
Foundations

Course of Machine Learning
Master Degree in Computer Science
University of Rome “Tor Vergata”

a.a. 2024-2025

Giorgio Gambosi

The cornerstone of machine learning lies in our access to a collection of data points, each representing the
observation of the values of a set of predefined variables, as generated by an unknown process. The crux of this
framework is the premise that these data, far from being random, possess an intrinsic structure—albeit one that
often proves elusive to identify.

The essence of machine learning lies in two primary objectives, each addressing a different facet of data analysis:

Unsupervised Learning Here, our goal is to extract profound insights into the underlying structure of the data,
thereby deepening our understanding of its inherent nature. This approach often involves techniques such
as clustering, dimensionality reduction, or generative modeling. A particularly compelling application of
unsupervised learning is the ability to algorithmically generate new data points that are, to a high degree,
indistinguishable from the original dataset. These synthetic data points appear to be produced by the same
unknown process, effectively mimicking the data’s intrinsic characteristics and distributions.

Supervised Learning In this paradigm, we aim to predict additional information for each data item based on ex-
isting knowledge. This typically involves training models on labeled data to make predictions on unseen
instances. Supervised learning encompasses a wide array of tasks, including classification, regression, and
sequence prediction.

In both these scenarios, we start with a set of observations already produced by the unknown process. This
initial dataset serves as the foundation upon which we build our models and derive our insights.

An alternative framework, distinct from the supervised and unsupervised paradigms, is reinforcement learning.
In this approach, we posit an interactive relationshipwith the underlying process. Rather thanworkingwith a static
dataset, we engage in a dynamic, iterative procedure:

1. At each step, we interact with the process by choosing and performing an action from a set of options

2. as a consequence, we obtain a response under the form of a reward

3. the overarching aim is to identify an optimal strategy for interacting with the unknown process, one that
maximizes the cumulative reward.

This framework finds applications in areas such as game playing, robotics, and autonomous systems, where the
ability to learn and adapt through trial and error is paramount.

Setting aside the reinforcement learning paradigm, let us delve deeper into the common scenario encountered
in supervised and unsupervised learning:

• A training set of n items is represented as a set of input vectors x1, . . . , xn. These vectors encapsulate the
features or attributes of each data point and serve as the raw material from which we derive ourmodel. The

1

dimensionality and nature of these vectors can vary widely depending on the specific problem domain, rang-
ing from low-dimensional numerical data to high-dimensional representations of images, text, or complex
structures.

• In the case of supervised learning, the training set is augmented with additional information. Specifically, it
includes a target vector t = {t1, . . . , tn}, where each ti specifies the value to be predicted on the basis of
the corresponding input vector xi. This pairing of inputs and targets forms the basis for training predictive
models that can generalize to unseen data.

Observe that vectors in the training set are in general a specific representation of items (which are real-world
entities), just like tuples in a database are just models (according to a predefined data model) of entities. The set
of features used in the learning process is a fundamental component in such a process and may have an important
effect on the quality and efficiency of the predictions. Adjusting the set of features (by both defining new features
from suitable functional compositions of given ones and identifying features which are significant for the task to be
performed) is a fundamental issue inMachine learning, which may involve both domain expertise and sophisticated
algorithmic approaches, applied in the frameworks of unsupervised learning.

Supervised learning

Our objective is to predict the unknown value of an additional feature, termed the target, for a given item x, based
on the values of a set of features. This prediction task takes two primary forms:

Regression When the target is a real t ∈ R

Classification When the target is a discrete value, from a predefined set t ∈ {1, . . . ,K}

To achieve this, we employ a general approach that involves defining a (functional or probabilistic) model of the
relationship between feature and target values. This model is derived through a learning process from a set of
examples, illustrating the relationship between the set of features and the target. The examples are collected in a
training set T = (X, t), and each example comprises:

• A feature vector xi = {xi1, . . . , xim}

• The corresponding target value ti

The model we construct can take one of two forms:

1. A function y(·) which, for any item x, returns a value y(x) as an estimate of t. This function acts as a direct
predictor, mapping the input features to the target space.

2. A probability distribution that associates each possible value y in the target domain with its corresponding
probability p(y = y|x). This probabilistic approach provides amore nuanced view, capturing the uncertainty
inherent in the prediction task.

The choice between thesemodel types often depends on the specific requirements of the problem at hand, the nature
of the data, and the desired interpretability of the results. The function-based approach offers straightforward
predictions, while the probabilistic model provides a richer representation of the underlying uncertainties and
potential outcomes.

In both cases, the model serves as a bridge between the observed features and the target we aim to predict,
leveraging the patterns and relationships learned from the training data to make informed predictions on new,
unseen instances.

2

Unsupervised learning

The objective here is to detect inherent patterns and structures within a given collection of items, known as the
dataset X = {x1, . . . , xn}, where no target values are associated with the items, in order to extract synthetic
information such data. The synthetic information we seek to extract can take several forms:

Clustering Identifying subsets of similar items within the dataset. This process involves grouping data points based
on their intrinsic similarities, revealing natural structures or segments in the data.

Density Estimation Determining the distribution of items in their domain. This approach aims to model the un-
derlying probability density function that generated the observed data, providing insights into the data’s
statistical properties and potential generative processes.

Dimensionality Reduction Projecting items onto lower-dimensional subspaces while preserving as much informa-
tion as possible. This can be achieved through two main approaches:

• Feature Selection: Identifying and retaining the most informative subset of original features.

• Feature Extraction: Creating new, lower-dimensional representations of the data that capture its es-
sential characteristics.

These dimensionality reduction techniques aim to characterize the items using a smaller set of features, po-
tentially revealing latent structures and reducing computational complexity for subsequent analyses.

Even in the context of unsupervised learning, where we lack explicit target variables, it is common practice to define
and apply a suitable model that captures the relationships and patterns among the data features. This model serves
several purposes:

1. It provides a compact representation of the data’s underlying structure.

2. It can be used to generate new, synthetic data points that share characteristics with the original dataset.

3. It enables anomaly detection by identifying data points that deviate significantly from the learned patterns.

4. It facilitates interpretation and visualization of high-dimensional data.

The choice of model depends on the specific unsupervised learning task and the nature of the data. For instance:

• For clustering, we might use models like k-means, Gaussian Mixture Models, or hierarchical clustering algo-
rithms.

• For density estimation, kernel density estimation or parametric models such as Gaussian distributions might
be employed.

• For dimensionality reduction, techniques like Principal Component Analysis (PCA), t-SNE, or autoencoders
could be utilized.

By applying these unsupervised learning techniques and models, we can gain valuable insights into the inherent
structure of our data, even in the absence of predefined target variables. This approach is particularly valuable for
defining generative models (such as LLM and all generative AI systems), exploratory data analysis, feature engi-
neering, and as a preprocessing step for subsequent supervised learning tasks.

3

Reinforcement learning

In the paradigm of reinforcement learning, our primary objective is to identify an optimal sequence of actions
within a given framework or environment. This sequence is designed tomaximize a certainmetric, typically referred
to as reward or profit.

Reinforcement learning has found success in various domains, such as

• Game Playing: Achieving superhuman performance in chess, Go, and video games

• Robotics: Learning complex motor skills and navigation

• Online Resource Management: Dinamically optimizing allocation of (computational, physical, financial,
etc.) resources

Unlike supervised learning, where we have a dataset of labeled examples, reinforcement learning operates in a
more dynamic, interactive setting:

Environment Interaction An environment is available which responds to actions taken by an agent. This environ-
ment can be represented as a function E : A× S 7→ R× S, where:

• A is the set of possible actions

• S is the set of possible states

• R is the set of possible rewards

Reward Mechanism In response to each action a ∈ A taken by the agent in state s ∈ S, the environment returns:
- A reward r ∈ R, which quantifies the immediate benefit of the action - A new state s′ ∈ S, representing
the updated condition of the environment

Policy Optimization The goal is to learn a policy π : S → A that maps states to actions in a way that maximizes
the expected cumulative reward over time. This can be expressed mathematically as:

π∗ = argmax
π

Eπ

[∞∑
t=0

γtrt|π

]

where γ ∈ [0, 1] is a discount factor that balances immediate and future rewards and rt|π is the reward
obtained at step t is policy π is applied.

A key challenge in reinforcement learning is balancing exploration, that is trying new actions to gather more
information about the environment and exploitation, leveraging known profitable actions to maximize immediate
reward.

Several different approaches exist for solving reinforcement learning problems:

• Model-Based vs. Model-Free, that is Learn a model of the environment’s dynamics and use it for planning
vs. Learn optimal actions directly without explicitly modeling the environment

• On-Policy vs. Off-Policy, that is learn from actions taken by the current policy being learned vs. learn from
actions taken by a different policy (e.g., from stored experiences)

In summary, reinforcement learning provides a framework for solving sequential decision-making problems
in complex, uncertain environments. In this framework, it represents a versatile approach for a wide range of
real-world dynamic optimization tasks.

Observe that the framework in which reinforcement learning is defined is quite different than the ones of
supervised and unsupervised learning, which results in the adoption of quite differentmathematical and algorithmic
techniques. For this reason, reinforcement learning will not be further considered here.

4

Formal Definition of a Machine Learning Task

A machine learning task is defined over a pair of domains:

Domain set X This is the set of objects we wish to label or make predictions about.. Each object x ∈ X is usually
modeled as an array of features¹. The number of features is referred to as the dimensionality of the problem.
Formally, we can then represent an object as x = [x1, x2, ..., xd], where d is the dimensionality.

Label set Y This is the set of possible label values associated with objects in X . The nature of Y determines the
type of learning task:

• If Y is continuous, we are dealing with a regression task.

• If Y is discrete, we have a classification task.

– When |Y| = 2, we have a case of binary classification.
– When |Y| > 2, we have multi-class classification.

The learner (an algorithmA) has access to a training setT , a collection of item-label pairs: T = {(x1, t1), . . . , (xn, tn)}.
We shall usually denote as X the matrix of items (feature matrix), that is

X =

 – x1 –
...

– xn –

and as t the vector of labels (target vector), that is

t =

 t1
...
tn

The learner is requested to return, for any given training set T , a prediction rule (classifier, regressor) A =

A(T) = h : X 7→ Y . The predictor should be able to generate a prediction y for any item x ∈ X : this can be
done according to different approaches.

• Direct Target Value Prediction: in this case, the algorithmA predicts a value y which is a guess of the target
of x.That is, it directly computes a function h : X 7→ Y

• Probability Distribution Prediction: in this case, the algorithm A probability distribution on Y which, for
any y ∈ Y , A returns an estimated probability p(y|x) that y is the target value of x. In order to return a
unique value y, this approach must be accompanied by some independent rule to derive, given p(y|x), the
value to be predicted.

Deriving a Functional Predictor

There are multiple approaches to deriving a functional predictor:

Direct Prediction Computation

In this case, a predefined algorithm A is applied for each prediction: the algorithm computes a function h : X ×
(X × Y)n 7→ Y . In particular, it computes the prediction y for an item x by computing h(x,X, t): that is, it takes
into account the entire training set for each prediction.

Observe that no learning (that is, deriving some prediction rule from examples to be applied for predictions)
is done.

¹Actually, in advanced cases objects could have more complex structures, such as for example sequences or graphs.

5

x A

T

y

Example of this approach: k-nearest neighbors algorithm for classification

The class predicted for item x is the majority class in the set of k elements of X which are nearest to x according
to a predefined measure

Let’s enhance and expand this text, preserving LaTeX commands and providing amore comprehensive overview
of this approach to deriving predictors:

Model-Based Learning Approach

The second approach to deriving a predictor involves learning a function from a predefined class of models. This
method, often referred to as the model-based approach, can be formalized as follows:

• Define a class of functionsH : X → Y -

• employ a learning algorithm A that derives a specific function hT ∈ H from the training set T . That is, A
implements a function from T toH

The idea, here, is that A finds the function in H (indeed, an algorithm AT implementing this function) that
“best” predicts y from x when applied to the examples in T , i.e. best predicts ti from xi for all (xi, ti) ∈ T ².

For any new item x, the corresponding target value is computed as hT (x), that is by applying AT on input x.
As we will see, a relevant case here is when H is a set of parametric functions (denote it as Hθ , where θ =

(θ1, . . . , θm) is the set of parameters) with the same structure and which differs each other by the values of the
parameters in θ. In this case, searching a function inHθ is equivalent to searching a value for (θ1, . . . , θm).

Tlearning A AT

xpredicting AT y

A simple example of this approach is linear regression, where the value predicted for item x is computed
as the linear combination of its feature values x1, x2, . . . , xd, each weighted by a suitable constant parameter
w1, w2, . . . , wd, plus a bias w0. That is, the prediction is computed as

y =
d∑

i=1

wixi + w0 = wT x

where w is the vector³

w0

w1
...
wd

 and x is the vector

1
x1
...
xd

.
²Observe, that we need to specify what “best” means here, that is which measure of prediction quality we apply.
³In general, all vectors introduced in the following will be assumed as column vectors.

6

Observe that, in this case, the set of functionsH is the set of d+1-dimensional linear functions, parameterized
by w0, . . . , wd.

The d+ 1 values w0, w1, . . . , wd are learned byA from the training set T .

Ensemble Learning Approach

The third approach involves creating a whole collection of predictors and perform predictions by composing the
set of their predictions, which can often lead to improved performance and robustness. This method can be better
specified as follows:

• Ensemble Construction: derive from the training set T a set of s algorithmsA(1)
T , . . . , A

(s)
T , each computing

a different function h
(i)
T : X → Y in the given class H. Each A(i) is a then predictor of y from x derived

from the same set T of examples.

• Weight Assignment: assign a set of corresponding weightsw(1), . . . , w(s) to each predictor. Essentially, each
weight w(i) is directly related to estimated quality of the predictions provided by A(i) for what concerns
items in T .

• Prediction Combination: for any x, compute the final predicted value by combining the values y(1) =

h
(1)
T (x), . . . , y(s) = h

(s)
T (x) predicted by the individual algorithms, weighted by their respective weights

w(1), . . . , w(s).

Formal Definition:
The target value predicted for item x is the linear combination of the values y(1), y(2), . . . , y(s), predicted by

predictors A(1), A(2), , . . . , A(s), each weighted by the corresponding weight w(1), w(2), . . . , w(s).

Each A(i) is a simple predictor derived from T

An important variant of this approach is represented by fully bayesian prediction, where the set of different
predictors is a continuous one, each corresponding to a different value of a set of parameters (w1, . . . , wd) ∈ Rd.
In this case, clearly, the sum is substituted by a (usually multidimensional) integral

Examples of the third approach: for regression tasks, learn predictors as linear regressors and compute the
final prediction as for item x is the linear combination of the values y(1), y(2), . . . , y(s), predicted by predictors
A(1), A(2), , . . . , A(s), each weighted by the corresponding weight w(1), w(2), . . . , w(s).

h(x) =
s∑

i=1

w(i)h(i)(x)

where
∑s

i=1w
(i) = 1 and w(i) ≥ 0 for all i.

For classification tasks, we can use a voting approach, where the class predicted by the largest number of pre-
dictors is returned

h(x) = argmax
y∈Y

s∑
i=1

w(i)1[h(i)(x) = y]

where 1[·] is the indicator function, which is one if the predicate in square bracket is true and 0 otherwise.

7

Tlearning A
A

(s)
T w(s)

A
(1)
T w(1)

...

x

predicting
A

(1)
T

...

A
(s)
T

y(1) × w(1)

...

y(s) × w(s)

... + y

An important variant of this approach is represented by fully bayesian prediction, where the set of different
predictors is a continuous one, each corresponding to a different value of the set of parameters (w1, . . . , wd) ∈ Rd.
In this case, clearly, the sum is substituted by a (usually multidimensional) integral

The three approaches differ since:

• in the first case, a predefined algorithm is applied to input data comprising both the item x and the whole
training set T

• in the second case, an algorithm to be applied to any item x is derived in dependance from the training set
T

• in the third case, no single algorithm is applied to x; the prediction is instead computed from the predictions
returned by a set of predictors

Probabilistic Framework for Machine Learning

Training Object Generation Model: We posit that objects in the training set are sampled from X according to an
unknown (marginal) probability distribution pM . Formally, for any x ∈ X , pM (x) represents the probability
that x is the next object sampled in the training set.

Training Target Generation Model: In the general case, we assume that labels associated with items in the training
set are generated according to a probability distribution pC , conditional on X . Specifically, for any t ∈ Y ,
pC(t|x) denotes the probability that the observed label of object x in the training set is t: this is equivalent to
assuming a joint distribution p(x, t) = pM (x)pC(t|x) for the generation of item-target pairs. For simplicity,
we initially assume a deterministic relationship between objects and labels, represented by an unknown
function f such that t = f(x).

Focusing on the model-based approach described earlier, several key concepts emerge:

• The quality of a predictor h, such as one returned by the learner, is evaluated in terms of risk. For any element
x ∈ X , the error of h when applied to x stems from the comparison of its prediction h(x) and the correct
target label t. This comparison is quantified using a predefined loss function L : Y × Y 7→ R.

• The error of a prediction y = h(x) is then defined in terms of prediction risk, given by applying the loss:

Rp(y, x)
∆
= L(y, f(x))

8

• In the more general case, where only a probabilistic relation pC(y|x) (instead of a function f) is assumed
between an item and its corresponding label, the prediction risk corresponds to the expectation of the loss
function with respect to this distribution:

RpC (y, x)
∆
= E

t∼pC(·|x)
[L(y, t)] =

∫
Y
L(y, t) · pC(t|x)dt

• For classification tasks, this becomes:

RpC (y, x)
∆
= E

t∼pC(·|x)
[L(y, t)] =

∑
t∈Y

L(y, t) · pC(y|x)

In the following, we will sometimes refer to the simplest case of a binary classification task, where Y = {0, 1},
with the 0-1 loss function

L(y, t) = 1[y 6= t],

which returns 1 if the arguments differ and 0 otherwise.
This probabilistic framework provides a rigorous foundation for understanding and evaluating machine learn-

ing models, accounting for both the inherent uncertainty in data generation and the performance of predictive
algorithms.

Expected and Empirical Risk

The error of a predictor h is defined in terms of expected loss over all objects in X :

RpM ,f (h)
∆
== E

x∼pM
[Rf (h(x), x)] = E

x∼pM
[L(h(x), f(x))] =

∫
X
L(h(x), f(x)) · pM (x)dx

and in the general case:

Rp(h) = E
(x,y)∼p

[L(h(x), t)] =
∫
X

∫
Y
L(h(x), t) · pM (x) · pC(t|x)dxdt

In the case of 0-1 loss, this is just the probability of wrong prediction in a randomly sampled item or pair,
repectively, that is

RpM ,f (h) = E
x∼pM

[1[h(x) 6= f(x)]] = P
x∼pM

[h(x) 6= f(x)]

or
Rp(h) = E

(x,t)∼p
[1[h(x) 6= t]] = P

(x,t)∼p
[h(x) 6= t]

Since pM and f (or p) are unknown, the risk can only be estimated from the available data (the training set
T). This leads to the definition of empirical riskRT (h), which provides an estimate of the expectation of the loss
function as the average loss on the training set:

RT (h) =
1

|T |
∑

(x,t)∈T

L(h(x), t)

In the case of 0-1 loss, this is the fraction of elements of T which are misclassified by h

RT (h) =
1

|T |
∑

(x,t)∈T

1[h(x) 6= t] =
|{(x, t) ∈ T | h(x) 6= t}|

|T |

9

In this way, a learning problem is reduced to a minimization problem in some functional spaceH, the set of all
possible predictors h.

hT = argmin
h∈H

RT (h)

Here,H is the set of hypotheses or inductive bias

Issues related to the inductive bias

The choice of the set of hypotheses is an important issue in ML. In particular, we may ask

• what is the effect of the structure and size ofH?

• how to defineH in such a way to make it feasible to compute hT ?

For what concerns the choice of the hypotheses classH, it can be viewed as reflecting some prior knowledge that
the learner has about the task, in terms of a belief that one of the members of the classH is a low-error predictor
for the task.

A trivial way of pursuing the goal of deriving predictors with minimal risk would be to define a very rich class,
that is assuming that many possible functions belong to H: as a limit, H could be defined just as the set of all
functions f : X 7→ Y .

This approach, however, can be easily seen to induce problems.
Assume, in fact, a binary classification problem with training set T = (X, t), with 0/1 loss

L(y, t) =

{
0 if y = t

1 otherwise

that is, the loss is 1 if the item is misclassified, 0 otherwise. As a consequence, the risk is the expected number of
classification errors, while the empirical risk is the fraction of items in the training set which are misclassified.

Assume also that pC(t = 1|x) = 1
2 for x ∈ X , that is, the two classes have same size in the population.

If we consider the classification function defined as:

hT (x) =

{
1 if x = xi ∈ X, ti = 1

0 otherwise

that is, a predictor that assigns to class 1 all items labeled as 1 in the training set, while all other items are classified
as 0.

Clearly, the empirical risk here is 0 by definition, but the risk is ≈ 1
2 . When applied to a dataset randomly

sampled from the population, the quality of hT is the same of a function which randomly assigns items to classes.
This is called overfitting: the classification method behaves well on the training set, but poorly on other items

from the population.
However, ifH is very small, it may happen that no predictor from this set is able to provide an acceptably small

risk.
Reassuming, the following general considerations can be done for what concerns the size ofH.

• If H is too large (complex), overfitting may occur: a function which behaves very well on the training set
may be available which however performs poorly on new data

• If H is too small (simple), underfitting may occur: no function behaving in a satisfactory way, both on the
training set and on new sets of data, is available inH

This is related to the so-called bias variance tradeoff.

10

