Non parametric classification

Course of Machine Learning Master Degree in Computer Science University of Rome "Tor Vergata" a.a. 2024-2025

Giorgio Gambosi

Probabilistic classification methods recap

The application of probabilistic classifier requires that the (at least approximate) knowledge of a suitable distribution is derived from the training set

• the class conditional distribution $p(C_k|\mathbf{x})$ for each class C_k in the discriminative case, where an item \mathbf{x} shall be assigned to C_i if

$$i = \operatorname*{argmax}_{k} p(C_k | \mathbf{x})$$

• the class conditional distribution $p(\mathbf{x}|C_k)$ (and the prior distribution $p(C_k)$) for each class C_k in the generative (bayesian) case, where an item \mathbf{x} shall be assigned to C_i if

$$i = \operatorname*{argmax}_{k} p(\mathbf{x}|C_k) p(C_k)$$

Parametric approach

The type of probability distribution is assumed to be known: the value of a suitable set of coefficients must be derived. For example,

- $p(C_k|\mathbf{x})$ is assumed to be of the type $\frac{e^{\overline{w}_k^T\overline{\mathbf{x}}}}{\sum_i e^{\overline{w}_i^T\overline{\mathbf{x}}}}$ in the case of softmax (a discriminative method)
- $p(\mathbf{x}|C_k)$ is assumed to be of the type $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \Sigma_k)$ in the case of gaussian discriminant analysis (a generative method)

In both case, an estimate of parameter values (either $\overline{\mathbf{w}}_k$ or $\boldsymbol{\theta}_k$) is performed for all classes. Different approaches to parameter estimation:

Maximum likelihood:

- In the discriminative case, the likelihood of the target is considered $\overline{\mathbf{w}}^{ML} = \operatorname*{argmax}_{\overline{\mathbf{w}}} p(\mathbf{t}|\mathbf{X}, \overline{\mathbf{w}})$: prediction is performed as $\operatorname*{argmax}_{k} p(C_{k}|\mathbf{x}; \overline{\mathbf{w}}^{ML})$
- In the generative case, for each class C_k , the likelihood of the subset X_k of items belonging the class is instead maximized, that is $\boldsymbol{\theta}_k^{ML} = \underset{k}{\operatorname{argmax}} p(\mathbf{X}_k | \boldsymbol{\theta}_k)$: prediction is performed as $\underset{k}{\operatorname{argmax}} p(\mathbf{x} | \boldsymbol{\theta}_k^{ML}) p(C_k)$

Maximum a posteriori : Similar to the previous one:

- In the discriminative case, the posterior of the parameters wrt to training set $\overline{\mathbf{w}}^{MAP} = \underset{\overline{\mathbf{w}}}{\operatorname{argmax}} p(\overline{\mathbf{w}}|\mathbf{X}, \mathbf{t})$: prediction is performed as $\operatorname{argmax} p(C_k|\mathbf{x}; \overline{\mathbf{w}}^{MAP})$
- In the generative case, for each class C_k , the posterior of the parameters wrt the items in the class $\boldsymbol{\theta}_k^{MAP} = \underset{k}{\operatorname{argmax}} p(\boldsymbol{\theta}_k | \mathbf{X}_k)$ is maximized: prediction is performed as $\underset{k}{\operatorname{argmax}} p(\mathbf{x} | \boldsymbol{\theta}_k^{MAP}) p(C_k)$

Bayesian estimate: This approach directly express the predictive distribution as

$$p(C_k|\mathbf{x}, \mathbf{X}, \mathbf{t}) = \int_{\overline{\mathbf{w}}} p(C_k|\mathbf{x}; \overline{\mathbf{w}}) p(\overline{\mathbf{w}}|\mathbf{X}, \mathbf{t}) d\overline{\mathbf{w}}$$

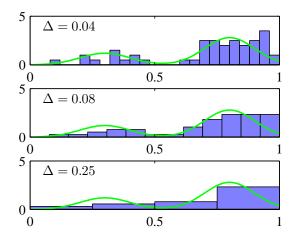
No knowledge whatsoever of the probabilities is assumed.

- The class distributions $p(\mathbf{x}|C_i)$ are directly from data.
- In previous cases, use of (parametric) models for a synthetic description of data in X, t
- In this case, no models (and parameters): training set items explicitly appear in class distribution estimates.
- Denoted as non parametric models: indeed, an unbounded number of parameters is used

Histograms

- · Elementary type of non parametric estimate
- Domain partitioned into m d-dimensional intervals (bins)
- The probability $P_{\mathbf{x}}$ that an item belongs to the bin containing item \mathbf{x} is estimated as $\frac{n(\mathbf{x})}{n}$, where $n(\mathbf{x})$ is the number of element in that bin
- The probability density in the interval corresponding to the bin containing x is then estimated as the ratio between the above probability and the interval width $\Delta(x)$ (tipically, a constant Δ)

$$p_H(\mathbf{x}) = \frac{\frac{n(\mathbf{x})}{N}}{\Delta(\mathbf{x})} = \frac{n(\mathbf{x})}{N\Delta(\mathbf{x})}$$



Kernel density estimators

• Probability that an item is in region $\mathcal{R}(\mathbf{x})$, containing \mathbf{x}

$$P_{\mathbf{x}} = \int_{\mathcal{R}(\mathbf{x})} p(\mathbf{z}) d\mathbf{z}$$

• Given n items $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$, the probability that k among them are in $\mathcal{R}(\mathbf{x})$ is given by the binomial distribution

$$p(k) = \binom{n}{k} P_{\mathbf{x}}^{k} (1 - P_{\mathbf{x}})^{n-k} = \frac{n!}{k!(n-k)!} P_{\mathbf{x}}^{k} (1 - P_{\mathbf{x}})^{n-k}$$

• Since $E[k] = nP_x$ and $\sigma_k^2 = nP_x(1 - P_x)$, by the binomial distribution properties, we have that, for what concerns the ratio $r = \frac{k}{n}$,

• $P_{\mathbf{x}}$ is the expected fraction of items in $\mathcal{R}(\mathbf{x})$, and the ratio r is an estimate. As $n \to \infty$ variance decreases and r tends to $E[r] = P_{\mathbf{x}}$, we assume

$$r = \frac{k}{n} \simeq P_{\rm x}$$

Nonparametric estimates

• Let the volume of $\mathcal{R}(\mathbf{x})$ be sufficiently small. Then, the density $p(\mathbf{x})$ is almost constant in the region and

$$P_{\mathbf{x}} = \int_{\mathcal{R}(\mathbf{x})} p(\mathbf{z}) d\mathbf{z} \simeq p(\mathbf{x}) V$$

where V is the volume of $\mathcal{R}(\mathbf{x})$

• since $P_{\mathbf{x}} \simeq \frac{k}{n}$, it then derives that $p(\mathbf{x}) \simeq \frac{k}{nV}$

Approaches to nonparametric estimates

Two alternative ways to exploit the relation $p(\mathbf{x}) \simeq \frac{k}{nV}$ to estimate $p(\mathbf{x})$ for any \mathbf{x} :

- 1. Fix V and derive k from data (kernel density estimation)
- 2. Fix k and derive V from data (K-nearest neighbor).

It can be shown that in both cases, under suitable conditions, the estimator tends to the true density $p(\mathbf{x})$ as $n \to \infty$.

3

Kernel density estimation: Parzen windows

- Region associated to a point \mathbf{x} : hypercube with edge length h (and volume h^d) centered on \mathbf{x} .
- Kernel function $k(\mathbf{z})$ (Parzen window) used to count the number of items in the unit hypercube centered on the origin $\mathbf{0}$

 $k(\mathbf{z}) = \begin{cases} 1 & |z_i| \le 1/2 \\ 0 & \text{otherwise} \end{cases}$ $i = 1, \dots, d$

- as a consequence, $k\left(\frac{\mathbf{x}-\mathbf{x'}}{h}\right)=1$ iff $\mathbf{x'}$ is in the hypercube of edge length h centered on \mathbf{x}
- the number of items in the hypercube is then

$$K = \sum_{i=1}^{n} k \left(\frac{\mathbf{x} - \mathbf{x}_i}{h} \right)$$

• The estimated density is

$$p_n(\mathbf{x}) = \frac{1}{nV} \sum_{i=1}^n k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right) = \frac{1}{nh^d} \sum_{i=1}^n k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

• Since

$$k(\mathbf{z}) \ge 0$$
 and $\int k(\mathbf{z})d\mathbf{z} = 1$

it derives

$$k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right) \ge 0$$
 and $\int k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right) d\mathbf{x} = h^d$

As a consequence, it results that $p_n(\mathbf{x})$ is a probability density.

Clearly, the window size has a relevant effect on the estimate

Kernels and smoothing

Drawbacks

- 1. discontinuity of the estimates
- 2. items in a region centered on \mathbf{x} have uniform weights: their distance from \mathbf{x} is not taken into account

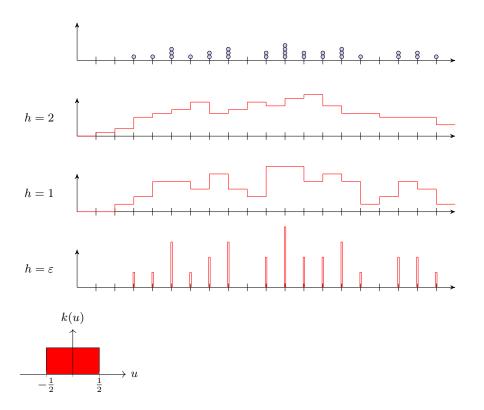
Solution. Use of smooth kernel functions $\kappa_h(u)$ to assign larger weights to points nearer to the origin. Assumed characteristics of $\kappa_h(u)$:

$$\int \kappa_h(\mathbf{x}) d\mathbf{x} = 1$$

$$\underset{\mathbf{x} \sim \kappa_h(\mathbf{x})}{\mathbb{E}} [\mathbf{x}] = \int \mathbf{x} \kappa_h(\mathbf{x}) d\mathbf{x} = 0$$

$$\underset{\mathbf{x} \sim \kappa_h(\mathbf{x})}{\mathbb{E}} [\mathbf{x}^2] = \int \mathbf{x}^2 \kappa_h(\mathbf{x}) d\mathbf{x} > 0$$

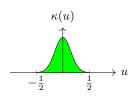
Usually kernels are based on smooth radial functions (functions of the distance from the origin)

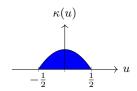


- 1. gaussian $\kappa(u)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}\frac{u^2}{\sigma^2}},$ unlimited support
- 2. Epanechnikov $\kappa(u)=3\left(\frac{1}{2}-u^2\right), |u|\leq \frac{1}{2}, \text{limited support}$
- 3. ...

resulting estimate:

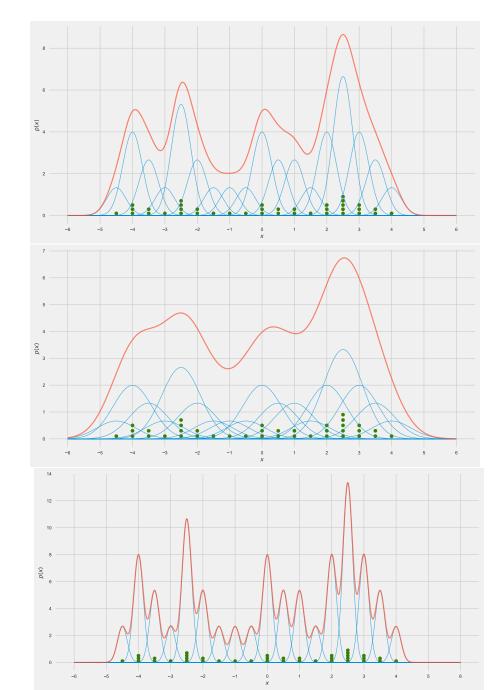
$$p(\mathbf{x}) = \frac{1}{nh} \sum_{i=1}^{n} \kappa \left(\frac{\mathbf{x} - \mathbf{x}_i}{h} \right) = \frac{1}{n} \sum_{i=1}^{n} \kappa_h \left(\mathbf{x} - \mathbf{x}_i \right)$$

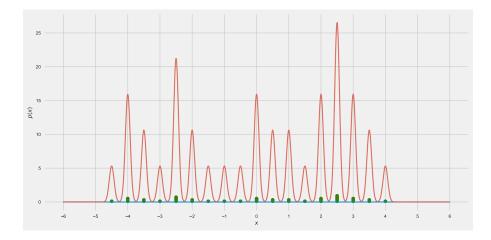




h = 2

h = .5





h = .25

Parzen windows and classification

Parzen windows provide a way to estimate $p(\mathbf{x})$ for any \mathbf{x} , given a set of points \mathbf{X} . They can be applied to classify an item \mathbf{x} by estimating $p(\mathbf{x}|C_k)$ for all classes, by referring to the sets $\mathbf{X}_1, \ldots, \mathbf{X}_k$ of items in the training set belonging to each class.

According to bayesian classification, \mathbf{x} is predicted to the class with index

$$\underset{i}{\operatorname{argmax}} p(\mathbf{x}|C_i)p(C_i) = \underset{i}{\operatorname{argmax}} \frac{1}{n_i h^d} \sum_{i=1}^{n_i} k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right) p(C_i) =$$

$$= \underset{i}{\operatorname{argmax}} \frac{1}{n h^d} \sum_{i=1}^{n_i} k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

$$= \underset{i}{\operatorname{argmax}} \sum_{i=1}^{n_i} k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

that is, an item is assigned to the class with most (weighted by the kernel) points near \mathbf{x} , that is in an hypercube of edge size h with center \mathbf{x}

Density estimation through kNN

In this case, the region around x is extended to include k items: the estimated density is

$$p(\mathbf{x}) \simeq \frac{k}{nV} = \frac{k}{nc_d r_k^d(\mathbf{x})}$$

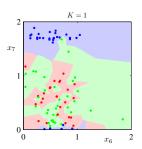
where:

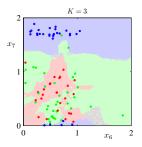
- c_d is the volume of the d-dimensional sphere of unitary radius
- $r_k^d(\mathbf{x})$ is the distance from \mathbf{x} to the k-th nearest item (the radius of the smallest sphere with center \mathbf{x} containing k items)

To estimate $p(C_i|\mathbf{x})$ in order to classify \mathbf{x} , let us consider a hypersphere of volume V with center \mathbf{x} containing k items from the training set and let k_i be the number of items belonging to class C_i . Then, the following approximation holds:

$$p(\mathbf{x}|C_i) = \frac{k_i}{n_i V}$$

where n_i is the number of items in the training set belonging to class C_i





Similarly, for the evidence,

$$p(\mathbf{x}) = \frac{k}{nV}$$

And, for the prior distribution,

$$p(C_i) = \frac{n_i}{n}$$

As a consequence, the class posterior distribution is

$$p(C_i|\mathbf{x}) = \frac{p(\mathbf{x}|C_i)p(C_i)}{p(\mathbf{x})} = \frac{\frac{k_i}{n_i V} \cdot \frac{n_i}{n}}{\frac{k}{n V}} = \frac{k_i}{k}$$

k-NN provides a simple classification rule: an item is classified on the basis of similarity to near training set items: notice that it is necessary to refer to a suitable metric to measure (dis)similarity. In order to classify \mathbf{x} , we have to determine the k items in the training nearest to it and assign \mathbf{x} to the majority class among them.

k-NN is a simple classifier which can work quite well, provided it is given a good distance metric and has enough labeled training data: it can be shown that it can result within a factor of 2 of the best possible performance (the one provided by the Bayes Classifier) as $n \to \infty$: It is however subject to the curse of dimensionality: due to the large sparseness of data at high dimensionality, items considered by k-NN can be quite far away from the query point, and thus resulting in poor locality.

