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Probabilistic classification methods recap

The application ofprobabilistic classifier requires that che (at least approximate) knowledge of a suitable distribu-
tion is derived from the training set

+ the class conditional distribution p(C%|x) for each class Cf, in the discriminative case, where an item x shall

be assigned to Cj if

)

7 = argmax [)(Clc
]‘,,

+ the class conditional distribution p(x|Cy) (and the prior distribution p(C})) for each class Cj, in the gener-

ative (baycsian) case, where an item x shall be assigncd to C; if

i = argmax p(x|Cj)p(Ck)
k

Parametric approach

The type of probability distribution is assumed to be known: the value of a suitable set of coefficients must be
derived. For example,

WTY
ek

7= in the case of softmax (a discriminative method)
T

+ p(Cp|x) is assumed to be of the type

i

. p(x|Ck) is assumed to be of the type N(x|pk, Ek) in the case ofgaussian discriminant ana]ysis (a generative
method)

In both case, an estimate ofparameter values (either Wy, or 6}) is performed for all classes. Different approaehes
to parameter estimation:

Maximum likelihood :

« In the discriminative case, the likelihood of the target is considered WML = argmax p(t|X, W): predic—
w

tion is performed as argmax p(Cklx; WML)
k
« In the generative case, for each class C, the likelihood of the subset Xj, of items belonging the class is in-

stead maximized, chat is Hljch = argmaxp(X|0): prediction is performed as argmaxp(xwlij)p(Ck)
0 k



Maximum a posteriori : Similar to the previous one:

MAP

« In the discriminative case, the posterior of the parameters wrt to training set w = argmaxp(W|X, t):

w

prediction is performed as argmax p(Cj|x; WM AP)
k

+ In the generative case, for each class Cy, the posterior of the parameters wrt the items in the class

OljchP = argmax p(0|Xy) is maximized: prediction is performed as argmax p(x[@é\/[AP)p(Ck)
0, k

Bayesian estimate : This approach directly express the predictive distribution as

x; wW)p(W|X, t)dw

J W

p(Cklx, X, t) = /p(Ck,

No knowledge whatsoever of the probabilities is assumed.

« 'The class distributions p(x|C;) are directly from data.
« In previous cases, use of (parametric) models for a synthetic description of data in X, ¢
« In this case, no models (and parameters): training set items explicitly appear in class distribution estimates.

« Denoted as non parametric models: indeed, an unbounded number of parameters is used

Histograms
« Elementary type of non parametric estimate

« Domain partitioned into m d-dimensional intervals (bins)

X
« The probability P that an item belongs to the bin containing item x is estimated as , where n(x) is the

number of element in that bin

« The probability density in the interval corresponding to the bin containing x is then estimated as the ratio
between the above probability and the interval widch A(x) (cipically, a constant A)

(x) = ”](\?) _ n(x)
PHY = 'A(x) = NA®)




Kernel density estimators

. Probability that an item is in region 'R(x), containing x
P, = / p(z)dz
R(x)

« Given n items X1, Xa, . . ., Xy, the probability that k among them are in R(x) is given by the binomial discri-

bution
’fl'

oy — [T k n—k __ : ki n—k

- Since E[k] = nP and 0} = nP(1 — P,), by the binomial distribution properties, we have that, for what

L

concerns the ratior = —
n

E[r] = —E[k] = P Op = 50k = "

« P, is the expected fraction of items in R(x), and the ratio 7 is an estimate. As n — 00 variance decreases
and 7 tends to E[r] = P, we assume

k
r=—~PF
n

Nonparametric estimates

« Let the volume of R(x) be sufficiently small. Then, the density p(x) is almost constant in the region and

where V' is the volume of R(x)

« since Py >~ —, it then derives that p(x) ~ —
n

nV

Approaches to nonparametric estimates
Two alternative ways to exploit the relation p(x) =~ o estimate p(x) for any x:
n

1. Fix V and derive k from data (kernel dcnsit_\' estimation)
2. Fix k and derive V' from data (K-nearest ncighbor).

It can be shown that in both cases, under suitable conditions, the estimator tends to the true density p(x) asn — oo,



Kernel density estimation: Parzen windows

. Region associated to a point x: hypercube with edge 1ength h (and volume hd) centered on x.

« Kernel function k(z) (Parzen window) used to count the number of items in the unit hypercube centered on
the origin 0

0 otherwise

1 |z <1/2 i=1,..., ,
k@_{ <12 i=1..d

!/
— X

> = 1iffx' is in the hypercube ofedge length h centered on x

¢ as a conscquence, ]{; (

« the number of items in the hypercube is then

K = Zn:k: (X h’”)
=1

« The estimated density is

1 & X — X; 1 — X — X;
)= —S"k LI
Pr(x) nV 2 < h > nhd ; < h >

« Since

k(z) >0 and /k‘(z)dz =1

E(E=X) >0 and /k: TN ) gk = pd
h h

As a consequence, it results that py,(x) is a probability density.

it derives

Clearly, the window size has a relevant effect on the estimate

Kernels and smoothing
Drawbacks
1. diseontinuity of the estimates

2. items in a region centered on x have uniform weights: their distance from x is not taken into account

Solution. Use of smooth kernel functions kp, (u) to assign larger weights to points nearer to the origin.

[ s =1

E [x}_/'xﬁh(x)dx_o

Assumed characteristics of kp, (u):

E [xQ] = /‘x2/<.'/h(x>dx >0

X~Rhp (\)

Usually kernels are based on smooth radial functions (functions of the distance from the origin)



h=2
h=1
e Ll 1
e(u)
L. gaussian k(u) = = 67%%, unlimited support

2. Epanechnikov k(u) = 3 <

3 ...

resulting estimate:

1
——u

2

2), lu| < 3, limited support




X



h=.25 ' x

Parzen windows and classification

Parzen windows provide a way to estimate p(x) for any x, given a set of points X. They can be applied to classify an
item x by estimating p(x|Cl,) for all classes, by referring to the sets X, . . ., Xy, of items in the training set belonging
to each class.

According to bayesian classification, x is predicted to the class with index

; h

n;
1 Z k X — Xy
aremax —— :
%’i nhd 4 h
=1
n;
X — X;
= argmax g k ( >
g
i i=1 h

that is, an item is assigned to the class with most (weighted by the kernel) points near x, that is in an hypercube of
edge size h with center x

1 g —
argmax p(x|Ci)p(Cy) = arg;nnx i Zl k (X XL> p(C;) =

Density estimation through kNN

In this case, the region around x is extended to include k items: the estimated density is

() =
X) = —
P nV  negré(x)

where:
« ¢q is the volume of the d-dimensional sphere of unitary radius

- 7¢(x) is the distance from x to the k-th nearest item (the radius of the smallest sphere with center x containing
k items)

To estimate p(Cj|x) in order to classify x, let us consider a hypersphere of volume V' with center x contain-
ing k items from the training set and let k; be the number of items belonging to class Cj. Then, the following
approximation holds:

k;
n;V

where n; is the number of items in the training set belonging to class C;

p(x[Ci) =
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Similarly, for the evidence,

k
p(X) 7 nv
And, for the prior distribution,
n;
C) =—
p(Ci) = —
As a consequence, the class posterior distribution is
p(x|Ci)p(Ci) ki
O' p— p— _ —
p(Cilx) p(x) k

k-NN provides a simple classification rule: an item is classified on the basis of similarity to near training set
items: notice that it is necessary to refer to a suitable metric to measure (dis)similarity. In order to classify X, we

have to determine the £ items in the training nearest to it and assign x to the majority class among them.

E-NN is a simple classifier which can work quite well, provided it is given a good distance metric and has
cnough labeled training data: it can be shown that it can result within a factor of 2 of the best possiblc pcrformancc
(the one provided by the Bayes Classifier) as n — oo: It is however subject to the curse of dimensionality: due to
the large sparseness of data at high dimensiona]ity, items considered by k-NN can be quite far away from the query
point, and thus resulting in poor locality.
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