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1 Probabi]ity

Discrete random variables

A discrete random variable X can take values from some finite or countably infinite set X. A probzlbilit_\' mass
function (pmf) associates to each event X = x a probability p(X = x).

Properties

c0<p(x)<lforalzeXx

- Y (@) =1

zeX

Note: we shal] denote as T the event X = ¢

Discrete random variables
Joint and conditional probabilities

Given two events &, , it is possible to define:
« the probability p(z,y) = p(x A y) of their joint occurrence
« the conditional probability p(z|y) of « under the hypothesis that y has occurred

Union of events

Given two events Z, Y, the probability of 2 or y is defined as
plxVy)=plx)+ply) —plz,y)

in particular,

p(x Vy) =plx)+ ply)

The same definitions hold for probability distributions.



Discrete random variables
Product rule

The product rule relates joint and conditional probabilities
p(z,y) = p(z|y)p(y) = p(ylz)p(z)

where p() is the marginal probability.
In genera],

p(z1, ... xn) = p(ae, ..., xnlz1)p(21)
= p(xs, ..., xn|x1, x2)p(x2|21)P(271)

= p(mn|x1, <oy Tp—1 )p(-’nnf] iTJ .- --’13n72) o 'p(:172|371 )p<m1>

Discrete random variables
Sum rule and marginalization

The sum rule relates the joint probability of two events &, y and the probability of one such events p(y) (or p(y))

plx) => pla,y) =>_ plely)py)

yey yey
Applying the sum rule to derive a marginai probability from a joint probability is usually called murginalization

Discrete random variables

Bayes rule

Since
p(z,y) = p(x|y)p(y)
p(x,y) = p(ylz)p(x)
p(y) = Y p(x,y) = > p(yle)p(x)
TeX reX
frresules Wlopl)  plule)()
oy Plz)p(z) _ plyle)p(z
Pl = ) T S e Pl)p(@)

Discrete random variables
Terminology

« p(x): Prior probability of z (before knowing that y occurred)
« p(z|y): Posterior of x (it y has occurred)

« p(y|z): Likelihood of y given
- p(

P y): Evidence of y



Independence
Definition

Two random variables X, Y are independent (X L Y) if their joint probability is equal to the product of their
marginals

p(z,y) = p(x)p(y)
or, cquivalcntiy7

p(zly) = p(x) p(ylx) = p(y)

The condition p(z|y) = p(x), in particular, states that, if two variables are independent, knowing the value of
one does not add any knowledge about the other one.

Independence
Conditional independence

Two random variables X, Y are conditionally independent wart. a third rv. Z (X 1LY | Z) it

p(z,y|z) = p(x]2)p(y|2)

Conditional independence does not imply (absolute) independence, and vice versa.

Continuous random variables
A continuous random variable X can take values from a continuous infinite set X. Its probability is defined as
cumulative discribution function (cdf) F(z) = p(X < z).

The probability that X is in an interval (a, b] is then p(a < X < b) = F(b) — F(a).

Probability density function
dF(z)
dzx

b
pla< X <b)= [ f(x)dx
a

The probability density function (pdf) is defined as f(z) =

.Asa consequence,

and
ple < X <z+dr)~ f(x)dr

for a sufhiciently small de.

Sum rule and continuous random variables

In che case of continuous random variables, their probability density functions relate as follows.

fo) = /) o)y = / Pl



Expectation
Definition

Let  be a discrete random variable with discribution p(x), and let g : R — R be any function: the expectation of
g(z) wr.e. p(x) is

Eplg(2)] = ) g(a)p(z)

reVy
If 2 is a continuous r.v., with probability density f(x), then

ge el

Elg@)] = [ g@)f(@)ds

J —00

Mean value
Particular case: g(x) = x

Epla] = Z zp(x) Eflz] = /OQ zf(x)dx

zeVy

Elementary properties of expectation
+ Ela] = atoreacha € R
* Elaf(x)] = aE[f(x)] foreacha € R
- E[f(z) + g(2)] = E[f(2)] + E[g(x)]

Variance
Definition

Var[X] = E[(z — E[2])?]
We may easily derive:
El2” — 2E[a]a + El2]’]
E[z?] — 2E[z]E[z] + E[z)?
E[z?] — E[x]?

El(x — Ela])?]

Some elementary properties:
« Varla] = 0 for eacha € R

. Varlaf(x)] = a®Var[f(z)] for cacha € R



Probability distributions
Probability distribution

Given a discrete random variable X € V., the corresponding probability discribution is a function p(z) =
P(X = z) such that

c0<p(x) <1

- Y pla) =1

zeVx

. Zp(@ = P(x € A),with A C Vyx
z€A

Some definitions
Cumulative distribution

Given a continuous random variable X € R, the corresponding cumulative probability distribution is a function

F(z) = P(X < ) such that:
c0<F(z)<1
AT, P =0
L P =1

sz <y = F(z) < F(y)



Some definitions

Probability density

Given a continuous random variable X € R with derivable cumulative distribution F'(z), the probability densicy

is defined as

f() = 2

By definition of derivative, for a sufficiently small Az,

Priz < X <z+ Az) = f(x)Ax

The following properties hold:
 F@) 20

I f)de =1

* Joeaf(x)dr = P(X € A)




Bernoulli distribution

Definition
Let z € {0,1}, then & ~ Bernoulli(p), with 0 < p < 1,if
P sex =1
p(x) =
1—p sex=0

or, cquivalcntly7
p(z) =p"(1—p)'~"
Probability that, given a coin with head (H) probability p (and tail probability (m1-— p), a coin toss result into
x e {H,T}.
Mean and variance

Elz] =p Var[z] = p(1 — p)

Extension to multiple outcomes

Assume k possible outcomes (for example a die toss).
In this case, a generalization of the Bernoulli distribution is considered, usualy named categorical distribution.

k
p(x) = H pjj
J=1

where (p1, ..., pg) are the probabilites of the different outcomes (Z§:1 pj = 1) and r;=1 iff the k-th outcome

occurs.

Binomial distribution
Definition

Let z € N, then & ~ Binomial(n,p), with 0 < p < 1,if

n X n—I 77/! xXr n—I
p(z) = (T)pu e U

z!(n — x)

Probability thar, given a coin with head (H) probability P, a sequence of n indcpcndcnt coin tosses result into

heads.

Mean and variance

E[z] = np
Var[z] = np(1 — p)



p(x)

: _...||I|”| |“|I||..._

Poisson distribution

Definition

Let 2; € N, then & ~ Poisson(\), with A > 0, if

AT
:eA—

p(x) o

Probability that an event with average frequency A occurs  times in the next time unit.

Mean and variance

Normal (gaussian) distribution

Definition

Let # € R, then & ~ Normal(u, 02), with p, 0 € R, o > 0, if

1 (z—pm)?
) = [ 202
f(z) G




Mean and variance

Elz] = p

Var[.’r] =0

Beta distribution

Definition

Let z € [0, 1], then & ~ Beta(cv, B), with a, 8 > 0, if

_ F(a + 5) xafl

— 717‘371
Mot~ 77

where -
I'(z) = / u®tetdu
0
is a generalization of the factorial to the real field R: in particolar, I'(n) = (n — 1)!'if n € N

Mean and variance

af
(a+B)2(a+B+1)

Beta distribution
a=1, =1




a=0.7, p=0.7

xr
a=2, /=2

T
a=2, f=4

T
a=10. B=10
=
g
T
Multivariate distributions
Definition for discrete variables

Given two discrete rv. X, Y, their joint distribution is
p(z,y) =P(X =z,Y =y)
The following propertics hold:
L 0<p(z,y) <1
2. E:ceVX Zyevy p(r,y) =1
Multivariate distributions

Definition for variables

Given two continuous r.v. X, Y, their cumulative joint distribution is defined as

F(z,y)=P(X <z,Y <y)

10



The following properties hold:
L O<F(z,y) <1
2. lim F(z,y)=1

,Yy—00

3. lim F(z,y)=0

T,y——00

If F(x,y) is derivable everywhere w.r.t. both  and y, joint probability density is

O?F(z,y)

flz,y) = 92y

The following property derives
[ tawdedy = PXY) € 2
(z,y)EA

Covariance
Definition
Cov[X,Y] = E[(X — E[X])(Y — E[Y])]

As for the variance, we may derive

Cow[X,Y] = E

[
= E[XY — XE[Y] - YE[X] + E[X]|E]Y]]
= E[XY]— E[X]E]Y] — E[Y]E[X] + E[E[X]E[Y]]
= E[XY] - E[X]E[]Y]
Moreover, the following properties hold:
L Var[X + Y] = Var[X] + Var[Y] 4+ 2Cov[ X, Y]
2. If X 1L Y then Cov[X,Y] =0
Random vectors
Definition
Let X1, Xo,..., X, be aset of rv.: we may then define a random vector as
X1
X = X,
Xa

Expectation and random vectors
Definition

Let g : R™ — R™ be any function. It may be considered as a vector of functions



where x € R™.
The expectation of g is the vector of the expectations of all functions g;,

Elg1(x)]
Elg(x)] = :
E[gm (x)]
Covariance matrix
Definition

Let x € R™ be a random vector: its covariance matrix X is a matrix n X n such that, for each 1 < 4,5 < n,

Yij = CovlXi, Xj] = E[(Xi — i) (X — pj)], where pi = E[Xi), pj = E[X;].

Hence,
[ Cov[X1,X1] Cov[X1,Xo] -+ Cov[X7, Xy]
5 Cov[ X9, X1] Cov[Xo, Xo] -+ Cov[Xa, X,]
| Cov[Xp, X1] Cov[Xp, Xo] -+ Cov[Xy, Xp]
Var[ X1] < Cov[ X1, X,
i Cov[Xp, X1] - -+ Var[ X ]
Covariance matrix
By definition of covariance,
E[X?] — E[X1]? o E[XaXp] — E[X0]E[Xq]
yo= : :
E[XnXh] = E[XGIE[X] - E[X7] — E[X,]E[X,)]
= EXXT] - pp’
where pp = (,u,l, ... ,/,Ln)T is the vector ofexpectations of the random variables X1, ..., X,,.

Properties
The covariance matrix is necessarily:
- semidefinite positive: that is, zZ 3z > 0 for any z € R"

« symmetric: Cov[X;, X;] = Cov[X;, Xj] for 1 <i4,5 <n

Correlation

For any pair of r.v. X, Y, the Pearson correlation coefficient is defined as

Cov[X, Y]

PXY —  F/—Y/—m—M——
: / Var[X]Var[Y]

Note that, if Y = aX + b for some pair a, b, then

Coo[X,Y] = E[(X — p)(aX 4+ b— ap — b)] = Ela(X — u)?] = aVar[X]

12



and, since

Var[Y] = (aX — ap)? = a*Var[X]
it results pxy = 1. As a corollary, px x = 1.
Observe that if X and Y are independent, p(X,Y) = p(X)p(Y): as a consequence, Cov[X,Y] = 0 and

PXY = 0. That is, independent variables have null covariance and correlation.
The contrary is not true: null correlation does not imply indepedence: see for example X uniform in [—1, 1]

andY = X2

Correlation matrix

The correlation matrix of (X1, ..., Xp)T is defined as

PX1,X1 PX1,Xe2 0 PX1,Xn
e
L an7X1 pXTLyXQ e pXTLan
1 PX1,X2 7 PX1,Xn
L an7X1 ,OXn,XQ U 1

Multinomial distribution
Definition
Letz; € Nfori=1,...,k, then (z1,...,2%) ~ Mult(n,p1,...,pr) with0 < p < 1,if

k

n! r
o €
p(ry,...,xp) = I | | ;" con E T =n
T1ee. Tk i1

1=1

Generalization of the binomial distribution to k > 2 possible toss results ¢1, . . ., ¢ with probabilities p1, ..., pg
k

(Zi:1 pi=1).
Probability that in a sequence of 7 independent tosses p1, . . ., P, exactly x; tosses have resule t; (0 =1,..., k).

Mean and variance

E[z;] = np; Var[z;] = np;(1 — p;) i=1,...,k

Dirichlet distribution
Definition

Letz; € [0,1] fori = 1,...,k, then (1, ...,x) ~ Dirichlet(a1, g, . . ., o) if

. D(CF ) T on 1 S
flay, ... ap) = =——=—— .'1:?’ =< ;17?’
(e ) 1%, T(a) Hl Aai,...,ay) Hl |

with Zle z; = L

Generalization of the Beta distribution to the multinomial case k& > 2.

A random variable ¢ = (¢1, ..., ¢x) with Dirichlet distribution takes values on the K — 1 dimensional
simplex (set of points x € RE such that z; > 0 fori = 1,..., K and Zfil z; = 1)

13



Mean and variance

Elz;] = ”—1 Var|x;]
Qg

with ap = Z?:l Q;

Dirichlet distribution

Examples of Dirichlet distributions with &k = 3

a;(ap — )
ad(ap+1)



Dirichlet distribution

Symmetric Dirichlet distribution

Particular case, where oy = acfori=1,..., K
K K
, , - . F([(O[) ra—1 1 ra—1
p(b1, ..., x|, K) = Dir(¢p|la, K) = NOL iljl(/)i - Ag (o) Eoi
Mean and variance
In this case,
1 ) K -1 .
[{IJ = E \/ar{il;,i] = KQ(Q+1) 1=1,..., K

2  The normal distribution

Gaussian distribution

« Properties

Analytically tractable

Completely specified by the firsc two moments

— A number of processes are asintotically gaussian (theorem of the Central Limit)

Linear transformation ofgaussi:ms result in a gaussian

Univariate gaussian

Forz € R:
plw) = N (1, 0%)
1 _e-w?
= e 202
V2mo
with
w=E[x] = xp(x)dx
—00
= H - = [ (- p)Ppa)d

15



Univariate gaussian

p—30 p—20 p—o I pto n+20 n+30

A univariate gaussian distribution has about 95% of its probability in the interval |z — p] > 20.

Multivariate gaussian

For x € R%:
p(x) =N(p, %)
_ 1 tewTs e
o (277)‘1/2|Z\1/26
where

Multivariate gaussian

« p: expectation (vector of size d)

« ¥: matrix d X d of covariance. 0y = E[(X; — pi)(X; — p5)]

16



(z)f

Multivariate gaussian
Mahalanobis distance

. Probability is a function of x through the quadmtic form

A% = (x—p)"2 7 (x - p)

« A is the Mahalanobis distance from g to x: it reduces to the euclidean distance if ¥ = 1.

« Constant probability on the curves (ellipsis) at constant A.

17



Diagonal covariance matrix

Assume a diagona] covariance matrix:

a% 0
0 o3
0 0

18



then, |X| = O'%O’% e 0721 and 7
L0 0
(Tl )
1 0 4 0
»t = 72
0 0 2

Diagonal covariance matrix
Easy to verify that
2
()T gy = 30 B

i=1 i

T I S,
X| L, = —ep |
a i=1 2moi |\ 2 o}

and

The multivariate discribution turns out to be the product of d univariate gaussians, one for each coordinate x;.

Identity covariance matrix

The distribution is the product of d “copies” of the same univariate gaussian, one copy for each coordinate ;.

19



T
Spectral properties of ¥
> is real and symmetric: then,
1. all its eigenvalues A; are in R
2. there exists a corresponding set of orthonormal eigenvectors 4 (i.e. such that (iTj =1iti = jand 0

otherwise)

Multivariate gaussian
Density as a function of eigenvalues and eigenvectors

Lety; = iT(x — ) the projection of the vector x — p along the direction of the i-th eigenvector: then

fx[p, ¥) = H \/ﬁcxp <2)V>

Multivariate gaussian

Yi is the scalar product of x — p and the i-th eigenvector 1, that is the 1ength of the projection ofx — along the
direction of the eigenvector. Since eigenvectors are orthonormal, they are the basis of a new space, and for each

vector x = (x1,...,xq), the values (y1, . .., yq) are the coordinates of x in the eigenvector space.

20



I

-1"'[

Eigenvectors of X correspond to the axes of the distribution; each eigenvalue is a scale factor along the axis of’
the corresponding cigenvector.

Linear transformations

Lecx € R A € RF y = ATx € R¥: then, if x is normally distributed, so is y.
In particular, if the distribution of x has mean gt and covariance macrix X, the distribution ofy has mean AT,u,

and covariance matrix AT Y A.

x~ N(p,T) =y ~ N(ATp, ATSA)

Marginal and conditional of a joint gaussian

Let x; € R” xo € R¥ be such that [ X } ~ N (p,X) and let
X2

|:UI:| with pp € Rh, M2 € R

. l’l’ fry “2

Y= [ 211 | 212 ] with Y17 € ]RhXh, Y12 € Rth7 Y01 € Rth, Yo € N
201 | Moo

then

+ the marginal discribution of x1 is x1 ~ N (1, X11)

21



+ the conditional distribution of x1 given xg is x1|x2 ~ N (ft1)2, £1)2) with

Hij2 = p1 — S12555 (x2 — p2)
Yip =211 — Y1985 Bt

Bayes’ formula and gaussians

Let x, y be such chat
x~N(u,¥q) and  y|x ~ N(Ax+ b, 39)

That is, the marginal distribution of x (the prior) is a gaussian and the conditional distribution ofy w.r.t. x (the
likelihood) is also a gaussian with (conditional) mean given by a linear combination on x. Then, both the the

conditional distribution of x w.r.t. y (the posterior) and the rnarginal distribution ofy (the evidence) are gaussian.

y ~ N(A/,L + b, ¥+ AZlAT)
Ay ~ N (s, )

where

fo= (37 + AT A THATS (y —b) + 5 )
Y=+ AT A

3 Bayesian statistics
Bayesian statistics
Classical (frequentist) statistics

« Interpretation of probability as frequence of an event over a sufficiently long sequence of reproducible ex-
periments.

« Parameters seen as constants to determine
Bayesian statistics
« Interpretation of probability as degree of belief that an event may occur.

« Parameters seen as random variables

Bayes’ rule
Cornerstone of bayesian statistics is Bayes’ rule

p(© = 0|X = 2)p(X = z)
p(© =10)

p(X = 2]0 = ) =

Given two random variables X, O, it relates the conditional probabilities p(X = 2|0 = 0) and p(© = /X = z).

22



Bayesian inference

Given an observed dataset X and a family of probability discributions p(x|@) with parameter O (a probabi]istic
model), we wish to find the parameter value which best allows to describe X through the model.

In the bayesian framework, we deal with the distribution probability p(O) of the parameter O considered here

as a random variable. Bayes’ rule states that

p(X|©)p(©)
p(OX) = ————=
O =T
Bayesian inference
Interpretation

« p(©) stands as the knowledge available about © before X is observed (ak.a. prior distribution)
+ p(©|X) stands as the knowledge available about © after X is observed (a.k.a. posterior distribution)

+ p(X]©) measures how much the observed data are coherent to the model, assuming a certain value © of the
parameter (ak.a. likelihood)

- p(X) = Y o p(X]|O®")p(O’) is the probability that X is observed, considered as a mean w.r.t. all possible
values of © (ak.a. evidence)
Conjugate distributions
Definition
Given a likelihood function p(y|z), a (prior) distribution p(x) is conjugate to p(y|x) if the posterior distribution
p(x|y) is of the same type as p(z).
Consequence
If we look at p(z) as our knowledge of the random variable  before knowing y and with p(x|y) our knowledge
once ¥ is known, the new knowledge can be expressed as the old one.
Examples of conjugate distributions: beta-bernoulli
The Beta distribution is conjugate to the Bernoulli distribution. In fact, given € [0,1] and y € {0, 1}, if

o+ B) g1

— ¢)P1
I'(a)T'(B) (1-¢)

p(¢la, B) = Beta(¢|ar, B) =

then .
p(o|x) = Zc,bafl (1—¢)"1o%(1 — ¢)' % = Beta(z|a + 2 — 1,8 — x)
where Z is the normalization coefficient

MNa+p4+1)
MNa+z)I'(B—x+1)

"1
7 — / (/b()jta:fl(l o (‘,“b)ﬁim(](‘;/) _
0

23



Examples of conjugate distributions: beta-binomial

The Beta distribution is also conjugate to the Binomial distribution. In fact, given 2 € [0, 1] and y € {0, 1}, if

Fla+B) 0 B—1
farm? 179
NI

plb19,N) = ()1~ )" = (e -

p(dla, B) = Beta(g|a, B) =

then
p(elk, N, o, 8) = %w*(l — ) (1 — )N P = Bewa(gla+ k= 1,8+ N -k — 1)

with the normalization coefficient

Lo L I(a+ B+ N)
o a+k—1 o B+N—k—1 o
Z= /0 o 1= 9) = F T BN —F)

Multivariate distributions
Multinomial

Generalization of the binomial

k k
p(ni,...,nk|d1, ..., ¢x,n) = Hcﬁnz Znizmzcﬁz’: 1
imil i) i=1 i=1
thecasen =1isa gencralization of the Bernoulli distribution
K K K
p(z1,.. TK[P1, .., OK) = HWZ Vi:x; € {071}72% = 1;2@ =1
=1 =1 =1
Likelihood of a multinomial
N K K
Lij J
X[, o) < [ TT] 677 = [T ¢
i=1j=1 j=1

Conjugate of the multinomial
Dirichlet distribution

The conjugate of the multinomial is the Dirichlet distribution, generalization of the Beta to the case K > 2

K K

a;) -

p(é1,...,0K|01,...,ax) = Dir(¢p|la) = H 2 l i H@az !
=1 =1

1 K
=1
witha; > 0fori=1,..., K

24



Random variables and Dirichlet distribution
A random variable ¢ = (¢1, . .., ¢x) with Dirichlet distribution takes values on the K — 1 dimensional simplex
(set of points x € RE such thatz; > 0fori=1,..., K and Zfil z; =1)
Examples of conjugate distributions: dirichlet-multinomial
Assume ¢ ~ Dir(¢|a) and z ~ Mule(z|¢). Then,
K K

[)(d)‘zaa) = IM _ l H()LZL Hcs)?ifl

p(zla) 20 A
1 K
= [Jei %" =Dir(gla)
1=1

where o = (Oél + 21y, 0K —|—ZK)

Text modeling
Unigram model

Collection W of N term occurrences: IN observations of a same random variable, with multinomial distribution
over a dictionary V of size V.

\%

1% v
¢) = L(¢|W) = | [ #" Yoi=1Y Ni=N
i=1 i=1

i=1

p(W

Parameter model

Use of a Dirichlet distribution, conjugate to the multinomial

p(@ler) = Dir(¢ex)
p(¢|W, @) = Dir(¢p|ex + N)

Information theory

Let X be a discrete random variable:
+ define a measure h(m) of the information (surprise) ofobserving X ==z
* requirements:

— likely events provide low surprise, while rare events provide high surprise: h(x) is inversely propor-
tional to p(z)

- X, Y independent: the event X = x,Y = y has probability p(z)p(y). Its surprise is the sum of the
surprise for X = z and for Y = y, that is, h(x,y) = h(x) + h(y) (information is additive)

this results into h(z) = — log x (usually base 2)

25



Entropy

A sender transmits the value of X to a receiver: the expected amount of information transmitted (w.r.t. p(:v)) is
the entropy of X

H(z)=— Zp(.’l?) log, p(x)

« lower entropy results from more sharply peaked distributions
« the uniform distribution provides the highest entropy

Entropy is a measure of disorder.

05
H =177
(%]
2
S 025¢
Q
o
o
0
05
H = 3.09
(%]
2
S 025¢
Qo
o
o
OA

Entropy, some properties
- p(x) € [0, 1] implies p(x) logy p(x) < 0and H(X) >0
« H(X) = 0 if cthere exists  such that p(z) =1
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Maximum entropy

Given a fixed number k of outcomes, the distribution p1, .. ., px with maximum entropy is derived by maximizing

H (X)) under the constraint Zle p; = 1. By using Lagrange multipliers, this amounts to maximizing

k
— Zpl log, pi + A (Z pi — 1)
1=1 1=1

Setting the derivative of each p; to 0,

0= —logyp;i — log, e + A
1
results into p; = 2% — e for each i, that is into the uniform distribution p; = Z and H(X) = log, k

Entropy, some properties
H(X) is a lower bound on the expected number of bits needed to encode the values of X
« trivial approach: code oflcngth 10g2 k (assuming uniform discribution of values for X)

« for non-uniform distributions, better coding schemes by associating shorter codes to likely values of X

Conditional entropy

Let X, Y be discrete rv. : for a pair of values x, y the additional information needed to specify y if « is known is

—Inp(y|z).
The expected additional information needed to specify the value of Y if we assume the value of X is known is

HY|X) = ZZp x,y) Inp(y|z)

Clearly, since np(y|z) = Inp(z,y) — Inp(x)
HX,)Y)=HY|X)+ H(X)

the conditional entropy of Y’ given X

that is, the information needed to describe (on the average) the values of X and Y is the sum of the information
needed to describe the value of X plus that needed to describe the value of Y is X is known.

KL divergence

Assume the distribution p(x) of X is unknown, and we have modeled is as an approximation g(z).
[f we use ¢(x) to encode values of X we need an average length — > p(2) In ¢(2), while the minimum (known

p(x))is —> . p(z) Inp(z).

The additional amount of information needed, due to the approximation of p(z) through g(z) is the Kullback-

KL(PHQ):*ZP )Ing(z) + > p(z) Inp(z
:pr ln (z)
T

K L(p||q) measures the difference between the distributions p and g.

KL(pllp) =0

« KL(p||lq) # KL(q||p): the function is not symmetric, it is not a distance (it would be d(z,y) = d(y, x))

Leibler divergence
C
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Applying KL divergence
x = (21,...,Ty), dataset generated by a unknown distribution p(x)

« we want to infer the parameters of a probabilistic model gg(x|0)

« approach: minimize

L(p||gs) = Zp In 4 ))

! Z (Inp(x;) — Ingq(x;]0))

First term is independent of @, while the second one is the negative log-likelihood of x. The value of @ which
minimizes K L(p||gp) also maximizes the log-likelihood.

Mutual information

« Measure of the independence between X and Y

B o) in p(x)p(y)
I(X,Y) = KL(p(X,Y)|lp(X ZZP SR

additional encoding length if independence is assumed

« We have:

3 S () gl +zzpulnp ely) = H(X) ~ H(X]Y)

« Similarly, it derives I(X,Y) = H(Y) — H(Y|X)
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