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GENERALIZED LINEAR MODELS

In the cases considered above, the posterior class distributions p(Ck|x) are sigmoidal or softmax
with argument given by a linear combination of features in x, i.e., they are a instances of
generalized linear models
A generalized linear model (GLM) is a function

y(x) = f(w'x + wo)

where f (usually called the response function) is in general a non linear function.

Each iso-surface of y(x) , such that by definition y(x) = ¢ (for some constant c), is such that
fw'x4+wo) =c

and
wix+wo = f(y) = ¢
(¢’ constant).
Hence, iso-surfaces of a GLM are hyper-planes, thus implying that boundaries are hyperplanes

themselves.
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EXPONENTIAL FAMILIES AND GLM

Let us assume we wish to predict a random variable y as a function of a different set of random
variables x. By definition, a prediction model for this task is a GLM if the following hypotheses
hold:

1. the conditional distribution of y given x, p(y|x) belongs to the exponential family

pylx) = %g(@(x))f(g) o0 u)

2. for any x, we wish to predict the expected value of u(y) given x, that is E[u(y)|x]

3. 0(x) (the natural parameter) is a linear combination of the features, 6(x) = w'x

Prof. Giorgio Gambosi Probabilistic classification - discriminative models Slide 3 /22



GLM AND NORMAL DISTRIBUTION

G=p)? . T .
1. ye R, and p(y|x) = Zlme’ 222 is a normal distribution with mean u(x) and constant

variance o it is easy to verify that
_ (0 _ [ wx)/o?
O(x) = ( 0 ) - ( ~1/25?
andu(y) =y

2. we wish to predict the value of E[u(y)|x] as y(x) = E[y|x], then

y(x) = u(x) = 0*61(x)

3. we assume there exists w such that 6, (x) = wix

Then, a linear regression results
y(x) = wix
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GLM AND BERNOULLI DISTRIBUTION

1. y € {0,1},and p(y|x) = 7(x)’(1 — 7(x))* ™ is a Bernoulli distribution with parameter r(x):
then, the natural parameter 6(x) is

0(x) = log m(x)

1—7(x)
and u(y) =y
2. we wish to predict the value of E[u(y)|x] as y(x) = E[y|x] = p(y = 1]x), then
1
ply =1x) = n(x) = T e0

3. we assume there exists w such that 6(x) = w'x

Then, a logistic regression derives
1

YO = e
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GLM AND CATEGORICAL DISTRIBUTION

1. ye{1,...,K},and p(y|x) = [T5 mi(x)¥ (where y; = 1if y = i and y = 0 otherwise) is a
categorical distribution with probabilities 71 (x), . .., mk(x)) (where S°K | m;(x) = 1): the
natural parameter is then 0(x) = (61 (x), ..., 6k(x))", with

mi(x)
1- Zj"(:_f 7j(x)
and u(y) = (v1,...,yx)" is the 1-to-K representation of y
2. we wish to predict the expectations y;(x) = E[u;(y)|x] = p(y = i|x) as

71','(X)

0i(x) = log ) = log

Py = ilx) = E[ui(y)[x] = mi(x) = mc(x)e"
Since 1 = | mi(x) = m(x) S, €%, it derives

i=

) ! § =
TK(X) = —/0——— an TilX) = ——mmm
Y, efi T, et

3. we assume there exist w1, ..., wg such that §;(x) = wx
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GLM AND CATEGORICAL DISTRIBUTION

Then, a softmax regression results, with
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GLM AND ADDITIONAL REGRESSIONS

Other regression types can be defined by considering different models for p(y|x). For example,
1. Assume y € {0,...,} is a non negative integer (for example we are interested to count data),
and p(y|x) = %’j)ye‘*(") is a Poisson distribution with parameter A(x): then, the natural

parameter 0(x) is
0(x) = log A(x)

andu(y) =y
2. we wish to predict the value of E[u(y)|x] as y(x) = E[y|x], then

y(x) = Ax) = e

3. we assume there exists w such that 6(x) = w'x

Then, a Poisson regression derives

W X

y(x)=e
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GLM AND ADDITIONAL REGRESSIONS

1. Assume y € [0, 00) is a non negative real (for example we are interested to time intervals),
and p(y|x) = A(x)e~*® is an exponential distribution with parameter \(x): then, the natural
parameter 0(x) is

andu(y) =y
2. we wish to predict the value of E[u(y)|x] as y(x) = E[y|x], then

1 1
5w T

3. we assume there exists w such that 6(x) = w'x

Then, an exponential regression derives

y(x) = g

w'X
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DISCRIMINATIVE APPROACH

We could directly assume that p(Cg|x) is a GLM and derive its coefficients (for example through ML
estimation).
Comparison wrt the generative approach:
e Less information derived (we do not know p(x|Cy), thus we are not able to generate new data)
e Simpler method, usually a smaller set of parameters to be derived
e Better predictions, if the assumptions done with respect to p(x|C;) are poor.
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LOGISTIC REGRESSION

Logistic regression is a GLM deriving from the hypothesis of a Bernoulli distribution of y, which

results into .

PCi) = o (W) = T

where base functions could also be applied.

The model is equivalent, for the binary classification case, to linear regression for the regression
case.
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DEGREES OF FREEDOM

¢ |n the case of d features, logistic regression requires d + 1 coefficients wy, ..., wy to be
derived from a training set
e A generative approach with gaussian distributions requires:
® 2d coefficients for the means 1, p2,
® for each covariance matrix

d(d+1)/ coefficients

HMQ

® one prior cla probability p(C;)

e As atotal, it results into d(d + 1) + 2d + 1 = d(d + 3) + 1 coefficients (if a unique covariance
matrix is assumed d(d +1)/2 +2d + 1 = d(d + 5)/2 + 1 coefficients)
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MAXIMUM LIKELIHOOD ESTIMATION
Let us assume that targets of elements of the training set can be conditionally (with respect to
model coefficients) modeled through a Bernoulli distribution. That is, assume
p(tilxi, w) = pi (1 —p;)'
where p; = p(Ci|x;) = o(w'x;).
Then, the likelihood of the training set targets t given X is

p(tX, w) = L(w|X,t) = HPLIX” )=[1Ipit—pn

and the log-likelihood is

n

(WX, t) = logL(w|X,t) = Y (tilogp; + (1 — t;) log(1 — p;))

i=1
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MAXIMUM LIKELIHOOD ESTIMATION

® |t results
n

781(2;'3:7 t) = Z(t,‘ — p,')i,' = ;(t,' — O'(WTi,'))i,'

i=1
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MAXIMUM LIKELIHOOD ESTIMATION

To maximize the likelihood, we could apply a gradient ascent algorithm, where at each iteration
the following update of the currently estimated w is performed

81(w|X,t)| _
ow wl

=w' t+a i(t:‘ —o((w)x)x;

W(j+1) _ w(l) +a

=wl+ad (- yx)x
i=1
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MAXIMUM LIKELIHOOD ESTIMATION

As a possible alternative, at each iteration only one coefficient in w is updated
ol(w|X, t)
aWk |w(l)

n
= W,gl+1) + o Z(t, — a((w<’))Ti,-))x,-k

i=1

n
= w4 a3 (1 — y(x)Xie
i—1

U+1) _ ,0)
wy, =w, +o
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LOGISTIC REGRESSION AND GDA

® Observe that assuming p(x|C:) are p(x|Cz) as multivariate normal distributions with same
covariance matrix X results into a logistic p(Ci|x).

e The opposite, however, is not true in general: in fact, GDA relies on stronger assumptions
than logistic regression.

e The more the normality hypothesis of class conditional distributions with same covariance is
verified, the more GDA will tend to provide the best models for p(C: |x)
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LOGISTIC REGRESSION AND GDA

e |ogistic regression relies on weaker assumptions than GDA: it is then less sensible from a
limited correctness of such assumptions, thus resulting in a more robust technique

e Since p(C|x) is logistic under a wide set of hypotheses about p(x|C;), it will usually provide
better solutions (models) in all such cases, while GDA will provide poorer models as far as

the normality hypotheses is less verified.
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SOFTMAX REGRESSION

¢ |n order to extend the logistic regression approach to the case K > 2, let us consider the
matrix W = (w1, ..., wk) of model coefficients, of size (d + 1) x K, where w; is the
d + 1-dimensional vector of coefficients for class ;.

® |n this case, the likelihood is defined as

n oK wa, tir
pearxw) = [T = T ( =
i=1 k=1 r=1

i=1 k=1

where X is the usual matrix of features and T is the n x K matrix where row i is the 1-to-K
coding of t;. That is, if x; € C, thenty, = 1and t, = 0forr # k.
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ML AND SOFTMAX REGRESSION

The log-likelihood is then defined as

K wTi,-
= ; ; ik log (ZKe 1keWI§i >

r=

And the gradient is defined as

W) [ l(W) A(W)
E)W _( 8W1 B 8w,< >
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ML AND SOFTMAX REGRESSION

e |tis possible to show that

AW ! _
a(w,.) =t —yp%

i=1

e Observe that the gradient has the same structure than in the case of linear regression and
logistic regression
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ML AND SOFTMAX REGRESSION: GRADIENT ASCENT METHOD

e Applying a gradient method to maximize the log-likelihood [(w) requires using the gradient
Fw to explore the dK-dimensional space of model coefficient values
® As an alternative, on-line gradient descent: at each iteration the ascent is performed only

wrt to a cyclically selected coefficient wy, evaluating only the gradient 8871 in a space of
k
dimension d
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