MACHINE LEARNING

Probabilistic classification - discriminative models

Corso di Laurea Magistrale in Informatica

Università di Roma Tor Vergata

Prof. Giorgio Gambosi

a.a. 2023-2024

GENERALIZED LINEAR MODELS

In the cases considered above, the posterior class distributions $p(C_k|\mathbf{x})$ are sigmoidal or softmax with argument given by a linear combination of features in \mathbf{x} , i.e., they are a instances of generalized linear models A generalized linear model (GLM) is a function

$$\mathbf{y}(\mathbf{x}) = \mathbf{f}(\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w}_0)$$

where *f* (usually called the *response function*) is in general a non linear function.

Each iso-surface of y(x), such that by definition y(x) = c (for some constant c), is such that

 $f(\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w}_0) = \mathbf{c}$

and

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{w}_0 = \mathbf{f}^{-1}(\mathbf{y}) = \mathbf{c}'$$

(c' constant).

Hence, iso-surfaces of a GLM are hyper-planes, thus implying that boundaries are hyperplanes themselves.

Let us assume we wish to predict a random variable *y* as a function of a different set of random variables **x**. By definition, a prediction model for this task is a GLM if the following hypotheses hold:

1. the conditional distribution of y given x, p(y|x) belongs to the exponential family

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{s}g(\boldsymbol{\theta}(\mathbf{x}))f\left(\frac{\mathbf{y}}{s}\right)e^{\frac{1}{s}\boldsymbol{\theta}(\mathbf{x})^{\mathsf{T}}\mathbf{u}(\mathbf{y})}$$

2. for any x, we wish to predict the expected value of $\mathbf{u}(y)$ given x, that is $E[\mathbf{u}(y)|\mathbf{x}]$

3. $\theta(\mathbf{x})$ (the natural parameter) is a linear combination of the features, $\theta(\mathbf{x}) = \mathbf{w}^T \overline{\mathbf{x}}$

GLM AND NORMAL DISTRIBUTION

1. $y \in \mathbb{R}$, and $p(y|\mathbf{x}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y-\mu(\mathbf{x}))^2}{2\sigma^2}}$ is a normal distribution with mean $\mu(\mathbf{x})$ and constant variance σ^2 : it is easy to verify that

$$\boldsymbol{\theta}(\mathbf{x}) = \begin{pmatrix} \theta_1(\mathbf{x}) \\ \theta_2 \end{pmatrix} = \begin{pmatrix} \mu(\mathbf{x})/\sigma^2 \\ -1/2\sigma^2 \end{pmatrix}$$

and $\mathbf{u}(\mathbf{y}) = \mathbf{y}$

2. we wish to predict the value of $E[\mathbf{u}(y)|\mathbf{x}]$ as $y(\mathbf{x}) = E[y|\mathbf{x}]$, then

 $\mathbf{y}(\mathbf{x}) = \mu(\mathbf{x}) = \sigma^2 \theta_1(\mathbf{x})$

3. we assume there exists w such that $\theta_1(\mathbf{x}) = \mathbf{w}_1^T \overline{\mathbf{x}}$ Then, a linear regression results

$$\mathbf{y}(\mathbf{x}) = \mathbf{w}_1^\mathsf{T} \overline{\mathbf{x}}$$

GLM AND BERNOULLI DISTRIBUTION

1. $y \in \{0,1\}$, and $p(y|\mathbf{x}) = \pi(\mathbf{x})^y(1 - \pi(\mathbf{x}))^{1-y}$ is a Bernoulli distribution with parameter $\pi(\mathbf{x})$: then, the natural parameter $\theta(\mathbf{x})$ is

$$heta(\mathbf{x}) = \log rac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})}$$

and $\mathbf{u}(\mathbf{y}) = \mathbf{y}$

2. we wish to predict the value of $E[\mathbf{u}(y)|\mathbf{x}]$ as $y(\mathbf{x}) = E[y|\mathbf{x}] = p(y = 1|\mathbf{x})$, then

$$p(\mathbf{y}=1|\mathbf{x}) = \pi(\mathbf{x}) = \frac{1}{1 + e^{-\theta(\mathbf{x})}}$$

3. we assume there exists w such that $\theta(\mathbf{x}) = \mathbf{w}^T \overline{\mathbf{x}}$ Then, a logistic regression derives

$$\mathbf{y}(\mathbf{x}) = \frac{1}{1 + \mathbf{e}^{-\mathbf{w}^T \overline{\mathbf{x}}}}$$

GLM AND CATEGORICAL DISTRIBUTION

1. $y \in \{1, ..., K\}$, and $p(y|\mathbf{x}) = \prod_{1}^{K} \pi_i(\mathbf{x})^{y_i}$ (where $y_i = 1$ if y = i and y = 0 otherwise) is a categorical distribution with probabilities $\pi_1(\mathbf{x}), ..., \pi_K(\mathbf{x})$) (where $\sum_{i=1}^{K} \pi_i(\mathbf{x}) = 1$): the natural parameter is then $\theta(\mathbf{x}) = (\theta_1(\mathbf{x}), ..., \theta_K(\mathbf{x}))^T$, with

$$heta_i(\mathbf{x}) = \log rac{\pi_i(\mathbf{x})}{\pi_{\mathcal{K}}(\mathbf{x})} = \log rac{\pi_i(\mathbf{x})}{1 - \sum_{j=1}^{\mathcal{K}-1} \pi_j(\mathbf{x})}$$

and $\mathbf{u}(\mathbf{y}) = (\mathbf{y}_1, \dots, \mathbf{y}_K)^T$ is the 1-to-K representation of \mathbf{y}

2. we wish to predict the expectations $y_i(\mathbf{x}) = E[u_i(y)|\mathbf{x}] = p(y = i|\mathbf{x})$ as

$$p(\mathbf{y} = \mathbf{i} | \mathbf{x}) = \mathbf{E}[\mathbf{u}_i(\mathbf{y}) | \mathbf{x}] = \pi_i(\mathbf{x}) = \pi_{\mathbf{K}}(\mathbf{x}) \mathbf{e}^{\theta_i(\mathbf{x})}$$

Since $1 = \sum_{i=1}^{K} \pi_i(\mathbf{x}) = \pi_K(\mathbf{x}) \sum_{i=1}^{K} e^{\theta_i(\mathbf{x})}$, it derives

$$\pi_{\mathsf{K}}(\mathbf{x}) = \frac{1}{\sum_{i=1}^{\mathsf{K}} \boldsymbol{e}^{\theta_i(\mathbf{x})}} \quad \text{ and } \quad \pi_i(\mathbf{x}) = \frac{\boldsymbol{e}^{\theta_i(\mathbf{x})}}{\sum_{i=1}^{\mathsf{K}} \boldsymbol{e}^{\theta_i(\mathbf{x})}}$$

3. we assume there exist $\mathbf{w}_1, \ldots, \mathbf{w}_K$ such that $\theta_i(\mathbf{x}) = \mathbf{w}_i^T \overline{\mathbf{x}}$

Prof. Giorgio Gambosi

GLM AND CATEGORICAL DISTRIBUTION

Then, a softmax regression results, with

$$y_{i}(\mathbf{x}) = \frac{e^{\mathbf{w}_{i}^{T}\bar{\mathbf{x}}}}{\sum_{j=1}^{K} e^{\mathbf{w}_{j}^{T}\bar{\mathbf{x}}}} \qquad \text{if } i \neq K$$
$$y_{K}(\mathbf{x}) = \frac{1}{\sum_{j=1}^{K} e^{\mathbf{w}_{j}^{T}\bar{\mathbf{x}}}}$$

GLM AND ADDITIONAL REGRESSIONS

Other regression types can be defined by considering different models for p(y|x). For example,

1. Assume $y \in \{0, ..., \}$ is a non negative integer (for example we are interested to count data), and $p(y|\mathbf{x}) = \frac{\lambda(\mathbf{x})^y}{y!} e^{-\lambda(\mathbf{x})}$ is a Poisson distribution with parameter $\lambda(\mathbf{x})$: then, the natural parameter $\theta(\mathbf{x})$ is

$$\theta(\mathbf{x}) = \log \lambda(\mathbf{x})$$

and $\mathbf{u}(\mathbf{y}) = \mathbf{y}$

2. we wish to predict the value of $E[\mathbf{u}(y)|\mathbf{x}]$ as $y(\mathbf{x}) = E[y|\mathbf{x}]$, then

 $\mathbf{y}(\mathbf{x}) = \lambda(\mathbf{x}) = \mathbf{e}^{\theta(\mathbf{x})}$

3. we assume there exists w such that $\theta(\mathbf{x}) = \mathbf{w}^T \overline{\mathbf{x}}$ Then, a Poisson regression derives

$$\mathbf{y}(\mathbf{x}) = \mathbf{e}^{\mathbf{w}^T \overline{\mathbf{x}}}$$

GLM AND ADDITIONAL REGRESSIONS

1. Assume $y \in [0, \infty)$ is a non negative real (for example we are interested to time intervals), and $p(y|\mathbf{x}) = \lambda(\mathbf{x})e^{-\lambda(\mathbf{x})y}$ is an exponential distribution with parameter $\lambda(\mathbf{x})$: then, the natural parameter $\theta(\mathbf{x})$ is

$$\theta(\mathbf{x}) = -\lambda(\mathbf{x})$$

and $\mathbf{u}(\mathbf{y}) = \mathbf{y}$

2. we wish to predict the value of $E[\mathbf{u}(y)|\mathbf{x}]$ as $y(\mathbf{x}) = E[y|\mathbf{x}]$, then

$$\mathbf{y}(\mathbf{x}) = \frac{1}{\lambda(\mathbf{x})} = -\frac{1}{\theta(\mathbf{x})}$$

3. we assume there exists \mathbf{w} such that $\theta(\mathbf{x}) = \mathbf{w}^T \overline{\mathbf{x}}$ Then, an exponential regression derives

$$\mathbf{y}(\mathbf{x}) = -\frac{1}{\mathbf{w}^{\mathsf{T}}\overline{\mathbf{x}}}$$

We could directly assume that $p(C_k|\mathbf{x})$ is a GLM and derive its coefficients (for example through ML estimation).

Comparison wrt the generative approach:

- Less information derived (we do not know $p(\mathbf{x}|C_k)$, thus we are not able to generate new data)
- Simpler method, usually a smaller set of parameters to be derived
- Better predictions, if the assumptions done with respect to $p(\mathbf{x}|C_k)$ are poor.

Logistic regression is a GLM deriving from the hypothesis of a Bernoulli distribution of *y*, which results into

$$p(C_1|\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \overline{\mathbf{x}}}}$$

where base functions could also be applied.

The model is equivalent, for the binary classification case, to linear regression for the regression case.

DEGREES OF FREEDOM

- In the case of *d* features, logistic regression requires *d* + 1 coefficients *w*₀,..., *w_d* to be derived from a training set
- A generative approach with gaussian distributions requires:
 - 2d coefficients for the means μ_1, μ_2 ,
 - for each covariance matrix

$$\sum_{i=1}^{d} i = d(d+1)/2 \quad \text{ coefficients}$$

- one prior cla probability $p(C_1)$
- As a total, it results into d(d + 1) + 2d + 1 = d(d + 3) + 1 coefficients (if a unique covariance matrix is assumed d(d + 1)/2 + 2d + 1 = d(d + 5)/2 + 1 coefficients)

MAXIMUM LIKELIHOOD ESTIMATION

Let us assume that targets of elements of the training set can be conditionally (with respect to model coefficients) modeled through a Bernoulli distribution. That is, assume

 $\boldsymbol{p}(t_i|\mathbf{x}_i,\mathbf{w}) = \boldsymbol{p}_i^{t_i}(1-\boldsymbol{p}_i)^{1-t_i}$

where $p_i = p(C_1 | \mathbf{x}_i) = \sigma(\mathbf{w}^T \mathbf{x}_i)$. Then, the likelihood of the training set targets t given X is

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}) = L(\mathbf{w}|\mathbf{X}, \mathbf{t}) = \prod_{i=1}^{n} p(t_i|\mathbf{x}_i, \mathbf{w}) = \prod_{i=1}^{n} p_i^{t_i} (1 - p_i)^{1 - t_i}$$

and the log-likelihood is

$$l(\mathbf{w}|\mathbf{X}, \mathbf{t}) = \log L(\mathbf{w}|\mathbf{X}, \mathbf{t}) = \sum_{i=1}^{n} (t_i \log p_i + (1 - t_i) \log(1 - p_i))$$

MAXIMUM LIKELIHOOD ESTIMATION

• It results

$$\frac{\partial l(\mathbf{w}|\mathbf{X},\mathbf{t})}{\partial \mathbf{w}} = \sum_{i=1}^{n} (t_i - p_i) \overline{\mathbf{x}}_i = \sum_{i=1}^{n} (t_i - \sigma(\mathbf{w}^T \overline{\mathbf{x}}_i)) \overline{\mathbf{x}}_i$$

To maximize the likelihood, we could apply a gradient ascent algorithm, where at each iteration the following update of the currently estimated ${\bf w}$ is performed

$$\begin{split} \mathbf{w}^{(j+1)} &= \mathbf{w}^{(j)} + \alpha \frac{\partial l(\mathbf{w} | \mathbf{X}, \mathbf{t})}{\partial \mathbf{w}} |_{\mathbf{w}^{(j)}} \\ &= \mathbf{w}^{(j)} + \alpha \sum_{i=1}^{n} (t_i - \sigma((\mathbf{w}^{(j)})^{\mathsf{T}} \overline{\mathbf{x}}_i)) \overline{\mathbf{x}}_i \\ &= \mathbf{w}^{(j)} + \alpha \sum_{i=1}^{n} (t_i - \mathbf{y}(\mathbf{x}_i)) \overline{\mathbf{x}}_i \end{split}$$

As a possible alternative, at each iteration only one coefficient in ${f w}$ is updated

$$\begin{split} \mathbf{w}_{k}^{(j+1)} &= \mathbf{w}_{k}^{(j)} + \alpha \frac{\partial l(\mathbf{w}|\mathbf{X}, \mathbf{t})}{\partial \mathbf{w}_{k}} \big|_{\mathbf{w}^{(j)}} \\ &= \mathbf{w}_{k}^{(j+1)} + \alpha \sum_{i=1}^{n} (\mathbf{t}_{i} - \sigma((\mathbf{w}^{(j)})^{\mathsf{T}} \overline{\mathbf{x}}_{i})) \mathbf{x}_{ik} \\ &= \mathbf{w}_{k}^{(j+1)} + \alpha \sum_{i=1}^{n} (\mathbf{t}_{i} - \mathbf{y}(\mathbf{x}_{i})) \mathbf{x}_{ik} \end{split}$$

LOGISTIC REGRESSION AND GDA

- Observe that assuming $p(\mathbf{x}|C_1)$ are $p(\mathbf{x}|C_2)$ as multivariate normal distributions with same covariance matrix Σ results into a logistic $p(C_1|\mathbf{x})$.
- The opposite, however, is not true in general: in fact, GDA relies on stronger assumptions than logistic regression.
- The more the normality hypothesis of class conditional distributions with same covariance is verified, the more GDA will tend to provide the best models for $p(C_1|\mathbf{x})$

LOGISTIC REGRESSION AND GDA

- Logistic regression relies on weaker assumptions than GDA: it is then less sensible from a limited correctness of such assumptions, thus resulting in a more robust technique
- Since $p(C_i|\mathbf{x})$ is logistic under a wide set of hypotheses about $p(\mathbf{x}|C_i)$, it will usually provide better solutions (models) in all such cases, while GDA will provide poorer models as far as the normality hypotheses is less verified.

SOFTMAX REGRESSION

- In order to extend the logistic regression approach to the case K > 2, let us consider the matrix W = (w₁,..., w_K) of model coefficients, of size (d + 1) × K, where w_j is the d + 1-dimensional vector of coefficients for class C_j.
- In this case, the likelihood is defined as

$$p(\mathbf{T}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^{n} \prod_{k=1}^{K} p(C_k | \mathbf{x}_i)^{t_{ik}} = \prod_{i=1}^{n} \prod_{k=1}^{K} \left(\frac{e^{\mathbf{w}_k^T \overline{\mathbf{x}}_i}}{\sum_{r=1}^{K} e^{\mathbf{w}_r^T \overline{\mathbf{x}}_i}} \right)^{t_{ii}}$$

where **X** is the usual matrix of features and **T** is the $n \times K$ matrix where row *i* is the 1-to-*K* coding of t_i . That is, if $\mathbf{x}_i \in C_k$ then $t_{ik} = 1$ and $t_{ir} = 0$ for $r \neq k$.

The log-likelihood is then defined as

$$l(\mathbf{W}) = \sum_{i=1}^{n} \sum_{k=1}^{K} t_{ik} \log \left(\frac{e^{\mathbf{w}_{k}^{T} \bar{\mathbf{x}}_{i}}}{\sum_{r=1}^{K} e^{\mathbf{w}_{r}^{T} \bar{\mathbf{x}}_{i}}} \right)$$

And the gradient is defined as

$$\frac{\partial l(\mathbf{W})}{\partial \mathbf{W}} = \left(\frac{\partial l(\mathbf{W})}{\partial \mathbf{w}_1}, \dots, \frac{\partial l(\mathbf{W})}{\partial \mathbf{w}_K}\right)$$

ML AND SOFTMAX REGRESSION

• It is possible to show that

$$\frac{\partial l(\mathbf{W})}{\partial \mathbf{w}_j} = \sum_{i=1}^n (t_{ij} - y_{ij}) \overline{\mathbf{x}}$$

• Observe that the gradient has the same structure than in the case of linear regression and logistic regression

ML AND SOFTMAX REGRESSION: GRADIENT ASCENT METHOD

- Applying a gradient method to maximize the log-likelihood $l(\mathbf{w})$ requires using the gradient $\frac{\partial l}{\partial \mathbf{w}}$ to explore the *dK*-dimensional space of model coefficient values
- As an alternative, on-line gradient descent: at each iteration the ascent is performed only wrt to a cyclically selected coefficient \mathbf{w}_k , evaluating only the gradient $\frac{\partial l}{\partial \mathbf{w}_k}$ in a space of dimension d