MACHINE LEARNING

Non parametric classification

Corso di Laurea Magistrale in Informatica

Università di Roma Tor Vergata

Prof. Giorgio Gambosi

a.a. 2023-2024

PROBABILISTIC CLASSIFICATION METHODS RECAP

The application of probabilistic classifier requires that the (at least approximate) knowledge of a suitable distribution is derived from the training set

• the class conditional distribution $p(C_k|\mathbf{x})$ for each class C_k in the discriminative case, where an item \mathbf{x} shall be assigned to C_i if

 $i = \operatorname*{argmax}_{k} p(C_{k}|\mathbf{x})$

• the class conditional distribution $p(\mathbf{x}|C_k)$ (and the prior distribution $p(C_k)$) for each class C_k in the generative (bayesian) case, where an item \mathbf{x} shall be assigned to C_i if

 $i = \operatorname*{argmax}_{k} p(\mathbf{x}|C_{k}) p(C_{k})$

The type of probability distribution is assumed to be known: the value of a suitable set of coefficients must be derived. For example,

- $p(C_k|\mathbf{x})$ is assumed to be of the type $\frac{e^{\mathbf{w}_k^T \mathbf{x}}}{\sum_{i \in \mathbf{w}_i^T \mathbf{x}}}$ in the case of softmax (a discriminative method)
- $p(\mathbf{x}|C_k)$ is assumed to be of the type $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ in the case of gaussian discriminant analysis (a generative method)

In both case, an estimate of parameter values (either \mathbf{w}_k or $\boldsymbol{\theta}_k$) is performed for all classes. Different approaches to parameter estimation:

Maximum likelihood :

- In the discriminative case, the likelihood of the target is considered $\mathbf{w}^{ML} = \operatorname{argmax} p(\mathbf{t}|\mathbf{X}, \mathbf{w})$: prediction is performed as $\operatorname{argmax} p(C_k|\mathbf{x}, \mathbf{w}^{ML})$
- In the generative case, for each class C_k , the likelihood of the subset \mathbf{X}_k of items belonging the class is instead maximized, that is $\theta_k^{ML} = \operatorname{argmax} p(\mathbf{X}_k | \theta_k)$: prediction is

```
performed as \operatorname*{argmax}_{k} p(\mathbf{x}|\boldsymbol{\theta}_{k}^{ML}) p(\boldsymbol{C}_{k})
```

Maximum a posteriori : Similar to the previous one:

- In the discriminative case, the posterior of the parameters wrt to training set $\mathbf{w}^{MAP} = \operatorname{argmax} p(\mathbf{w}|\mathbf{X}, \mathbf{t})$: prediction is performed as $\operatorname{argmax} p(C_k|\mathbf{x}, \mathbf{w}^{MAP})$
- In the generative case, for each class C_k , the posterior of the parameters wrt the items in the class $\theta_k^{MAP} = \underset{\theta_k}{\operatorname{argmax}} p(\theta_k | \mathbf{X}_k)$ is maximized: prediction is performed as $\underset{\theta_k}{\operatorname{argmax}} p(\mathbf{x} | \theta_k^{MAP}) p(C_k)$

Bayesian estimate : This approach directly express the predictive distribution as

$$p(C_k|\mathbf{x}, \mathbf{X}, \mathbf{t}) = \int_{\mathbf{w}} p(C_k|\mathbf{x}, \mathbf{w}) p(\mathbf{w}|\mathbf{X}, \mathbf{t}) d\mathbf{w}$$

No knowledge whatsoever of the probabilities is assumed.

- The class distributions $p(\mathbf{x}|C_i)$ are directly from data.
- In previous cases, use of (parametric) models for a synthetic description of data in ${f X}, {f t}$
- In this case, no models (and parameters): training set items explicitly appear in class distribution estimates.
- Denoted as non parametric models: indeed, an unbounded number of parameters is used

HISTOGRAMS

- Elementary type of non parametric estimate
- Domain partitioned into *m d*-dimensional intervals (bins)
- The probability P_x that an item belongs to the bin containing item x is estimated as $\frac{n(x)}{n}$, where n(x) is the number of element in that bin
- The probability density in the interval corresponding to the bin containing x is then estimated as the ratio between the above probability and the interval width $\Delta(x)$ (tipically, a constant Δ)

$$p_{H}(\mathbf{x}) = rac{n(\mathbf{x})}{\Delta(\mathbf{x})} = rac{n(\mathbf{x})}{N\Delta(\mathbf{x})}$$

KERNEL DENSITY ESTIMATORS

• Probability that an item is in region $\mathcal{R}(x)$, containing x

$$P_{\mathbf{x}} = \int_{\mathcal{R}(\mathbf{x})} p(\mathbf{z}) d\mathbf{z}$$

• Given *n* items $x_1, x_2, ..., x_n$, the probability that *k* among them are in $\mathcal{R}(\mathbf{x})$ is given by the binomial distribution

$$p(k) = \binom{n}{k} P_{x}^{k} (1 - P_{x})^{n-k} = \frac{n!}{k!(n-k)!} P_{x}^{k} (1 - P_{x})^{n-k}$$

- Since $E[k] = nP_x$ and $\sigma_k^2 = nP_x(1 P_x)$, by the binomial distribution properties, we have that, for what concerns the ratio $r = \frac{k}{n}$, $E[r] = \frac{1}{n}E[k] = P_x$ $\sigma_r^2 = \frac{1}{n^2}\sigma_k^2 = \frac{P_x(1 - P_x)}{n}$
- P_x is the expected fraction of items in $\mathcal{R}(\mathbf{x})$, and the ratio r is an estimate. As $n \to \infty$ variance decreases and r tends to $E[r] = P_x$, we assume

$$r=rac{k}{n}\simeq P_{\mathrm{x}}$$

Prof. Giorgio Gambosi

• Let the volume of $\mathcal{R}(\mathbf{x})$ be sufficiently small. Then, the density $p(\mathbf{x})$ is almost constant in the region and

$$\mathbf{P}_{\mathbf{x}} = \int_{\mathcal{R}(\mathbf{x})} \mathbf{p}(\mathbf{z}) d\mathbf{z} \simeq \mathbf{p}(\mathbf{x}) \mathbf{V}$$

where V is the volume of $\mathcal{R}(\mathbf{x})$

• since
$$P_{\mathbf{x}} \simeq \frac{k}{n}$$
, it then derives that $p(\mathbf{x}) \simeq \frac{k}{nV}$

Two alternative ways to exploit the relation $p(\mathbf{x}) \simeq \frac{k}{nV}$ to estimate $p(\mathbf{x})$ for any \mathbf{x} :

- 1. Fix V and derive k from data (kernel density estimation)
- 2. Fix *k* and derive *V* from data (K-nearest neighbor).

It can be shown that in both cases, under suitable conditions, the estimator tends to the true density $p(\mathbf{x})$ as $n \to \infty$.

KERNEL DENSITY ESTIMATION: PARZEN WINDOWS

- Region associated to a point **x**: hypercube with edge length *h* (and volume *h^d*) centered on **x**.
- Kernel function k(z) (Parzen window) used to count the number of items in the unit hypercube centered on the origin 0

$$k(\mathbf{z}) = \begin{cases} 1 & |\mathbf{z}_i| \le 1/2 & i = 1, \dots, d \\ 0 & \text{otherwise} \end{cases}$$

- as a consequence, $k\left(\frac{\mathbf{x}-\mathbf{x}'}{h}\right) = 1$ iff \mathbf{x}' is in the hypercube of edge length h centered on \mathbf{x}
- the number of items in the hypercube is then

$$K = \sum_{i=1}^{n} k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

KERNEL DENSITY ESTIMATION: PARZEN WINDOWS

• The estimated density is

$$p_n(\mathbf{x}) = \frac{1}{nV} \sum_{i=1}^n k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right) = \frac{1}{nh^d} \sum_{i=1}^n k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

Since

$$k(\mathbf{z}) \ge 0$$
 and $\int k(\mathbf{z})d\mathbf{z} = 1$
it derives
 $k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right) \ge 0$ and $\int k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)d\mathbf{x} = h^d$

As a consequence, it results that $p_n(\mathbf{x})$ is a probability density.

Clearly, the window size has a relevant effect on the estimate

KERNEL DENSITY ESTIMATION: PARZEN WINDOWS

Drawbacks

- 1. discontinuity of the estimates
- 2. items in a region centered on \mathbf{x} have uniform weights: their distance from \mathbf{x} is not taken into account

Solution. Use of smooth kernel functions $\kappa_h(u)$ to assign larger weights to points nearer to the origin.

Assumed characteristics of $\kappa_h(u)$:

$$\int \kappa_h(\mathbf{x}) d\mathbf{x} = 1$$
$$\int \mathbf{x} \kappa_h(\mathbf{x}) d\mathbf{x} = 0$$
$$\int \mathbf{x}^2 \kappa_h(\mathbf{x}) d\mathbf{x} > 0$$

Usually kernels are based on smooth radial functions (functions of the distance from the origin)

1. gaussian
$$\kappa(u)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{1}{2}rac{u^2}{\sigma^2}}$$
, unlimited support

2. Epanechnikov $\kappa(u) = 3\left(\frac{1}{2} - u^2\right)$, $|u| \le \frac{1}{2}$, limited support

3. • • •

Kernels and smoothing

Kernels and smoothing

PARZEN WINDOWS AND CLASSIFICATION

- Parzen windows provide a way to estimate $p(\mathbf{x})$ for any \mathbf{x} , given a set of points \mathbf{X}
- They can be applied to classify an item **x** by estimating $p(\mathbf{x}|C_k)$ for all classes, by referring to the sets $\mathbf{X}_1, \ldots, \mathbf{X}_k$ of items in the training set belonging to each class
- According to bayesian classification, **x** is predicted to the class with index

$$\begin{aligned} \operatorname*{argmax}_{i} p(\mathbf{x}|C_{i}) p(C_{i}) &= \operatorname*{argmax}_{i} \frac{1}{n_{i}h^{d}} \sum_{i=1}^{n_{i}} k\left(\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right) p(C_{i}) = \\ &= \operatorname*{argmax}_{i} \frac{1}{nh^{d}} \sum_{i=1}^{n_{i}} k\left(\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right) \\ &= \operatorname*{argmax}_{i} \sum_{i=1}^{n_{i}} k\left(\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right) \end{aligned}$$

• that is, an item is assigned to the class with most (weighted by the kernel) points near x, that is in an hypercube of edge size h with center x

DENSITY ESTIMATION THROUGH KNN

- The region around x is extended to include k items
- The estimated density is

$$\mathbf{p}(\mathbf{x}) \simeq \frac{\mathbf{k}}{\mathbf{nV}} = \frac{\mathbf{k}}{\mathbf{nc}_d \mathbf{r}_k^d(\mathbf{x})}$$

where:

- c_d is the volume of the d-dimensional sphere of unitary radius
- $r_k^{\vec{d}}(\mathbf{x})$ is the distance from \mathbf{x} to the *k*-th nearest item (the radius of the smallest sphere with center \mathbf{x} containing *k* items)

CLASSIFICATION THROUGH KNN

- To estimate $p(C_i|\mathbf{x})$ in order to classify \mathbf{x} , let us consider a hypersphere of volume V with center \mathbf{x} containing k items from the training set
- Let k_i be the number of such items belonging to class C_i . Then, the following approximation holds:

$$p(\mathbf{x}|C_i) = \frac{R_i}{n_i V}$$

where n_i is the number of items in the training set belonging to class C_i

• Similarly, for the evidence,

$$p(\mathbf{x}) = \frac{k}{nV}$$

• And, for the prior distribution,

$$p(C_i) = \frac{n}{n}$$

• The class posterior distribution is then

$$p(C_i|\mathbf{x}) = \frac{p(\mathbf{x}|C_i)p(C_i)}{p(\mathbf{x})} = \frac{\frac{k_i}{n_i v} \cdot \frac{n_i}{n}}{\frac{k}{n v}} = \frac{k_i}{k}$$

CLASSIFICATION THROUGH KNN

- Simple rule: an item is classified on the basis of similarity to near training set items
- To classify x, determine the k items in the training nearest to it and assign x to the majority class among them
- A metric is necessary to measure similarity.

CLASSIFICATION THROUGH KNN

- kNN is a simple classifier which can work quite well, provided it is given a good distance metric and has enough labeled training data: it can be shown that it can result within a factor of 2 of the best possible performance as $n \to \infty$
- subject to the curse of dimensionality: due to the large sparseness of data at high dimensionality, items considered by kNN can be quite far away from the query point, and thus resulting in poor locality.