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Probabilistic classification methods recap

The application of probabilistic classifier requires that the (at least approximate) knowledge of a suitable distribu-
tion is derived from the training set

• the class conditional distribution p(Ck|x) for each class Ck in the discriminative case, where an item x shall
be assigned to Ci if

i = argmax
k

p(Ck|x)

• the class conditional distribution p(x|Ck) (and the prior distribution p(Ck)) for each class Ck in the gener-
ative (bayesian) case, where an item x shall be assigned to Ci if

i = argmax
k

p(x|Ck)p(Ck)

Parametric approach

The type of probability distribution is assumed to be known: the value of a suitable set of coefficients must be
derived. For example,

• p(Ck|x) is assumed to be of the type ew
T
k x∑

i e
wT
i
x
in the case of softmax (a discriminative method)

• p(x|Ck) is assumed to be of the typeN (x|µk,Σk) in the case of gaussian discriminant analysis (a generative
method)

In both case, an estimate of parameter values (eitherwk or θk) is performed for all classes. Different approaches
to parameter estimation:

Maximum likelihood :

• In the discriminative case, the likelihood of the target is considered wML = argmax
w

p(t|X,w): predic-

tion is performed as argmax
k

p(Ck|x;wML)

• In the generative case, for each classCk, the likelihood of the subsetXk of items belonging the class is in-
steadmaximized, that is θML

k = argmax
θ

p(Xk|θk): prediction is performed as argmax
k

p(x|θML
k )p(Ck)
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Maximum a posteriori : Similar to the previous one:

• In the discriminative case, the posterior of the parameterswrt to training setwMAP = argmax
w

p(w|X, t):

prediction is performed as argmax
k

p(Ck|x;wMAP )

• In the generative case, for each class Ck, the posterior of the parameters wrt the items in the class
θMAP
k = argmax

θk

p(θk|Xk) is maximized: prediction is performed as argmax
k

p(x|θMAP
k )p(Ck)

Bayesian estimate : This approach directly express the predictive distribution as

p(Ck|x,X, t) =
∫
w
p(Ck|x;w)p(w|X, t)dw

No knowledge whatsoever of the probabilities is assumed.

• The class distributions p(x|Ci) are directly from data.

• In previous cases, use of (parametric) models for a synthetic description of data in X, t

• In this case, no models (and parameters): training set items explicitly appear in class distribution estimates.

• Denoted as non parametric models: indeed, an unbounded number of parameters is used

Histograms

• Elementary type of non parametric estimate

• Domain partitioned intom d-dimensional intervals (bins)

• The probability Px that an item belongs to the bin containing item x is estimated as
n(x)
n

, where n(x) is the
number of element in that bin

• The probability density in the interval corresponding to the bin containing x is then estimated as the ratio
between the above probability and the interval width∆(x) (tipically, a constant∆)

pH(x) =
n(x)
N

∆(x)
=

n(x)
N∆(x)
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Kernel density estimators

• Probability that an item is in regionR(x), containing x

Px =

∫
R(x)

p(z)dz

• Given n items x1, x2, . . . , xn, the probability that k among them are inR(x) is given by the binomial distri-
bution

p(k) =

(
n

k

)
P k
x (1− Px)

n−k =
n!

k!(n− k)!
P k
x (1− Px)

n−k

• Since E[k] = nPx and σ2
k = nPx(1− Px), by the binomial distribution properties, we have that, for what

concerns the ratio r =
k

n
,

E [r] =
1

n
E[k] = Px σ2

r =
1

n2
σ2
k =

Px(1− P x)
n

• Px is the expected fraction of items in R(x), and the ratio r is an estimate. As n → ∞ variance decreases
and r tends to E[r] = Px, we assume

r =
k

n
≃ Px

Nonparametric estimates

• Let the volume ofR(x) be sufficiently small. Then, the density p(x) is almost constant in the region and

Px =

∫
R(x)

p(z)dz ≃ p(x)V

where V is the volume ofR(x)

• since Px ≃
k

n
, it then derives that p(x) ≃ k

nV

Approaches to nonparametric estimates

Two alternative ways to exploit the relation p(x) ≃ k

nV
to estimate p(x) for any x:

1. Fix V and derive k from data (kernel density estimation)

2. Fix k and derive V from data (K-nearest neighbor).

It can be shown that in both cases, under suitable conditions, the estimator tends to the true density p(x) asn → ∞.
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Kernel density estimation: Parzen windows

• Region associated to a point x: hypercube with edge length h (and volume hd) centered on x.

• Kernel function k(z) (Parzen window) used to count the number of items in the unit hypercube centered on
the origin 0

k(z) =

{
1 |zi| ≤ 1/2 i = 1, . . . , d

0 otherwise

• as a consequence, k
(
x− x′

h

)
= 1 iff x′ is in the hypercube of edge length h centered on x

• the number of items in the hypercube is then

K =

n∑
i=1

k

(
x− xi
h

)

• The estimated density is

pn(x) =
1

nV

n∑
i=1

k

(
x− xi
h

)
=

1

nhd

n∑
i=1

k

(
x− xi
h

)

• Since
k(z) ≥ 0 and

∫
k(z)dz = 1

it derives

k

(
x− xi
h

)
≥ 0 and

∫
k

(
x− xi
h

)
dx = hd

As a consequence, it results that pn(x) is a probability density.

Clearly, the window size has a relevant effect on the estimate

Kernels and smoothing

Drawbacks

1. discontinuity of the estimates

2. items in a region centered on x have uniform weights: their distance from x is not taken into account

Solution. Use of smooth kernel functions κh(u) to assign larger weights to points nearer to the origin.
Assumed characteristics of κh(u): ∫

κh(x)dx = 1

E
x∼κh(x)

[ x ] =
∫

xκh(x)dx = 0

E
x∼κh(x)

[
x2

]
=

∫
x2κh(x)dx > 0

Usually kernels are based on smooth radial functions (functions of the distance from the origin)
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1√
2πσ
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1
2
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(
1

2
− u2

)
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3. · · ·

resulting estimate:

p(x) =
1

nh

n∑
i=1

κ

(
x− xi
h
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=

1

n
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i=1

κh (x− xi)
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Parzen windows and classification

Parzen windows provide a way to estimate p(x) for any x, given a set of points X. They can be applied to classify an
item x by estimating p(x|Ck) for all classes, by referring to the setsX1, . . . ,Xk of items in the training set belonging
to each class.

According to bayesian classification, x is predicted to the class with index

argmax
i

p(x|Ci)p(Ci) = argmax
i

1

nihd

ni∑
i=1

k

(
x− xi
h

)
p(Ci) =

= argmax
i

1

nhd

ni∑
i=1

k

(
x− xi
h

)

= argmax
i

ni∑
i=1

k

(
x− xi
h

)
that is, an item is assigned to the class with most (weighted by the kernel) points near x, that is in an hypercube of
edge size h with center x

Density estimation through kNN

In this case, the region around x is extended to include k items: the estimated density is

p(x) ≃ k

nV
=

k

ncdr
d
k(x)

where:

• cd is the volume of the d-dimensional sphere of unitary radius

• rdk(x) is the distance from x to the k-th nearest item (the radius of the smallest sphere with center x containing
k items)

To estimate p(Ci|x) in order to classify x, let us consider a hypersphere of volume V with center x contain-
ing k items from the training set and let ki be the number of items belonging to class Ci. Then, the following
approximation holds:

p(x|Ci) =
ki
niV

where ni is the number of items in the training set belonging to class Ci
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Similarly, for the evidence,

p(x) =
k

nV

And, for the prior distribution,
p(Ci) =

ni

n

As a consequence, the class posterior distribution is

p(Ci|x) =
p(x|Ci)p(Ci)

p(x)
=

ki
niV

· ni
n

k
nV

=
ki
k

k-NN provides a simple classification rule: an item is classified on the basis of similarity to near training set
items: notice that it is necessary to refer to a suitable metric to measure (dis)similarity. In order to classify x, we
have to determine the k items in the training nearest to it and assign x to the majority class among them.

k-NN is a simple classifier which can work quite well, provided it is given a good distance metric and has
enough labeled training data: it can be shown that it can result within a factor of 2 of the best possible performance
(the one provided by the Bayes Classifier) as n → ∞: It is however subject to the curse of dimensionality: due to
the large sparseness of data at high dimensionality, items considered by k-NN can be quite far away from the query
point, and thus resulting in poor locality.
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