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PROBABILISTIC CLASSIFICATION METHODS RECAP

The application of probabilistic classifier requires that the (at least approximate) knowledge of a
suitable distribution is derived from the training set
• the class conditional distribution p(Ck|x) for each class Ck in the discriminative case, where
an item x shall be assigned to Ci if

i = argmax
k

p(Ck|x)

• the class conditional distribution p(x|Ck) (and the prior distribution p(Ck)) for each class Ck
in the generative (bayesian) case, where an item x shall be assigned to Ci if

i = argmax
k

p(x|Ck)p(Ck)
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PARAMETRIC APPROACH

The type of probability distribution is assumed to be known: the value of a suitable set of
coefficients must be derived. For example,

• p(Ck|x) is assumed to be of the type ewTkx∑
i e

wTi x in the case of softmax (a discriminative method)

• p(x|Ck) is assumed to be of the type N (x|µk,Σk) in the case of gaussian discriminant
analysis (a generative method)
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PARAMETRIC APPROACH

In both case, an estimate of parameter values (either wk or θk) is performed for all classes.
Different approaches to parameter estimation:
Maximum likelihood :

• In the discriminative case, the likelihood of the target is considered
wML = argmax

w
p(t|X,w): prediction is performed as argmax

k
p(Ck|x,wML)

• In the generative case, for each class Ck, the likelihood of the subset Xk of items
belonging the class is instead maximized, that is θMLk = argmax

θ

p(Xk|θk): prediction is

performed as argmax
k

p(x|θMLk )p(Ck)
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PARAMETRIC APPROACH

Maximum a posteriori : Similar to the previous one:
• In the discriminative case, the posterior of the parameters wrt to training set

wMAP = argmax
w

p(w|X, t): prediction is performed as argmax
k

p(Ck|x,wMAP)

• In the generative case, for each class Ck, the posterior of the parameters wrt the items in
the class θMAPk = argmax

θk

p(θk|Xk) is maximized: prediction is performed as

argmax
k

p(x|θMAPk )p(Ck)
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PARAMETRIC APPROACH

Bayesian estimate : This approach directly express the predictive distribution as

p(Ck|x,X, t) =
∫

w
p(Ck|x,w)p(w|X, t)dw
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NON PARAMETRIC APPROACH

No knowledge whatsoever of the probabilities is assumed.
• The class distributions p(x|Ci) are directly from data.
• In previous cases, use of (parametric) models for a synthetic description of data in X, t
• In this case, no models (and parameters): training set items explicitly appear in class
distribution estimates.

• Denoted as non parametric models: indeed, an unbounded number of parameters is used
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HISTOGRAMS
• Elementary type of non parametric estimate
• Domain partitioned into m d-dimensional intervals (bins)
• The probability Px that an item belongs to the bin containing item x is estimated as n(x)n ,
where n(x) is the number of element in that bin

• The probability density in the interval corresponding to the bin containing x is then
estimated as the ratio between the above probability and the interval width ∆(x) (tipically, a
constant ∆)

pH(x) =
n(x)
N

∆(x) =
n(x)
N∆(x)
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KERNEL DENSITY ESTIMATORS
• Probability that an item is in region R(x), containing x

Px =

∫
R(x)

p(z)dz

• Given n items x1, x2, . . . , xn, the probability that k among them are in R(x) is given by the
binomial distribution

p(k) =
(
n
k

)
Pkx(1− Px)

n−k =
n!

k!(n− k)!P
k
x(1− Px)

n−k

• Since E[k] = nPx and σ2
k = nPx(1− Px), by the binomial distribution properties, we have that,

for what concerns the ratio r = k
n ,

E [r] = 1

nE[k] = Px σ2
r =

1

n2 σ
2
k =

Px(1− Px)
n

• Px is the expected fraction of items inR(x), and the ratio r is an estimate. As n→ ∞ variance
decreases and r tends to E[r] = Px, we assume

r = k
n ≃ Px
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NONPARAMETRIC ESTIMATES

• Let the volume of R(x) be sufficiently small. Then, the density p(x) is almost constant in the
region and

Px =

∫
R(x)

p(z)dz ≃ p(x)V

where V is the volume of R(x)

• since Px ≃ k
n , it then derives that p(x) ≃

k
nV
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APPROACHES TO NONPARAMETRIC ESTIMATES

Two alternative ways to exploit the relation p(x) ≃ k
nV to estimate p(x) for any x:

1. Fix V and derive k from data (kernel density estimation)
2. Fix k and derive V from data (K-nearest neighbor).

It can be shown that in both cases, under suitable conditions, the estimator tends to the true
density p(x) as n→ ∞.
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KERNEL DENSITY ESTIMATION: PARZEN WINDOWS

• Region associated to a point x: hypercube with edge length h (and volume hd) centered on x.
• Kernel function k(z) (Parzen window) used to count the number of items in the unit
hypercube centered on the origin 0

k(z) =
{

1 |zi| ≤ 1/2 i = 1, . . . ,d
0 otherwise

• as a consequence, k
(

x − x′

h

)
= 1 iff x′ is in the hypercube of edge length h centered on x

• the number of items in the hypercube is then

K =
n∑
i=1

k
(x − xi

h
)
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KERNEL DENSITY ESTIMATION: PARZEN WINDOWS

• The estimated density is

pn(x) =
1

nV

n∑
i=1

k
(x − xi

h
)
=

1

nhd
n∑
i=1

k
(x − xi

h
)

• Since
k(z) ≥ 0 and

∫
k(z)dz = 1

it derives
k
(x − xi

h
)
≥ 0 and

∫
k
(x − xi

h
)
dx = hd

As a consequence, it results that pn(x) is a probability density.

Clearly, the window size has a relevant effect on the estimate
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KERNEL DENSITY ESTIMATION: PARZEN WINDOWS

h = ε

h = 1

h = 2
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KERNELS AND SMOOTHING

Drawbacks
1. discontinuity of the estimates
2. items in a region centered on x have uniform weights: their distance from x is not taken into
account

Solution. Use of smooth kernel functions κh(u) to assign larger weights to points nearer to the
origin.
Assumed characteristics of κh(u): ∫

κh(x)dx = 1∫
xκh(x)dx = 0∫
x2κh(x)dx > 0
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KERNELS AND SMOOTHING

Usually kernels are based on smooth radial functions (functions of the distance from the origin)

1. gaussian κ(u) = 1√
2πσ

e−
1
2
u2
σ2 , unlimited support

2. Epanechnikov κ(u) = 3

(
1

2
− u2

)
, |u| ≤ 1

2
, limited support

3. · · ·

u

k(u)

1
2− 1

2

u

κ(u)

1
2− 1

2

u

κ(u)

1
2− 1

2

resulting estimate:

p(x) = 1

nh

n∑
i=1

κ
(x − xi

h
)
=

1

n

n∑
i=1

κh (x − xi)
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KERNELS AND SMOOTHING
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KERNELS AND SMOOTHING
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KERNELS AND SMOOTHING
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KERNELS AND SMOOTHING
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PARZEN WINDOWS AND CLASSIFICATION
• Parzen windows provide a way to estimate p(x) for any x, given a set of points X
• They can be applied to classify an item x by estimating p(x|Ck) for all classes, by referring to
the sets X1, . . . ,Xk of items in the training set belonging to each class

• According to bayesian classification, x is predicted to the class with index

argmax
i

p(x|Ci)p(Ci) = argmax
i

1

nihd
ni∑
i=1

k
(x − xi

h
)
p(Ci) =

= argmax
i

1

nhd
ni∑
i=1

k
(x − xi

h
)

= argmax
i

ni∑
i=1

k
(x − xi

h
)

• that is, an item is assigned to the class with most (weighted by the kernel) points near x, that
is in an hypercube of edge size h with center x
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DENSITY ESTIMATION THROUGH KNN

• The region around x is extended to include k items
• The estimated density is

p(x) ≃ k
nV =

k
ncdrdk(x)

where:
• cd is the volume of the d-dimensional sphere of unitary radius
• rdk(x) is the distance from x to the k-th nearest item (the radius of the smallest sphere with center x
containing k items)
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CLASSIFICATION THROUGH KNN
• To estimate p(Ci|x) in order to classify x, let us consider a hypersphere of volume V with
center x containing k items from the training set

• Let ki be the number of such items belonging to class Ci. Then, the following approximation
holds:

p(x|Ci) =
ki
niV

where ni is the number of items in the training set belonging to class Ci
• Similarly, for the evidence,

p(x) = k
nV

• And, for the prior distribution,
p(Ci) =

ni
n

• The class posterior distribution is then

p(Ci|x) =
p(x|Ci)p(Ci)

p(x) =

ki
niV

· nin
k
nV

=
ki
k
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CLASSIFICATION THROUGH KNN

• Simple rule: an item is classified on the basis of similarity to near training set items
• To classify x, determine the k items in the training nearest to it and assign x to the majority
class among them

• A metric is necessary to measure similarity.
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CLASSIFICATION THROUGH KNN

• kNN is a simple classifier which can work quite well, provided it is given a good distance
metric and has enough labeled training data: it can be shown that it can result within a
factor of 2 of the best possible performance as n→ ∞

• subject to the curse of dimensionality: due to the large sparseness of data at high
dimensionality, items considered by kNN can be quite far away from the query point, and
thus resulting in poor locality.
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