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Multilayer networks

Up to now, only models with a single level of parameters to be learned were considered. Such models are based on
generalized linear model structures of the type y(x) = f(w!x + b), where model parameters are directly applied
to input values. More general classes of models can be defined by defining sequences of transformations applied on
input data, corresponding to multilayered networks of functions.

For example,

Linear regression

Logistic regression

Softmax regression - v — O —-G)—

A simplified description,




The role of predefined base functions can be taken by a set of generalized linear models with parameter values

learnable from data.

This corresponds to adding a first layer of computing units, which from the d-dimensional input vector x =
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Each activation a; is transformed by means of a non-linear activation function hy to provide an ouput value
zi =hy(a;) =h (W-Tx—l—b-)
g — M%) = 1AW J

here hq is some approximate threshold function, such as a sigmoid
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An output vector z = (21, .. ., 24, ) is then produced.

First layer

Inputs

The approach can be iterated, adding more layers with the same structure, and resulting ina multilayer network.

Here, one additional layer is added.
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Now, vector z(1) provides an input to the next layer, where dg hidden units compute a vector 22 = (77,24
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by first performing linear combinations of the input values
dy T
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and then applying function hg, as follows
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Usually, hg = hy, that is, a same activation function is applied for all layers (except the last one).
The same structure can be repeated for each inner layer, where layer 7 has d, units which, from input vector
2" derive output vector 2r—1 through linear combinations
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and non linear transformation

Multilayer network structure: output layer

For what concerns the last layer, say layer D, an output vector y = 2P is again produced by means of dp output

units by ﬁTSE performing linear combinations on Z( _1)
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and then applying function ¢
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where:
+  is the identity function in the case of regression

« @ is a sigmoid in the case of binary classification

« (p is a softmax in the case of multiclass classification

Output layer: regression

Output layer: binary classification

7(

D—1))



Output layer: K -class classification

3 layer networks
A sufﬁcient]y powerful model is provided in the case of 3 1ay€rs (input, hidden, output).

For example, applying this model for K -class classification corresponds to the following overall nectwork func-
tion foreachyp, k=1,..., K

dy d
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where the number d; of hidden units is a model structure parameter and s is the softmax function.
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Approximating functions with neural networks
Neural networks, despite their simple structure, are sufficient powerful models to act as universal approximators.

[t is possible to prove that any continuous function can be approximated, at any by means of two-layered neural
networks with sigmoidal activation functions. The approximation can be indefinitely precise, as long as a suitable
number of hidden units is defined.

Iterative methods to minimize F(W)
The error function F (W) is usually quite hard to minimize:
« there exist many local minima
« for each local minimum there exist many cquivaient minima

— any permutation of hidden units provides the same result
- changing signs of all input and output links of a sing]e hidden unit provides the same result
Analytical approaches to minimization cannot be applied: resort to iterative methods (possibly comparing

results from different runs).
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Gradient descent

At each step, two stages:
1. the derivatives of the error functions wrt all Weights are evaluated at the current point
2. weights are adjusted (resulting into a new point) by using the derivatives

On-line (stochastic) gradient descent

We exp]oit the property that the error function is the sum of a collection of terms, each characterizing the error
corresponding to each observation

the update is based on one training set element at a time

W = - TIVEi(W)in

« at cach step the weight vector is moved in the direction of greatest decrease wrt the error for a specific data
element

« only one training set element is used at each step: less expensive at each step (more steps may be necessary)
« makes it possible to escape from local minima

Batch gradient descent

The gradient is computed by considering a subset (batch) B of the training set

W Wy 3 VE(W)|
x; EB

w*)



Computing gradients

In order to apply a gradicnt based method7 the set of derivatives
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must be derived for all 4, j, k in order to be iteratively evaluated for different values of w during gradient descent.
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For the sake ofbrcvity7 assume b§k) =b; in the following.

As we shall see, in order to evaluate o
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that is the derivatives of the cost function wrt each activation value agD), e ,agg) at the final layer (the D-th,
here) of the network.

Regression
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Here, we have y = 2(P) = a(P) and
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Binary classification
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Here, we have y = 2(D) = J(a(D)) and
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since, by the properties of the logistic function,
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K -class classification

Here, we have
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it results
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Backpropagation

Algorithm applied to evaluate derivatives of the error wre all weights

It can be interpreted in terms of backward propagation of a computation in the network, from the output
towards input units.

It provides an efficient method to evaluate derivatives wrt weights. It can be applied also to compute derivatives

ofoutput WTt to input variables, to provide evaluations of the ]acobian and the Hessian matrices at a given point.
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submitting the current item to the network, the knowledge of the derivatives
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Let us now show that, for any layer, knowing the current weights w,.” and the values a resulting by
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makes it possible to compute the derivatives
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where dg is the number of units at the s-th layer

Backpropagation at layer




Here,
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Backpropagation and activation functions

In the case of a sigmoidal activation function h(:r) = U(JU), it results, in particular,
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Backpropagation

Iterate the prcccding steps on all items in the batch set. In fact, since

it is
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This provides an evaluation of VE(W) at the current point W(k).

Once VE(W) ‘W(k) is known, a single step of gradient descent can be performed
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Computational efﬁciency of backpropagation
A single evaluation of error function derivatives requires O(|W]) steps

Alternative approach: finite differences. Perturb each wcight W;5 in turn and approximate the derivative as
follows
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This requires O(|W|) steps for each Weight, hence O(|W|2) steps overall.
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