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GENERATIVE MODELS

e Classes are modeled by suitable conditional distributions p(x|C;) (language models in the
previous case): it is possible to sample from such distributions to generate random
documents statistically equivalent to the documents in the collection used to derive the
model.

e Bayes' rule allows to derive p(Cg|x) given such models (and the prior distributions p(Cy) of
classes)

® We may derive the parameters of p(x|Cx) and p(Cx) from the dataset, for example through
maximum likelihood estimation

e Classification is performed by comparing p(C|x) for all classes
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DERIVING POSTERIOR PROBABILITIES

e Let us consider the binary classification case and observe that

p(x|C1)p(C1) 1

p(Cilx) = = .
P(IC1P(CL) + p(x|C2)p(C2) 1 4 Bixfea)pice)

® Let us define (xICHp(C) (Clx)
p(x|{C1)p(C1 p(C1jx
a=1lo = lo
% p(xC2)p(Cz) p(Colx)
that is, a is the log of the ratio between the posterior probabilities (log odds)

® We obtain that

La=ol@ pG=1- =

PlGifx) = Tres  1ves

® o(x) is the logistic function or (sigmoid)
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SIGMOID

0.5

Useful properties of the sigmoid
® g(—xXx)=1—0(x)

e 979 — 50001~ o)
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DERIVING POSTERIOR PROBABILITIES

® |nthe case K > 2, the general formula holds
P(x|Ck)p(Cr)
Chlx) = o —RIR)
PG = 5 pxICPIC)
® Let us define, foreachk=1,... K

ar(x) = log(p(x|Ck)P(Cr)) = log p(x|Ck) + log p(Ck)

® Then, we may write

el

p(Celx) = Sed = s(ax)
j

e s(x) is the softmax function (or normalized exponential) and it can be seen as an extension
of the sigmoid to the case K > 2 and as a smoothed version of the maximum
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GAUSSIAN DISCRIMINANT ANALYSIS

In Gaussian discriminant analysis (GDA) all class conditional distributions p(x|C;) are assumed
gaussians. This implies that the corresponding posterior distributions p(Cg|x) can be easily
derived.

Hypothesis
All distributions p(x|C,) have same covariance matrix 3, of size D x D. Then,

p(x|Ck) = W@(P (*%(X — ) =T (x — Hk))
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BINARY CASE

IfK=2,
p(Cilx) = o(a(x))
where
p(x|C1)p(C1)
ax) =log ——~+—-=
() =108 pxCap(Ca)
1, 11 Te—1 Te—1 1, 711 Te—1 Ts—1 p(Cy)
=S g —x T g — e x) — S (BT X ET - X x) + log
2 2 p(C2)
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BINARY CASE

Observe that the results of all products involving £ ! are scalar, hence, in particular
xTE_lul = ulz_lx
XS e = pf2 x

Then,
- Te—1 Te—1 Te—1 Te—1 p(Ci) s
a(x)= S (22 po —mE ) + (B - peX )X+10gp<c)—wx+Wo
2
with
w=3"" (1 — po)
,1 Ty—1 Tl P(Cl)
Wo = 5 (ko2 2 — i u1)+logp(c2)

p(Ci|x) = o(w'x + wp) is computed by applying a non-linear function to a linear combination of
the features (generalized linear model)
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EXAMPLE
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Left, the class conditional distributions p(x|C1), p(x|C2), gaussians with D = 2. Right the posterior
distribution of Cy, p(C1|x) with sigmoidal slope.
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DISCRIMINANT FUNCTION

The discriminant function can be obtained by the condition p(Ci|x) = p(C2|x), that is,
o(a(x)) = o(-a(x)).

This is equivalent to a(x) = —a(x) and to a(x) = 0. As a consequence, it results

WTx+Wo:O

or
_ 1 _ _ C
=y — pra)x 4 S (WIS ez — lZ ) +10g P2 g
2 p(C1)
Simple case: ¥ = M (that is, o;; = A for i = 1,...,d). In this case, the discriminant function is

C
2z — )+ [[par] 2 — [[psal® + 20 10g P2 — g
p(C1)

Prof. Giorgio Gambosi Probabilistic classification - generative models Slide 10/ 21



MULTIPLE CLASSES

In this case, we refer to the softmax function:
P(Crlx) = s(ax(x))

where ag(x) = log(p(x|Cr)p(Ck)).
By the above considerations, it easily turns out that

1 _ _ d 1
ap(x) = 5 (IJ';ZJ 'x— NLE luk) + log p(Cr) — 5 log(2m) — B log |Z| = WLX‘*‘ Wor

Again, p(Cr|x) = o(w'x + wo) is computed by applying a non-linear function to a linear
combination of the features (generalized linear model)
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MULTIPLE CLASSES

Decision boundaries corresponding to the case when there are two classes C;, C, such that the
corresponding posterior probabilities are equal, and larger than the probability of any other
class. That is,

P(Celx) = p(Gjlx) p(Cilx) < p(Celx) i#j.k
hence
Q) _ pai(x) el < o™ L)k
that is,
ak(x) = aj(x) ai(x) <a'(x) i#jR

As shown, this implies that boundaries are linear.

Prof. Giorgio Gambosi Probabilistic classification - generative models Slide 12/ 21



GENERAL COVARIANCE MATRICES, BINARY CASE

The class conditional distributions p(x|C) are gaussians with different covariance matrices

<) = Io p(x|Ci)p(C1)
ax) =l G )p(G)
1 Te—1 Te—1 1 |32 p(C1)
= 5 (00 1) 2 0 ) = G o) "B ) )+ G o 7 log D
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GENERAL COVARIANCE MATRICES, BINARY CASE

By applying the same considerations, the decision boundary turns out to be

|32

|21

((x = p2) 85 (x = p2) = (x — ) B (x - ul)) + log + 2log

Classes are separated by a (at most) quadratic surface.
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GENERAL COVARIANCE, MULTIPLE CLASSE

It can be proved that boundary surfaces are at most quadratic.

Example

Left: 3 classes, modeled by gaussians with different covariance matrices.
Right: posterior distribution of classes, with boundary surfaces.

25
2
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GDA AND MAXIMUM LIKELIHOOD

The class conditional distributions p(x|Cg) can be derived from the training set by maximum
likelihood estimation.

For the sake of simplicity, assume K = 2 and both classes share the same X.

It is then necessary to estimate p1, p2, 3, and = = p(Cy) (clearly, p(C2) = 1 — 7).
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GDA AND MAXIMUM LIKELIHOOD

Training set 7 includes n elements (x;,t;), with

¢ — 0 sexje€C
Tl sex;eC

If x € Cq, then p(x,C1) = p(x|C1)p(C1) = 7 - N(x|p1, )
Ifx € G, p(x,C2) = p(x[C2)p(C2) = (1 — ) N (x|p2, 2)
The likelihood of the training set 7 is

n

L(m, o, pz, BUT) = [ [ (7 N(xil e, 2))5((1 = 7) - N (x| 2, £) 170

i=1
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GDA AND MAXIMUM LIKELIHOOD

The corresponding log likelihood is

(7, p1, 2, B[T) = Z (tilog m + tilog(N (xi|p1, 2))) +
+ Z (1 =t log(l — m) + (1 — t;) log(N (xi|p2, 2)))

Its derivative wrt 7 is

n n

ol - 0 ) ) ) _ ) - ti (1—t,‘) - m ns
&T—‘dﬂ_z;(t,lobﬂjt(lt,)log(lw))-Z(_1ﬂ_ == -1

- . T
= =1

which is equal to 0 for

n
mw=—
n
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GDA AND MAXIMUM LIKELIHOOD

The maximum wrt u; (and ) is obtained by computing the gradient

Ztlog N(xi|p1, X)) lzt

8”1

As a consequence, we have

hence, for

Similarly, % =0 for
2
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n n
Z tix; = Z tip
i=1 i=1
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GDA AND MAXIMUM LIKELIHOOD

Maximizing the log-likelihood wrt X provides
Y= ﬂSl + @SQ
n n
where

1
51 = n Nl)

Z
Sy = L Z —p2)’
N2 €Coy
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GDA: DISCRETE FEATURES
¢ In the case of d discrete (for example, binary) features we may apply the Naive Bayes
hypothesis (independence of features, given the class)

e Then, we may assume that, for any class C, the value of the i-th feature is sampled from a
Bernoulli distribution of parameter py;; by the conditional independence hypothesis, it
results into

p(x|Cp) = Hpk: (1 - pi) 1 —X;

where py; = p(x; = 1|Cr) could be estimated by ML, as in the case of language models
® Functions a(x) can then be defined as:

D
ax(x) = log(p(x|Ck)p = (xilogpri + (1 — x;) log(1 — i) + log p(Cr)
i=1
These are still linear functions on x.

e The same considerations can be done in the case of non binary features, where, for any class
Ck, we may assume the value of the i-th feature is sampled from a distribution on a suitable
domain (e.g. Poisson in the case of count data)
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