
Ensemble methods

Course of Machine Learning
Master Degree in Computer Science
University of Rome “Tor Vergata”

a.a. 2024-2025

Giorgio Gambosi

Ensemble methods try to improve performance by combining multiple models, in some way, instead of using a
single model.

• train a committee of L different models and make predictions by averaging the predictions made by each
model on dataset samplings (bagging)

• train different models in sequence: the error function used to train a model depend on the performance of
previous models (boosting)

Bootstrap

The bootstrap is a fundamental resampling tool in statistics. The basic underlying idea is to estimate the true
distribution of data F by the so-called empirical distribution F̂

Given the training data (xi, ti), i = 1, . . . , n, the empirical distribution function F̂ is defined as

p̂(x, t) =

{
1
n if ∃i : (x, t) = (xi, ti)
0 otherwise

This is just a discrete probability distribution, putting equal weight 1
n on each of the observed training points.

A bootstrap sample of sizem from the training data is

(x∗i , t
∗
i) i = 1, . . . ,m

where each (x∗i , t
∗
i) is drawn uniformly at random from (x1, t1), . . . , (xn, tn), with replacement

This corresponds exactly to m independent draws from F̂ : it approximates what we would see if we could
sample more data from the true F . We often considerm = n, which is like sampling an entirely new training set.

Bagging

Classifiers (especially some of them, such as decision trees) may have low performances due to their high variance:
their behavior may largely differ in presence of slightly different training sets (or even of the same training set).

For example, in trees, the separations made by splits are enforced at all lower levels: hence, if the data is per-
turbed slightly, the new tree can have a considerably different sequence of splits, leading to a different classification
rule

• Given a training set (xi, yi), i = 1, . . . , n, bagging averages the predictions done by classifiers of the same
type (such as decision trees) over a collection of boostrap samples. For b = 1, . . . , B (e.g., B = 100), n
bootstrap items (xbi , y

b
i), i = 1, . . . , n are sampled and a classifier is fit on this set.

1

• At the end, to classify an input x, we simply take the most commonly predicted class, among allB classifiers

• This is just choosing the class with the most votes

• In the case of regression, the predicted value is derived as the average among the predictions returned by the
B regressors

If the used classifier returns class probabilities p̂bk(x), the final bagged probabilities can be computed by aver-
aging

pbk(x) =
1

B

B∑
b=1

p̂bk(x)

the predicted class is, again, the one with highest probability

Why is bagging working?

Let us consider, for simplicity, a binary classification problem. Suppose that for a given input x, we have B inde-
pendent classifiers, each with a given misclassification rate e (for example, e = 0.4). Assume w.l.o.g. that the true
class at x is 1: so the probability that the b-th classifier predicts class 0 is e = 0.4

LetB0 ≤ B be the number of classifiers returning class 0 on input x: the probability ofB0 is clearly distributed
according to a binomial (if classifiers are independent)

B0 ∼ Binomial(B, e)

the misclassification rate of the bagged classifier is then

p

(
B0 >

B

2

)
=

B∑
k=B

2
+1

(
B

k

)
ek(1− e)B−k

which tends to 0 as B increases.
In the case of regression,

• Expected error of one model yi(x) wrt the true function h(x):

Ex[(yi(x)− h(x))2] = Ex[εi(x)2]

• Average expected error of the models

Eav =
1

m

m∑
i=1

Ex[εi(x)2]

• Committee expected error

Ec = Ex

(1

m

m∑
i=1

yi(x)− h(x)

)2
 = Ex

(1

m

m∑
i=1

εi(x)

)2


If Ex[εi(x)εj(x)] = 0 if i ̸= j (errors are uncorrelated) then Ec =
1
mEav .

• This is usually not verified: errors from different models are highly correlated.

2

Random forest

Application of bagging to a set of (random) decision trees: classification performed by voting.

1. For b = 1 to B:

(a) Bootstrap sample from training set

(b) Grow a decision tree Tb on such data by performing the following operations for each node:

i. selectm variables at random
ii. pick the best variable among them
iii. split the node into two children

2. output the collection of trees T1, . . . , TB

Overall prediction is performed as majority (for classification) or average (for regression) among trees predic-
tions.

Boosting

• Boosting is a procedure to combine the output of many weak classifiers to produce a powerful committee.

• A weak classifier is one whose error rate is only slightly better than random guessing.

• Boosting produces a sequence of weak classifiers ym(x) for m = 1, . . . ,m whose predictions are then
combined through a weighted majority to produce the final prediction

y(x) = sgn

 m∑
j=1

αjyj(x)


• Each αj > 0 is computed by the boosting algorithm and reflects how accurately ym classified the data.

Adaboost (adaptive boosting)

• Models are trained in sequence: each model is trained using a weighted form of the dataset

• Element weights depend on the performances of the previous models (misclassified points receive larger
weights)

• Predictions are performed through a weighted majority voting scheme on all models

{w(1)
n } {w(2)

n } {w(M)
n }

y1(x) y2(x) yM (x)

YM (x) = sign

(
M∑
m

αmym(x)

)
Binary classification, dataset (X, t) of size n, with ti ∈ {−1, 1}. The algorithm maintains a set of weights

w(x) = (w1, . . . , wn) associated to the dataset elements.

3

• Initialize weights as w(0)
i = 1

n for i = 1, . . . , n

• For j = 1, . . . ,m:

– Train aweak learner yj(x) onX in such away tominimize theweightedmisclassificationwrt tow(j)(x).

– Let

π(j) =

∑
xi∈E(j) w

(j)
i∑

iw
(j)
i

where E(j) is the set of dataset elements misclassified by yj(x).

* If π(j) > 1
2 , consider the reverse learner, which returns opposite predictions for all elements.

* π(j) can be interpreted as the probability that a random item from the training set is misclassified,

assuming that item xi can be sampled with probability
w

(j)
i∑

i w
(j)
i

• Compute the learner confidence as log odds of a random item being well classified (1 − π(j)) vs being
misclassified π(j)

αj =
1

2
log

1− π(j)

π(j)
> 0

• For each xi, update the corresponding weight as follows

w
(j+1)
i = w

(j)
i e−αjtiyj(xi)

which results into

w
(j+1)
i =

{
w

(j)
i eαj > w

(j)
i if xi ∈ E (j)

w
(j)
i e−αj < w

(j)
i otherwise

• Normalize the set of w(j+1)
i by dividing each of them by

∑n
i=1w

(j+1)
i , in order to get a distribution

The overall prediction is

y(x) = sgn

 m∑
j=1

αjyj(x)


since yj(x) ∈ {−1, 1}, this corresponds to a voting procedure, where each learner vote (class prediction) is weighted
by the learner confidence.

Why does it work?

Observe that a weak learner confidence is inversely related to the probability of misclassification. Moreover,

w
(t)
i =

1

n

∏
j∈Bi

1− e(j)

e(j)

where Bi is the set of indices of “bad” weak learners wrt xi (that is ones that misclassify xi)
Since 1 − e(j) > e(j) it derives that bad learners increase the probability of an element, while good learners

decrease it.

• As iterations proceed, observations difficult to classify correctly receive more influence.

• Each successive classifier is forced to concentrate on training observations missed by previous ones in the
sequence.

4

Additive models

Additive models are defined as the additive composition of simple “base” predictors hj

y(x) =
m∑
j=1

αjhj(x)

where, for each j, αj is a weight and hj(x) = h(x;wj) ∈ R is a simple function of the input x parameterized by
wj ∈ Rp for a given p

In this case, the predictors are binary classifiers; that is, hj(x) ∈ {−1, 1}.
As usual, an additive model is fit by minimizing a loss function averaged over the training data:

min
α,W

L (ti, y(x)) = min
α,W

n∑
i=1

L

ti,
m∑
j=1

αjh(xi;wj)


with α = {α1, . . . , αm} and W = ∪m

j=1wj . For many loss functions L and/or additive predictors h this is too
hard.

We may make things simpler by greedily adding one predictor at a time as follows: this is called Forward stage-
wise additive modeling. According to this approach, the minimum of the loss function of the additive model is

5

approximated by sequentially adding new base predictors to the sum without adjusting the parameters and coef-
ficients of those that have already been added. This is outlined below: at each iteration, one minimizes the loss
function wrt the new predictor parameters wkand corresponding coefficient αk . Previously added terms are not
modified.

• Set y0(x) = 0

• For k = 1, . . . ,m:

– Compute

(α̂k, ŵk) = argmin
αk,wk

n∑
i=1

L (ti, yk−1(xi) + αkhk(xi)) = argmin
αk,wk

n∑
i=1

L (ti, yk−1(xi) + αkh(xi;wk))

– Set yk(x) = yk−1(x) + α̂kh(x; ŵk)

That is, fitting is performed not modifying previously added terms (greedy paradigm)
The general idea, hence, is the following:

• Fit an additive model
∑m

j=1 αjyj(x) in a forward stage-wise manner.

• At each stage, introduce a weak learner to compensate the shortcomings of existing ones.

• Shortcomings are identified by high-weight data points.

Adaboost as additive model

Adaboost can be interpreted as fitting an additive model with exponential loss

L(t, y(x)) = e−ty(x)

that is, minimizing
n∑

i=1

e−ti
∑m

k=1 αkh(xi;wk)

with respect to w1, . . . ,wm and α1, . . . , αm.

In Adaboost, we have that p = n. That is, the number of parameters in h(x,w) is equal to the number of items:
hence, wk = (wk1, . . . , wkn) for all k.

Applying forward stagewise additive modeling, at each step k we compute

(α̂k, ŵk) = argmin
αk,wk

n∑
i=1

e−tiy(xi)

= argmin
αk,wk

n∑
i=1

e−ti(yk−1(xi)+αkh(xi;wk))

= argmin
αk,wk

n∑
i=1

w
(k)
i e−αktih(xi;wk)

where
w

(k)
i = e−tiyk−1(xi) = e−

1
2
ti
∑k−1

r=1 αrh(xi;wr)

is a weight assigned to item xi as an input to step k and is a constant wrt αk and wk . Observe that the weight
assigned to xi varies at different steps, since it assumes values w

(0)
i , w

(1)
i , w

(2)
i ,

6

Find the next learner and related weight

We may decompose the weighted loss function as follows
n∑

i=1

w
(k)
i e−αktih(xi;wk) =

∑
xi∈E(k)

w
(k)
i eαk +

∑
xi ̸∈E(k)

w
(k)
i e−αk

where E(k) is the set of elements misclassified by hk, that is the ones such that tih(xi;wk) = −1.

By adding and subtracting
∑

xi∈E(k) w
(k)
i e−αk the weighted loss function, to be minimized wrt w(k) and αk,

can be written as ∑
xi∈E(k)

w
(k)
i eαk −

∑
xi∈E(k)

w
(k)
i e−αk

+

 ∑
xi ̸∈E(k)

w
(k)
i e−αk +

∑
xi∈E(k)

w
(k)
i e−αk

 =

∑
xi∈E(k)

w
(k)
i (eαk − e−αk) + e−αk

n∑
i=1

w
(k)
i

To derive the best values of the learner weights ŵk, we observe that their values affect, through E(k), only the
first term ∑

xi∈E(k)

w
(k)
i (eαk − e−αk)

The other one is indeed constant, since it only depends on w1, . . . ,wk−1 and α1, . . . , αk−1.

Since αk is considered as a constant here, also eαk − e−αk is a constant, and we have to derive the value ŵk

which makes the sum of the current weights of misclassified items∑
xi∈E(k)

w
(k)
i

as small as possible. This is precisely what is done what is done in Adaboost.
To derive the best learner weight αk, we need to take into account the whole loss function. This can be done

by setting

∂

∂αk

n∑
i=1

w
(k)
i e−αktih(xi;wk) =

∂

∂αk

∑
xi∈E(k)

w
(k)
i eαk +

∂

∂αk

∑
xi ̸∈E(k)

w
(k)
i e−αk = 0

which results into

αk =
1

2
log

1− π(k)

π(k)

with

π(k) =

∑
xi∈E(k) w

(k)
i∑n

i=1w
(k)
i

This again corresponds to what is done in Adaboost.

Updating the element weights

By introducing the new learner yk with weight αk, the overall predictor turns out to be

yk(x) = yk−1(x) + αkhk(x) = yk−1(x) + αkh(x;wk)

Since by definition w(k)
i = e−tiyk−1(xi) we have for the new weights w(k+1)

i

w
(k+1)
i = e−tiyk(xi) = e−ti(yk−1(xi)+αkh(xi;wk)) = w

(k)
i e−tiαkh(xi;wk)

again, as in Adaboost.

7

Gradient boosting

• You are given (xi, ti), i = 1, . . . , n, and the task is to fit a model y(x) to minimize square loss.

• Assume a model y(1)(x) is available, with residuals ti − y
(1)
i = ti − y(1)(xi)

• A new dataset (xi, ti−y
(1)
i), i = 1, . . . , n can be defined, and a model h(1)(x) can be fit to minimize square

loss wrt such dataset

• Clearly, y2(x) = y1(x) + h1(x) is a model which improves y1(x)

• The role of h1(x) is to compensate the shortcoming of y(x)

• If y2(x) is unsatisfactory, we may define new models h2(x) and y3(x) = y2(x) + h2(x)

How is this related to gradient descent?

• Let us consider the squared loss function L(t, y) = 1
2(t− y)2

• We want to minimize the empirical riskR =
∑n

i=1 L(ti, yi) by adjusting y1, . . . , yn, considered as param-
eters

• For each yi we consider the derivative
∂R

∂yi
= yi − ti

The residuals correspond then to negative gradients

ti − yi = −∂R

∂yi

• Model h(x) can then be derived by considering the dataset

(xi, ti − yi) =

(
xi,−

∂R

∂yi

)
i = 1, . . . , n

Looking at the new dataset {(
xi,−

∂R

∂yi

)
, . . . ,

(
xn,−

∂R

∂yn

)}
we wonder what is the meaning of looking for a predictor h which fits such points.

• The idea is that h(xi) should be small if the cost derived from the current prediction yi of xi is almost
constant: modifying the prediction results into a limited gain wrt the cost

• similarly, if the cost would increase considerably by increasing the prediction value, then h(xi) shouldmodify
such cost by decreasing it; that is it should be more negative

• finally, by symmetry, if the cost would decrease considerably by increasing the prediction value, then h(xi)
should modify such cost by increasing it; that is it should be more positive

8

Gradient boosting for regression

The following algorithm results for a regression task

• Set y(1)(x) = 1
n

∑n
i=1 ti

• For k = 1, . . . ,m:

– Compute negative gradients

−g
(k)
i = −∂R

∂yi

∣∣∣
yi=y(k)(xi)

= − ∂

∂yi
L(ti, yi)

∣∣∣
yi=y(k)(xi)

= ti − y(k)(xi)

– Fit a weak learner h(k)(x) to negative gradients, considering dataset (xi,−g
(k)
i), i = 1, . . . , n

– Derive the new classifier y(k+1)(x) = y(k)(x) + h(k)(x)

A benefit of formulating this algorithm using gradients is that it allows us to consider other loss functions and
derive the corresponding algorithms in the same way. For example, square loss is easy to deal with mathematically,
but not robust to outliers, i.e. pays too much attention to outliers.

Different loss functions

• Absolute loss

L(t, y) = |t− y|
−g = sgn(t− y)

• Huber loss

L(t, y) =

{
1
2(t− y)2 |t− y| ≤ δ

δ(|t− y|)− δ
2 |t− y| > δ

−g =

{
y − t |t− y| ≤ δ

δ · sgn(t− y) |t− y| > δ

A similar approach can be applied onK-class classification, with

R =
n∑

i=1

L(ti, y1(xi), . . . , yK(xi)) =
n∑

i=1

L((ti1, . . . , tiK), (yi1, . . . , yiK))

for a given loss function, where (ti1, . . . , tiK) is the 1-to-K encoding of ti.

• Set y(1)ij = y
(1)
j (xi) = 1

K , for j = 1, . . . ,K and i = 1, . . . , n

• For k = 1, . . . ,m:

– Compute negative gradients

−g
(k)
ij = − ∂R

∂yij

∣∣∣
yij=y

(k)
j (xi)

= − ∂

∂yij
L((ti1, . . . , tiK), (yi1, . . . , yiK))

∣∣∣
yij=y

(k)
j (xi)

– for j = 1, . . . ,K

1. FitK weak learners h(k)j (x) (j = 1, . . . ,K) to negative gradients, considering dataset

(xi, (−g
(k)
i1 ,−g

(k)
i2 , . . . ,−g

(k)
iK)) i = 1, . . . , n

2. Derive the new classifiers y(k+1)
j (x) = y

(k)
j (x) + h

(k)
j (x)

9

Which weak learners?

• Regression trees (special case of decision trees)

• Decision stumps (trees with only one node)

10

