In the case of regression, the predicted value is derived as the average among the predictions returned by the
B regressors

If the used classifier recurns class probabilities pg (x), the final bagged probabilities can be computed by aver-
aging

B
1 .
P == 37k
b=1
the predicted class is, again, the one with highest probability

Why is bagging working?

Let us consider, for simplicity, a binary classification problem. Suppose that for a given input x, we have B inde-
pendent classifiers, each with a given misclassification rate e (for example, e = 0.4). Assume W.l.o.g. that che true
class at x is 1: so the probability that the b-th classifier predicts class 0 is e = 0.4

Let By < B be the number of classifiers returning class 0 on input x: the probability of By is clearly distributed
according to a binomial (if classifiers are independent)

By ~ Binomial(B, ¢)

the misclassification rate of the bagged classifier is then

p <Bo > l;) = i <§>ek(1 —e)Bk

_B
k=841

which tends to 0 as B increases.
In the case of regression,

« Expected error of one model y;(x) wrt the true function h(x):
E[(yi(x) = h(x))’] = Exlei(x)?]

« Average expected error of the models

« Committee CXpCCECd Crror

E.— E. (; S yix) - h(x)) _ B (; Z€i<x)>

i=1

2

If E[e; (x)ej (x)] = 0if'i # j (errors are uncorrelated) then E, = %E(w.

« This is usual]y not verified: errors from different models are highly correlated.

Random forest

Application ofbagging to a set of (random) decision trees: classification performed by voting.
1. Forb=1to0 B:

(a) Bootstrap sample from training set

(b) Grow a decision tree T}, on such data by performing the following operations for each node:
i. select m variables at random
ii. pick the best variable among them

iii. split the node into two children
2. output the collection of trees T, ..., Tp

Overall prediction is performed as majority (for classification) or average (for regression) among trees predic—

tions.

Boosting

« Boosting is a procedure to combine the output of many weak classifiers to produce a powerful committee.
« A weak classifier is one whose error rate is only slightly better than random guessing.

« Boosting produces a sequence of weak classifiers ym(x) form = 1,...,m whose predictions are then
combined through a weighted majority to produce the final prediction

m
= sgn Zajyj(x)
j=1

« Each aj > 0 is computed by the boosting algorithm and reflects how accurately yy,, classified the data.
Adaboost (adaptive boosting)
« Models are trained in sequence: each model is trained using a weighted form of the dataset

« Element weights depend on the performances of the previous models (misclassified points receive larger
Weights)

« Predictions are performed through a weighted majority voting scheme on all models

T NT

y1(x) Ya(yar(x

\/

Yar(x) = sign (Z i (%)

Binary classification, dataset (X, t) of size n, with t; € {—1,1}. The algorithm maintains a set of weights
w(x) = (wy,...,wy,) associated to the dataset elements.

.. . 0 .
« Initialize weights as wg) = % fori=1,...,n

« Forg=1,....,m:
— Traina weak learner g (x) on X in such a way to minimize the weighted misclassification wre to w) (x).
— Let .
70 — ineg(j) wl(])
2 wz(j)
where £U) is the set of dataset elements misclassified by y;(x).

% 1f 1) > %, consider the reverse learner, which returns opposite prcdictions for all elements.

% 7'&'(]) can be interpreted as the probability that a random item from the training set is misclassified
P P Y g)
()
assuming that item x; can be sampled with probability ——=
> w?
1

K3

. Compute the learner confidence as log odds of a random item being well classified (1 — 7()) vs being

misclassified 77
1 1— 70

« For each x;, update the corresponding weight as follows

wlgj+1) _ ng)e—ajtiyj(xi)

which results into

(+1) ng)eo‘f > wl(j) ifx; € W
L G ARc) :
w;me TV < w; otherwise

. Normalize the set of w7V by dividing each of them by 1", wl(j—H), in order to get a distribution

)
The overall prediction is

y(x) =sgn | Y ajy;(x)
j=1

since y;(x) € {—1, 1}, this corresponds to a voting procedure, where each learner vote (class prediction) is weighted

by thC 1carncr COHﬁanCCA

Why does it work?

Observe that a weak learner confidence is inversely related to the probability of misclassification. Moreover,
_ @
) l 1—e
Wi = H o)
JEB;

where B; is the set of indices of “bad” weak learners wrt x; (that is ones that misclassify X;)
Since 1 — e > €W it derives that bad learners increase the probability of an element, while good learners

decrease it.
« As iterations proceed, observations difficult to classify correctly receive more influence.

« Each successive classifier is forced to concentrate on training observations missed by previous ones in the

sequence.

-+ . ®
+ p = ® @~
* 2 +- -
+ 1 + —
Dy I
= +
+ +- + -
+ T = + © o
+ - + -
- @
D,
+ i
+ + ks ar +@
. T ® —
- - ® -
H =sign | 0.42 +0.65 +0.92
+
ar i —
_ - -
o -

Additive models

Additive models are defined as the additive composition of simple “base” predictors h;
m
y(x) =Y ajhy(x)
=1

where, for each j, o is a weight and hj(x) = h(x;w;) € R is a simple function of the input x parameterized by
w; € RP for a given p
In this case, the predictors are binary classifiers; that is, hj(x) € {—1,1}.

As usual, an additive model is fit by minimizing a loss function avcragcd over the training dara:

n m
gl’lvrvl L (t;,y(x)) = gl,lvrvl Z;L ti, Z;ajh(xi;wj‘)
i= j=

witha = {o1,..., o} and W = UL wj. For many loss functions L and/or additive predictors A this is too
hard.

We may make things simplcr by grccdily adding one prcdictor at a time as follows: this is called Forward stage-
wise additive modeling. According to this approach, the minimum of the loss function of the additive model is

approximated by sequentially adding new base predictors to the sum without adjusting the parameters and coef-
ficients of those that have already been added. This is outlined below: at each iteration, one minimizes the loss

funetion wrt thC new periCtOf parameters Wkal’ld COI'I'CSPOl’ldil’lg COCfﬁCiCHt Q. PICViOUSly clddCd terms are not

modified.
« Setyp(x) =0
« Fork=1,...,m:

— Compute

(dk,ﬁ’k) = argmin Z L (ti, yk,l(xi) + Oékhk(xi)) = argmin Z L (tz', yk,l(xi) + akh(xi;wk))

AR,WE =1 AR,WE ;=1

- Set Y (x) = yr—1(x) + drh(x; W)

That is, fitting is performed not modifying previously added terms (greedy paradigm)
The general idea, hence, is the fol]owing:

. .. m . S . . .
» Fitan additive model } 37" a;jy;(x) in a forward stage-wise manner.
« At each stage, introduce a weak learner to compensate the shortcomings of existing ones.

. Shortcomings are identified by high—weight data points.

Adaboost as additive model

Adaboost can be interpreted as fitting an additive model with exponential loss
L(t, y(x)) = e O

that is, minimizing

n
§ e ti > opey arh(xiiw)
=1

with respect to Wi, ..., Wiy and aq, ..., Q.

In Adaboost, we have that p = n. That is, the number ofpararneters in h(x, W) is equal to the number of items:
hence, wg = (Wg1, - - -, Wgp) for all k.
Applying forward stagewise additive rnodeling7 at each step k we compute

n
(G, Wg) = argmin Ze_tiy(xi)
QL Wi i=1
n
= argmin Ze—ti(yk—i(Xi)+akh(Xi;Wk))

O, Wi i=1

n
. k) — hlxs
= argmin E wz() gt (xizw)
Ak>WEk 5 —1

Where o1
'UJ(k) — e_tiyk—l(xi) e_%ti T;1 arh(xiiwr)
(2

is a Wcight assigncd to item x; as an input to step k and is a constant wrt o, and wy. Observe that the Wcight

© @ (2)

assigned to x; varies at different steps, since it assumes values w; Wy Wy

Find the next learner and related Weight

We may dCCOl’I]pOSC tl’lC WCighth 10SS function as fOHOWS

En:wgk)e—aktih(xi;wk): Z w;k)eak_‘_ Z w@(k)e—ak
=1

xieg(k) X,Qg(k)

where £®) is the set of elements misclassified by hy, that is the ones such that ¢;h(x;; wi) = —1.
(k

5)6_0"C the Wcighted loss function, to be minimized wrt w(k) and .,

By adding and subtracting ZX,ESW w

can be written as

Z wgk)eo"f— Z wl(k)e_o"“ + Z wz(k)e_o"“—i- Z wgk)e_o"“

x, €EF) x; €EF) x; ZE) x, €EF)
n
(k) o —a —a (k)
Z w," (e —e) e ’“Zwi
wee® i=1

To derive the best values of the learner weights Wi, we observe that their values affect, through FAOR only the

first term
(k) (672 — QL
E L w; (e —)
x;€E(F)
The other one is indeed constant, since it only dcpcnds onwiy,...,wp_trand aq,...,QE_1.

Since v, is considered as a constant here, also e®* — ™% is a constant, and we have to derive the value wy,
which makes the sum of the current weights of misclassified items

(k)
>
X; cEk)
as small as possible. This is precisely what is done what is done in Adaboost.
To derive the best learner Wcight ay, we need to take into account the whole loss function. This can be done
by setting

0 N~ 0, —axtih(iw) _ O *) o, 0 *) o
@sz e k k:% sz ek‘i_@ Zwl e k=10
i=1 x; €ER) x; ZE k)

which results into

1. 1—70)

A = 5 10g W

with *)
(k) _ Doxee® Wi

qk) — =xee’
>im1 wf

This again corresponds to what is done in Adaboost.

Updating the element weights
By introducing the new learner yi, with weight ay, the overall predictor turns out to be

Yr(x) = yp—1(x) + aghi(x) = yr_1(x) + arh(x; wg)
(k+1)

Since by definition wZ(k) = e_t"yk—l(xi) we have for the new Weights w;
w(k"'l) — e tive(xi) — o—ti(yr—1(xi)+arh(xiswg))

(k)e—tiakh(xi;wk)
7

:w’i

again, as in Adaboost.

Gradient boosting
+ You are given (xi, ti), 1 =1,...,n,and the task is to fit a model y(x) to minimize square loss.
« Assume a model y(l)(x) is available, with residuals ¢; — ygl) =1t; — y(l)(xi)

(1)

« A new dataset (x;, t; — Y,),i=1,...,n can be defined, and a model r() (x) can be fit to minimize square

loss wrt such dataset
. Clearly, Y2 (x) =1 (x) + hl(x) is a model which improves y1 (x)
« The role of hq (x) is to compensate the shortcoming ofy(x)

« Ifyo (x) is unsatisfactory, we may define new models ho (x) and y3 (x) = Y2 (x) + ho (x)

How is this related to gradient descent?

+ Let us consider the squared loss function L(t,y) = %(t — y)2
« We want to minimize the empirical risk R = ;" | L(t;, y;) by adjusting y1, . . . , Yn, considered as param-
eters

« For each y; we consider the derivarive

oR _
e =Y i
The residuals correspond then to negative gradients
P _8R
TET

« Model h(x) can then be derived by Considcring the dataset

(Xlut%_y%):<xl7_gyR) izl?"'vn

_OR _OR
XZ’ ayl AR XTL7 8yn

we wonder what is the meaning of looking for a predictor h which fits such poincs.

Looking at the new dataset

« The idea is that h(xz) should be small if the cost derived from the current prcdiction y; of x; is almost
constant: modifying the prediction results into a limited gain wrt the cost

« similarly, if the cost would increase considerably by increasing the prediction value, then h(x;) should modify
such cost by decreasing it; that is it should be more negative

« finally, by symmetry, if the cost would decrease considerably by increasing the prediction value, then h(x;)
should modify such cost by increasing it; that is it should be more positive

Gradient boosting for regression

The following a]gorithm resules for a regression task
CSeryM() = LY 8
« Fork=1,...,m:

- Compute negative gradients

k _OR — 9 Lty

il t — (k) i
0Yi lyi=y® (x;) 0y; y o)

! yimy® (xi)
-_ Flt a WC&k 1carncr h(k;) (X) to anﬂthC gradlcnts, COnSldCrlng datasct (X’ia 792()), 1 =].7 PR ,n

— Derive the new classifier y(k+1)(x) = y(k) (x) + h(k) (x)
A benefit of formulating this algorithm using gradients is that it allows us to consider other loss functions and
derive the corresponding algorithms in the same way. For example, square loss is easy to deal with mathematically,
but not robust to outliers, i.e. pays too much attention to outliers.

Different loss functions

« Absolute loss

L(t,y) = |t — |
—g = sgn(t —y)
« Huber loss
L —y)2 t—yl <6
t—yl)—5 [t—yl>0
Jy—t t—yl <o
I7 0 st —y) -yl >0

A similar approach can be applicd on K-class classification, with
n n
R= ZL(ti:yl(Xi)7 Yk (X)) = ZL((M, o tin), (Yits - Yik)
i=1 i=1

for a given loss function, where (ti1y ..., tir) is the 1-to-K encoding of t;.
. Sctyg) = y](-l)(xi) = %,forj =1,...,Kandi=1,...,n

« Fork=1,...,m:

- Compute negative gradients

(k) OR 0 I
—qgy) = — = —— tity s tig)s (Yitls - -+ Vike
9ij 8%3, y¢j=y§k)(xi) 8:’-11']‘ ((il i) (yzl Yi)) yij=y§k)(xi)
—forj=1,....K
1. Fit K weak learners h;k) (x) G=1,...,K)ro negative gradicnts, Considcring dataset
k k k .
(Xiv(_g§1)>_g§2)7"'7_91([())) 'L:].,...,’I’L

2. Derive the new classifiers yj(-k+l)(x) = y](.k) (x) + h§~k) (x)

9

Which weak learners?

. Regression trees (special case of decision trees)

« Decision stumps (trees with only one node)

10

