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PROBABILISTIC CLASSIFICATION METHODS RECAP

The application of probabilistic classifier requires that the (at least approximate) knowledge of a
suitable distribution is derived from the training set

e the class conditional distribution p(Cy|x) for each class C; in the discriminative case, where
an item x shall be assigned to C; if

i = argmax p(Cy|x)
R
e the class conditional distribution p(x|Ck) (and the prior distribution p(C)) for each class Cy

in the generative (bayesian) case, where an item x shall be assigned to C; if

i= argmax P(x|Ck)p(Ck)
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PARAMETRIC APPROACH

The type of probability distribution is assumed to be known: the value of a suitable set of
coefficients must be derived. For example,

wix
® p(Ck|x) is assumed to be of the type —¢ kng
et
® p(x|C) is assumed to be of the type N/ (x|ur, k) in the case of gaussian discriminant
analysis (a generative method)

in the case of softmax (a discriminative method)
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PARAMETRIC APPROACH

In both case, an estimate of parameter values (either wy, or 6) is performed for all classes.
Different approaches to parameter estimation:

Maximum likelihood :

¢ |n the discriminative case, the likelihood of the target is considered

w"t = argmax p(t|X, w): prediction is performed as argmax p(Cg|x, w"")
w kR

® |n the generative case, for each class Cy, the likelihood of the subset X of items
belonging the class is instead maximized, that is )" = argmax p(X,|6): prediction is
2]

performed as argmax p(x|0")p(Ck)
k
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PARAMETRIC APPROACH

Maximum a posteriori : Similar to the previous one:

¢ |n the discriminative case, the posterior of the parameters wrt to training set
w"P = argmax p(w|X, t): prediction is performed as argmax p(Cy|x, w"P)
w [

e In the generative case, for each class C, the posterior of the parameters wrt the items in

the class )" = argmax p(6x|Xy) is maximized: prediction is performed as
6

kR
argmax p(x|0}"*)p(Cy)
4
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PARAMETRIC APPROACH

Bayesian estimate : This approach directly express the predictive distribution as

P(Crlx. X, t) = / P(Calx, w)p(w]X, t)dw
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NON PARAMETRIC APPROACH

No knowledge whatsoever of the probabilities is assumed.
e The class distributions p(x|C;) are directly from data.
® |n previous cases, use of (parametric) models for a synthetic description of data in X, t

¢ |n this case, no models (and parameters): training set items explicitly appear in class
distribution estimates.

e Denoted as non parametric models: indeed, an unbounded number of parameters is used
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HISTOGRAMS

e Elementary type of non parametric estimate
® Domain partitioned into m d-dimensional intervals (bins)

e The probability P, that an item belongs to the bin containing item x is estimated as @

where n(x) is the number of element in that bin

e The probability density in the interval corresponding to the bin containing x is then
estimated as the ratio between the above probability and the interval width A(x) (tipically, a
constant A)

’

50 0.5 1
A =0.08
0
0 0.5 1

A =025

Prof. Giorgio Gambosi Non parametric classification Slide 8 /25




KERNEL DENSITY ESTIMATORS
® Probability that an item is in region R(x), containing x

Py = / p(z)dz
R(x)

® Given nitems x1,xo, ..., Xn, the probability that kR among them are in R(x) is given by the
binomial distribution

p(k) = <Z) PL(L— P ™" = g AL = P

® Since E[R] = nP, and ¢} = nP«(1 — Py), by the binomial distribution properties, we have that,

. k
for what concerns the ratio r = o

E[R] = P, ol = iaﬁ — Px(1 — Px)

e P, is the expected fraction of items in R(x), and the ratio r is an estimate. As n — oo variance
decreases and r tends to E[r] = Py, we assume
k

r=—o~P
n
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NONPARAMETRIC ESTIMATES

e Let the volume of R(x) be sufficiently small. Then, the density p(x) is almost constant in the
region and

P, = / p(z)dz ~ p(x)V
R(x)
where V is the volume of R(x)

. kR . .
® since Py ~ —, it then der h ~ —
[ pel then derives that p(x) peY
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APPROACHES TO NONPARAMETRIC ESTIMATES

. . . k .
Two alternative ways to exploit the relation p(x) ~ v to estimate p(x) for any x:

1. Fix V and derive k from data (kernel density estimation)
2. Fix k and derive V from data (K-nearest neighbor).

It can be shown that in both cases, under suitable conditions, the estimator tends to the true
density p(x) as n — oc.
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KERNEL DENSITY ESTIMATION: PARZEN WINDOWS

e Region associated to a point x: hypercube with edge length h (and volume h?) centered on x.

Kernel function k(z) (Parzen window) used to count the number of items in the unit
hypercube centered on the origin 0

k(z):{l lzi| < 1/2 i=1,....d

0 otherwise

x—x
h
the number of items in the hypercube is then

n — .
K:;k(x hX‘>

as a consequence, R ( ) = 1iff x" is in the hypercube of edge length h centered on x
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KERNEL DENSITY ESTIMATION: PARZEN WINDOWS

® The estimated density is

1 < X — X; 1 < X—X
Pn(x):ﬁ/;k( h ):W‘;k( i)

® Since
k(z) >0 and /k(z)dz =1

k(";x")zo and /k(%)dx:hd

As a consequence, it results that p,(x) is a probability density.

it derives

Clearly, the window size has a relevant effect on the estimate
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KERNEL DENSITY ESTIMATION: PARZEN WINDOWS
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KERNELS AND SMOOTHING

Drawbacks
1. discontinuity of the estimates

2. items in a region centered on x have uniform weights: their distance from x is not taken into
account

Solution. Use of smooth kernel functions x,(u) to assign larger weights to points nearer to the
origin.
Assumed characteristics of xx(u):
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KERNELS AND SMOOTHING

Usually kernels are based on smooth radial functions (functions of the distance from the origin)

. 1 _1u? -
1. gaussian x(u) = e 252 unlimited support
g (u) V2o pp
. 1 .
2. Epanechnikov x(u) = 3 (5 - u2>, lu| < %, limited support
R(u) K(u) K(U)
u u u
1 1 _1 1 1 1
2 2 2 2 2 2

resulting estimate:
n
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KERNELS AND SMOOTHING

h=1




KERNELS AND SMOOTHING

h=2
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KERNELS AND SMOOTHING
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KERNELS AND SMOOTHING
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PARZEN WINDOWS AND CLASSIFICATION

® Parzen windows provide a way to estimate p(x) for any x, given a set of points X

e They can be applied to classify an item x by estimating p(x|C,) for all classes, by referring to
the sets X, ..., X of items in the training set belonging to each class

e According to bayesian classification, x is predicted to the class with index

n; .
argmax p(x|C;)p(C;) = argmax ﬁ Z k (x ; X') p(C) =
i i i i1
= arglinax # Zi:k (x;x,~>
nj
= argmax Zk (X;X')

e thatis, an item is assigned to the class with most (weighted by the kernel) points near x, that
is in an hypercube of edge size h with center x
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DENSITY ESTIMATION THROUGH KNN

e The region around x is extended to include k items

® The estimated density is
T nV o ncgré(x)
where:
® ¢, is the volume of the d-dimensional sphere of unitary radius
4 rg(x) is the distance from x to the k-th nearest item (the radius of the smallest sphere with center x
containing k items)
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CLASSIFICATION THROUGH KNN

® To estimate p(Ci|x) in order to classify x, let us consider a hypersphere of volume V with
center x containing k items from the training set
e Let k; be the number of such items belonging to class C;. Then, the following approximation
holds:
plxic) = 1
n;v
where n; is the number of items in the training set belonging to class C;
e Similarly, for the evidence,

R
p(x) = nv
e And, for the prior distribution,
n;
p(G) = r

e The class posterior distribution is then

PIC)p(C) _ mv 7 _ ki
k

p(C,|X) = P(X) - n% =
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CLASSIFICATION THROUGH KNN

e Simple rule: an item is classified on the basis of similarity to near training set items
e To classify x, determine the k items in the training nearest to it and assign x to the majority

class among them

e A metric is necessary to measure similarity.
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CLASSIFICATION THROUGH KNN

® kNN is a simple classifier which can work quite well, provided it is given a good distance
metric and has enough labeled training data: it can be shown that it can result within a
factor of 2 of the best possible performance as n — oo

e subject to the curse of dimensionality: due to the large sparseness of data at high
dimensionality, items considered by kNN can be quite far away from the query point, and

thus resulting in poor locality.
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