
Support vector machines

Course of Machine Learning
Master Degree in Computer Science
University of Rome “Tor Vergata”

a.a. 2024-2025

Giorgio Gambosi

Idea

The binary classification problem is approached in a direct way, that is we try and find a plane that separates the
classes in feature space (indeed, a “best” plane, according to a reasonable characteristic). If this is not possible, we
get creative in two ways:

• We soften what we mean by “separates”, and/or

• We enrich and enlarge the feature space so that separation is (more) possible

First of all, we remark that most classification algorithms output not just a class label but a score, and the
predicted label is assigned on the basis of such score, which is compared to a threshold. In linear classification, the
score is computed as a linear combination wT x+ b of the features.

For example, logistic regression returns the class probability

p(y = 1 | x) = σ(wT x+ b) ∈ [0, 1]

and me may follow the strategy of predicting class 1 if the class probability is > 0.5. Essentially, the score is an
estimate of confidence: the farthest it is from the threshold, the most we are confident about the prediction. In
geometric terms, the score also represents how far the point corresponding to the given item lies from the decision
boundary, which is the hyperplane wT x− b = 0

w1

w2

wT x− b = 0

x̂

w

wT x̂
−b

wT x̂+ b

1

For example, in the following case,

A can be assigned to C1 with greater confidence than B and even greater confidence than C .
These considerations, when applied to the training phase, result into preferring decision boundaries such that

all items in the training set are correctly classified (they lie in the correct decision region) and referring to that
boundary makes us confident of such classification (they lie far enough from the boundary).

Intuitively, we want to select boundaries which correctly classify the items in the training set are characterized
by a spacemargin around them that does not contain any item.

More in detail, consider a binary classifier which, for any element x, returns a value y ∈ {−1, 1}, where we
assume that x is assigned to C0 if y = −1 and to C1 if y = 1.

Moreover, we consider linear classifiers such as

h(x) = g(wT x+ b) = g(wT x)

where g(z) = 1 if z ≥ 0 and g(z) = −1 if z < 0. The prediction on the class of x is then provided by deriving
a value in {−1, 1} just as in the case of a perceptron, that is with no estimation of the probabilities p(Ci|x) that x
belongs to each class.

For any training set item (xi, ti), the functional margin of (w, b) = w with respect to such item is defined as

γi = ti(wT xi + b) = tiwT xi

Observe that the resulting prediction is correct iff γi > 0. Moreover, we assume that larger values of γi denote
greater confidence on the prediction.

Given a training set T = {(x1, t1), . . . , (xn, tn)} the functional margin ofwwrt T is the minimum functional
margin for all items in T

γ = min
i

γi

However, we have a problem with this definition:

• If we rescale the parameters w, by a scalar α > 0, we get new parameters αw, that is αw, αb .

• Using αw doesn’t change the classification of points.

• However, the margin αwT xi = αwT xi + αb is now scaled by α.

It doesn’t make sense that the same classification boundary may have different margins when we rescale it.
In order to overcome this inconvenience, we define the geometric margin γi with respect to a training example

(xi, ti) as

γi = ti

(
wT

||w||
xi +

b

||w||

)
=

γi
||w||

2

where, as usual, ||w|| =
√∑d

i=1w
2
i . The geometric margin γi equals the (signed) distance between xi and the

hyperplane defined by w, b, that is as the length of the line segment from xi to its projection on the boundary
hyperplane, expressed using ||w|| as distance unit.

x
x

x x
x

x

x

βA

B

γi

Differently from γi, the geometric margin γi is invariant with respect to parameter scaling. In fact, by substi-
tuting αw to w, we have

tiwT xi = ti(wT xi + b) = γi

ti(αw)T xi = ti(αwT xi + αb) = αti(wT xi + b) = α(tiwT xi) = αγi

while

ti
wT

||w||
xi = ti

(
wT

||w||
xi +

b

||w||

)
= γi

ti
(αw)T

||(αw)||
xi = ti

(
αwT

α ||w||
xi +

αb

α ||w||

)
= ti

(
wT

||w||
xi +

b

||w||

)
= γi

• The geometric margin wrt the training set T = {(x1, t1), . . . , (xn, tn)} is then defined as the smallest
geometric margin for all items (xi, ti)

γ = min
i

γi

• a useful interpretation of γ is as half the width of the largest strip, centered on the hyperplane wT x− b = 0,
containing none of the points x1, . . . , xn

• the hyperplanes on the boundary of such strip, each at distance γ from the hyperplane and passing (at least
one of them) through some point xi are said maximum margin hyperplanes.

2γ

x

x

x

x

x

x

x x x

x
x

3

Optimal margin classifiers

Given a training set T , we wish to find the hyperplanes which separates the two classes (if one does exist) and has
maximum γ: by making the distance between the hyperplanes and the set of points corresponding to elements as
large as possible, the confidence on the provided classification increases.

Assume classes are linearly separable in the training set: hence, there exists a hyperplane (an infinity of them,
indeed) separating elements in C1 from elements in C2. In order to find the one among those hyperplanes which
maximizes γ, we have to solve the following optimization problem

max
w,b

γ

where γi =
ti

||w||
(
wT xi + b

)
≥ γ i = 1, . . . , n

which maximizes the smallest margin over the training set (xi, ti). It guarantees each point has margin at least γ.
This corresponds to,

max
w,b

γ

where ti
(
wT xi + b

)
≥ γ ||w|| i = 1, . . . , n

As observed, if all parameters are scaled by any constant α, all geometric margins γi between elements and
hyperplane are unchanged: we may then exploit this freedom to introduce the constraint

min
i

(wT xi + b)ti = 1

This can be obtained by assuming ||w|| = 1
γ , which corresponds to considering a scale where the maximummargin

has width 2. This results, for each element xi, ti, into a constraint

γi = ti
(
wT xi + b

)
≥ 1

An element (point) is said active if the equality holds, that is if

(wT xi + b)ti = 1

and inactive if this does not hold. Observe that, by definition, there must exist at least one active point.
For any item (x, t), different cases correspond to the value of the signed linear combination t(wT x+ b):

1. t(wT x+ b) > 1⇒ x is in the region corresponding to its class, outside the margin strip

2. t(wT x+ b) = 1⇒ x is in the region corresponding to its class, on the maximum margin hyperplane

3. 0 < t(wT x+ b) < 1⇒ x is in the region corresponding to its class, inside the margin strip

4. wT x+ b = 0⇒ x is on the separating hyperplane

5. −1 < t(wT x+ b) < 0⇒ x is in the region corresponding to the other class, inside the margin strip

6. t(wT x+b) = −1⇒ x is in the region corresponding to the other class, on the maximummargin hyperplane

7. t(wT x+ b) < −1⇒ x is in the region corresponding to the other class, outside the margin strip

4

The optimization problem, is then transformed into

max
w,b

γ = ||w||−1

where ti
(
wT xi + b

)
≥ 1 i = 1, . . . , n

Maximizing ||w||−1 is equivalent to minimizing ||w||2: hence we may formulate the problem as

min
w,b

1

2
||w||2

where ti
(
wT xi + b

)
≥ 1 i = 1, . . . , n

This is a convex quadratic optimization problem. The function to be minimized is in fact convex and the set of
points satisfying the constraint is a convex polyhedron (intersection of half-spaces).

Duality

From optimization theory it derives that, given the problem structure (linear constraints + convexity):

• there exists a dual formulation of the problem

• the optimum of the dual problem is the same of the original (primal) problem

Lagrangian

Consider the optimization problem

min
x∈Ω

f(x)

where Ω is the feasible region, defined by the constraints

gi(x) ≤ 0 i = 1, . . . , k

where f(x), gi(x)are convex functions and Ω is a convex set.

The Lagrangian is defined as

L(x, λ) = f(x) +
k∑

i=1

λigi(x)

Consider the maximum wrt to non negative λ of the lagrangian

max
λ

L(x, λ) = f(x) +max
λ

k∑
i=1

λigi(x)

λi ≥ 0 i = 1, . . . , k

which is a function of x.

• if x is a feasible solution, gi(x) ≤ 0 for all i and the maximum is obtained for λi = 0: as a consequence,

max
λ:λi≥0

L(x, λ) = f(x)

5

• if x is an unfeasible solution, then gi(x) > 0 for some i and the maximum is unbounded, as λi can be
arbitrarily great

As a consequence, the maximum of the lagrangian is equal to f(x) if x is feasible, while it is unbounded if x is
not feasible. This results, in the case that a minimum x∗ exists, into

min
x∈Ω

f(x) = min
x∈Ω

max
λ:λi≥0

L(x, λ)

In general, the weak duality property holds

max
λ:λi≥0

min
x∈Ω

L(x, λ) ≤ min
x∈Ω

max
λ:λi≥0

L(x, λ) = min
x∈Ω

f(x)

where max
λ:λi≥0

min
x∈Ω

L(x, λ) is the dual problem of min
x∈Ω

f(x)

Moreover, in the case of convex optimization (our case here) the strong duality property holds

max
λ:λi≥0

min
x∈Ω

L(x, λ) = min
x∈Ω

max
λ:λi≥0

L(x, λ) = min
x∈Ω

f(x)

Karush-Kuhn-Tucker conditions

The following necessary and sufficient conditions hold at the optimum (x∗, λ∗), and can be used to simplify the
dual problem definition.

∇xL(x, λ)
∣∣∣
x∗,λ∗

= 0

∂L(x, λ)
∂λi

∣∣∣
x∗,λ∗

= gi(x∗) ≥ 0 i = 1, . . . , k

λ∗
i ≥ 0 i = 1, . . . , k

λ∗
i gi(x

∗) = 0 i = 1, . . . , k

In order for the optimum to be a minimum, the second order condition must hold that the HessianHx evaluated
at x∗ must be positive definite.

Note: the last condition (complementary slackness) states that a Lagrangianmultiplier λ∗
i can be non-zero only

if gi(x∗) = 0, that is of x∗ is“at the limit” for the constraint gi(x) ≤ 0. In this case, the constraint is said active.

Application to SVM

In our case,

• f(x) corresponds to
1

2
||w||2

• gi(x) corresponds to ti
(
wT xi + b

)
− 1 ≥ 0

• Ω is the intersection of a set of hyperplanes, that is a polyhedron, hence convex.

The corresponding Lagrangian is

L(w, λ) =
1

2
||w||2 −

n∑
i=1

λi

(
(wT xi + b)ti − 1

)
=

1

2
wTw−

n∑
i=1

λiwT xiti − b
n∑

i=1

λiti +
n∑

i=1

λi

6

and the dual problem (with same optimum) is

max
λ

min
w

L(w, λ)

λi ≥ 0 i = 1, . . . , k

Applying the KKT conditions

In order to state the dual problem as a function of λ, let us derive the values of the coefficients w at the optimum
of L(w, λ), by applying the KKT conditions

First of all, we compute:

∂L(w, λ)
∂wk

∣∣∣
w∗,b∗

= w∗
k −

n∑
i=1

λitixik = 0

∂L(w, λ)
∂b

∣∣∣
w∗,b∗

=

n∑
i=1

λiti = 0

that is,

∇wL(w, λ)
∣∣∣
w∗,b∗

= w∗ −
n∑

i=1

λitixi = 0

∂L(w, λ)
∂b

∣∣∣
w∗,b∗

=

n∑
i=1

λiti = 0

The resulting KKT conditions are

w∗ =
n∑

i=1

λitixi

n∑
i=1

λiti = 0

ti(w∗T xi + b∗)− 1 ≥ 0 i = 1, . . . , n

λi ≥ 0 i = 1, . . . , n

λi

(
ti(w∗T xi + b∗)− 1

)
= 0 i = 1, . . . , n

By substituting the values of the coefficients w∗ according to the above equations and observing that b∗ is
multiplied by zero, , we may state that at the optimum w∗ the dual problem asks to maximize

7

L(λ) =
1

2
w∗Tw∗ −

n∑
i=1

λitiw∗T xi − b∗
n∑

i=1

λiti +
n∑

i=1

λi

=
1

2

(
n∑

i=1

λitixi

)T n∑
j=1

λjtjxj −
n∑

i=1

λitixTi
n∑

j=1

λjtjxj +
n∑

i=1

λi

=
1

2

n∑
i=1

λitixTi
n∑

j=1

λjtjxj −
n∑

i=1

λitixTi
n∑

j=1

λjtjxj +
n∑

i=1

λi

=
1

2

n∑
i=1

n∑
j=1

λiλjtitjxTi xj −
n∑

i=1

n∑
j=1

λiλjtixTi tjxj +
n∑

i=1

λi

=

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λiλjtitjxTi xj

with the constraints on λ
n∑

i=1

λiti = 0

λi ≥ 0 i = 1, . . . , n

The remaining two KKT conditions can be proved to be always verified.

Dual SVM problem

We have modified the definition of the dual problem by applying the KKT conditions to drop the occurrences of
coefficients w, b from L(w, b, λ).

The new problem has the same optimum of the original primal, where the KKT conditions will indeed hold,
connecting the values of the optimal solutions of the two problems

max
λ

L(λ) = max
λ

 n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λiλjtitjxTi xj


λi ≥ 0 i = . . . , n

n∑
i=1

λiti = 0

All the considerations above clearly hold if we assume a set of base functions ϕ is applied, thus resulting into
the dual problem

max
λ

L(λ) = max
λ

 n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λiλjtitjϕ(xi)Tϕ(xj)


λi ≥ 0 i = . . . , n

n∑
i=1

λiti = 0

8

By defining the kernel function

κ(xi, xj) = ϕ(xi) · ϕ(xj) = ϕ(xi)Tϕ(xj)

the dual problem’s formulation can be given as

max
λ

L(λ) = max
λ

 n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λiλjtitjκ(xi, xj)


λi ≥ 0 i = 1, . . . , n

n∑
i=1

λiti = 0

Passing from primal to dual

Disadvantage The number variables increases fromm to n (in particular, if x = x, from d to n).

Advantage The number of variables to be considered, which are relevant for classification, turns out to be quite
smaller than n.

Deriving coefficients

By solving the dual problem, the optimal values of Langrangian multipliers λ∗ are obtained.
The optimal values of parameters w∗ are then derived through the relations

w∗
i =

n∑
j=1

λ∗
j tjϕi(xj) i = 1, . . . ,m

The value of b∗ can be obtained by observing that, for any support vector xk (characterized by the condition
λk ≥ 0), it must be

1 = tk

(
w∗Tϕ(xk) + b∗

)
= tk

 n∑
j=1

λ∗
j tjϕ(xj)

Tϕ(xk) + b∗


= tk

 n∑
j=1

λ∗
j tjκ(xj , xk) + b∗

 = tk

∑
j∈S

λ∗
j tjκ(xj , xk) + b∗


where S is the set of indices of support vectors.

As a consequence, since tk = ±1, in order to have a unitary product it must be

tk =
∑
j∈S

λ∗
j tjκ(xj , xk) + b∗

and
b∗ = tk −

∑
j∈S

λ∗
j tjκ(xj , xk)

A more precise solution can be obtained as the mean value obtained considering all support vectors

b∗ =
1

|S|
∑
i∈S

ti −
∑
j∈S

λ∗
j tjκ(xj , xi)



9

Classification through SVM

A new element x can be classified, given a set of base functions ϕ or a kernel function κ, by checking the sign of

h(x) =
m∑
i=1

w∗
i ϕi(x) + b∗ =

n∑
j=1

λ∗
j tjκ(xj , x) + b∗

As observed, if xi is not a support vector, then it must be λ∗
i = 0. Thus, the above sum can be written as

h(x) =
∑
j∈S

λ∗
j tjκ(xj , x) + b∗

The classification performed through the dual formulation, using the kernel function, does not take into account
all training set items, but only support vectors, usually a quite small subset of the training set.

Non separability in the training set

• The approach described before, when applied to non linearly separable sets, does not provide acceptable
solutions: it is in fact impossibile to satisfy all constraints

ti(wTϕ(xi) + b) ≥ 1 i = 1, . . . , n

• These constraints must then be relaxed in order to allow them to not hold, at the cost of some increase in the
objective function to be minimized

• A slack variable ξi is introduced for each constraint, to provide a measure of how much the constraint is not
verified

This can be formalized as

min
w,b,ξ

1

2
wTw+ C

n∑
i=1

ξi

ti(wTϕ(xi) + b) ≥ 1− ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n

where ξ = (ξ1, . . . , ξn)

• By introducing suitable multipliers, the following Lagrangian can be obtained

L(w,b, ξ, λ,α) =

=
1

2
wTw+ C

n∑
i=1

ξi −
n∑

i=1

λi(yi(wTϕ(xi) + b)− 1 + ξi)−
n∑

i=1

αiξi

=
1

2

n∑
i=1

w2
i +

n∑
i=1

(C − αi)ξi −
n∑

i=1

λi(ti(

m∑
j=1

wjϕj(xi)) + b)− 1 + ξi)

=
1

2

n∑
i=1

w2
i +

n∑
i=1

(C − αi − λi)ξi −
n∑

i=1

m∑
j=1

λitiwjϕj(xi) + b

n∑
i=1

λiti +

n∑
i=1

λi

where αi ≥ 0 and λi ≥ 0, for i = 1 . . . , n.

10

The Karush-Kuhn-Tucker conditions are now:

∂

∂w
L(w, b, ξ, λ,α) = 0 null gradient

∂

∂b
L(w, b, ξ, λ,α) = 0 null gradient

∂

∂ξ
L(w, b, ξ, λ,α) = 0 null gradient

ti(wTϕ(xi) + b)− 1 + ξi ≥ 0 i = 1, . . . , n constraints

ξi ≥ 0 i = 1, . . . , n constraints

λi ≥ 0 i = 1, . . . , n multipliers

αi ≥ 0 i = 1, . . . , n multipliers

λi

(
ti(wTϕ(xi) + b)− 1 + ξi

)
= 0 i = 1, . . . , n complementary slackness

αiξi = 0 i = 1, . . . , n complementary slackness

Deriving a dual formulation

From the null gradient conditions wrt wi, b, ξj it derives

wi =
n∑

j=1

λjtjϕi(xj) i = 1, . . . ,m

0 =
n∑

i=1

λiti

λi = C − αi ≤ C i = 1, . . . , n

By plugging the above relations into L(w, ξ, λ,α), the dual problem results

max
λ

L̃(λ) = max
λ

 n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λiλjtitjκ(xi, xj)


0 ≤ λi ≤ C i = 1, . . . , n
n∑

i=1

λiti = 0

Observe that the only difference wrt the linearly separable case is given by constraints 0 ≤ λi transformed into in
0 ≤ λi ≤ C

Classification

From the optimal solution λ∗ of the dual problem, the coefficients w∗ and b∗ can be derived just as done in the
linearly separable case.

A new element x can then be classified, again, through the sign of

y(x) =
m∑
i=1

w∗
i ϕi(x) + b∗

11

or, equivalently, of
y(x) =

∑
i∈S

λ∗
j tjκ(xi, xj) + b∗

Extensions

The approach can be extended to

• More than 2 classes (multiclass classification): solve one vs all binary classification problem for all classes

• Real-valued outputs (support vector regression)

Computational issues

• Training time of the standard SVM is O(n3) (solving QP)

– Can be prohibitive for large datasets

• Lots of research has gone into speeding up the SVMs

– Many approximate QP solvers are used to speed up SVMs

– Gradient descent faster and with possibility of limiting the computation time

SVM and gradient descent

Recall the formalization of the problem in the general case

min
w,ξ

1

2
wTw+ C

n∑
i=1

ξi

ti(wTϕ(xi) + b) ≥ 1− ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n

Given w, b, the slack variable ξi is minimized as

ξi =

{
0 ti(wTϕ(xi) + b) ≥ 1

1− ti(wTϕ(xi) + b) otherwise

The optimal value of ξi corresponds to the hinge loss of the corresponding item

LH(w, b, xi, ti) = max (0, 1− ti(wTϕ(xi) + b))

We may then define the cost function to be minimized as

C(w) =
1

2
wTw+ C

n∑
i=1

LH(w, b, xi, ti)

∝
n∑

i=1

LH(w, b, xi, ti) +
1

2C
||w||2

That is, SVM correspond to hinge loss with ridge regularization

12

Since hinge loss is not differentiable a x = 1, as discussed above, subgradient descent can be applied to itera-
tively find the optimal solution, with

∂LH

∂wi
= wi −

∑
xk∈L

tkϕi(xk)

where xk ∈ L iff tk(wTϕ(xk) + b) < 1.

The resulting iteration is

w
(r+1)
i = w

(r)
i − ηw

(r)
i + η

∑
xk∈L

tkϕi(xk) = (1− η)w
(r)
i + α

∑
xk∈L

tkϕi(xk)

SVM and SGD

In stochastic gradient descent, single items are considered at each iteration. This results in the following update
rule, assuming xk is the element considered at the current step

w
(r+1)
i = (1− η)w

(r)
i + αϕi(xk) if tk(wTϕ(xk) + b)) < 1

w
(r+1)
i = w

(r)
i otherwise

Kernel methods motivation

• Often we want to capture nonlinear patterns in the data

– Nonlinear Regression: Input-output relationship may not be linear

– Nonlinear Classification: Classes may not be separable by a linear boundary

• Linear models (e.g., linear regression, linear SVM) are not just rich enough

• Kernels: Make linear models work in nonlinear settings

– By mapping data to higher dimensions where it exhibits linear patterns

– Apply the linear model in the new input space

– Mapping changing the feature representation

• Note: Such mappings can be expensive to compute in general

– Kernels give such mappings for (almost) free

* In most cases, the mappings need not be even computed

* .. using the Kernel Trick!

Kernels: Formally Defined

• Recall: Each kernel k has an associated basis function ϕ

• ϕ takes input x ∈ X (input space) and maps it to F (feature space)

13

• Kernel κ(x1, x2) takes two inputs and gives their similarity in F space

ϕ : X 7→ F
κ : X × X 7→ R κ(x1, x2) = ϕ(x1)Tϕ(x2)

• F needs to be a vector space with a dot product defined on it (Hilbert space)

• Can just any function be used as a kernel function?

– No. It must satisfy a suitable condition

Verifying a given function is a kernel

Anecessary and sufficient condition for a functionκ : Rn×Rn 7→ Rn to be a kernel is that, for all sets (x1, . . . , xn),
the Gram matrix K such that kij = κ(xi, xj) is semidefinite positive, that is

vTKv ≥ 0

for all vectors ̌.

This is equivalent to the condition that all eigenvalues of K are non negative.

Constructing kernel functions

Example:
Let x1, x2 ∈ R2: κ(x1, x2) = (x1 · x2)2 is a valid kernel function?
This can be verified by observing that

κ(x1, x2) = (x11x21 + x12x22)
2

= x211x
2
21 + x212x

2
22 + 2x11x12x21x22

= (x211, x
2
12, x11x12, x11x12) · (x221, x222, x21x22, x21x22)

= ϕ(x1) · ϕ(x2)

and by defining the base functions as x = (x21, x
2
2, x1x2, x1x2)

T .

• In general, if x1, x2 ∈ Rd then κ(x1, x2) = (x1 · x2)2 = ϕ(x1)Tϕ(x2), where

x = (x21, . . . , x
2
d, x1x2, . . . , x1xd, x2x1, . . . , xdxd−1)

T

• the d-dimensional input space is mapped onto a space with dimensionm = d2

• observe that computing κ(x1, x2) requires time O(d), while deriving it from ϕ(x1)Tϕ(x2) requires O(d2)
steps

The function κ(x1, x2) = (x1 · x2 + c)2 is a kernel function. In fact,

κ(x1, x2) = (x1 · x2 + c)2

=
n∑

i=1

n∑
j=1

x1ix1jx2ix2j +
n∑

i=1

(
√
2cx1i)(

√
2cx2i) + c2

= ϕ(x1)Tϕ(x2)

14

for
x = (x21, . . . , x

2
d, x1x2, . . . , x1xd, x2x1, . . . , xdxd−1,

√
2cx1, . . . ,

√
2cxd, c)

T

This implies a mapping from a d-dimensional to a (d+ 1)2-dimensional space.
Function κ(x1, x2) = (x1 · x2 + c)t is a kernel function corresponding to a mapping from a d-dimensional

space to a space of dimension

m =
t∑

i=0

di =
dt+1 − 1

d− 1

corresponding to all products xi1xi2 . . . xil with 0 ≤ l ≤ t.

Observe that, even if the space has dimension O(dt), evaluating the kernel function requires just time O(d).

Techniques for constructing kernel functions

Given kernel functions κ1(x1, x2), κ2(x1, x2), the function κ(x1, x2) is a kernel in all the following cases

• κ(x1, x2) = eκ1(x1,x2)

• κ(x1, x2) = κ1(x1, x2) + κ2(x1, x2)

• κ(x1, x2) = κ1(x1, x2)κ2(x1, x2)

• κ(x1, x2) = cκ1(x1, x2), for any c > 0

• κ(x1, x2) = xT1 Ax2, with A positive definite

• κ(x1, x2) = f(x1)κ1(x1, x2)g(x2), for any f, g : Rn 7→ R

• κ(x1, x2) = p(κ1(x1, x2)), for any polynomial p : Rq 7→ R with non-negative coefficients

• κ(x1, x2) = κ3(ϕ(x1),ϕ(x2)), for any vector ϕ of m functions ϕi : Rn 7→ R and for any kernel function
κ3(x1, x2) in Rm

κ(x1, x2) = (x1 · x2 + c)d is a kernel function. In fact,

1. x1 · x2 = xT1 x2 is a kernel function corresponding to the base functions ϕ = (ϕ1, . . . , ϕn), with ϕi(x) = x

2. c is a kernel function corresponding to the base functions ϕ = (ϕ1, . . . , ϕn), with ϕi(x) =
√
c

n

3. x1 · x2 + c is a kernel function since it is the sum of two kernel functions

4. (x1 · x2 + c)d is a kernel function since it is a polynomial with non negative coefficients (in particular
p(z) = zd) of a kernel function

κ(x1, x2) = e−
||x1−x2||

2

2σ2

is a kernel function. In fact,

1. since ||x1 − x2||2 = xT1 x1 + xT2 x2 − 2xT1 x2, it results

κ(x1, x2) = e−
xT1 x1
2σ2 e−

xT2 x2
2σ2 e

xT1 x2
σ2

15

2. xT1 x2 is a kernel function (see above)

3. then,
xT1 x2
σ2

is a kernel function, being the product of a kernel function with a constant c =
1

σ2

4. e
xT1 x2
σ2 is the exponential of a kernel function, and as a consequence a kernel function itself

5. e−
xT1 x1
σ2 e−

xT1 x1
2σ2 e

xT1 x2
σ2 is a kernel function, being the product of a kernel function with two functions f(x1) =

e−
xT1 x1
2σ2 and g(x2) = e−

xT2 x2
2σ2

Relevant kernel functions

1. Polynomial kernel
κ(x1, x2) = (x1 · x2 + 1)d

2. Sigmoidal kernel
κ(x1, x2) = tanh (c1x1 · x2 + c2)

3. Gaussian kernel

κ(x1, x2) = exp

(
−||x1 − x2||2

2σ2

)
where σ ∈ R

Observe that a gaussian kernel can be derived also starting from a non linear kernel function κ(x1, x2) instead of
xT1 x2.

16

