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GENERATIVE MODELS

• Classes are modeled by suitable conditional distributions p(x|Ck) (language models in the
previous case): it is possible to sample from such distributions to generate random
documents statistically equivalent to the documents in the collection used to derive the
model.

• Bayes’ rule allows to derive p(Ck|x) given such models (and the prior distributions p(Ck) of
classes)

• We may derive the parameters of p(x|Ck) and p(Ck) from the dataset, for example through
maximum likelihood estimation

• Classification is performed by comparing p(Ck|x) for all classes
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DERIVING POSTERIOR PROBABILITIES
• Let us consider the binary classification case and observe that

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
=

1

1 + p(x|C2)p(C2)
p(x|C1)p(C1)

• Let us define
a = log p(x|C1)p(C1)p(x|C2)p(C2)

= log p(C1|x)p(C2|x)
that is, a is the log of the ratio between the posterior probabilities (log odds)

• We obtain that

p(C1|x) =
1

1 + e−a = σ(a) p(C2|x) = 1− 1

1 + e−a =
1

1 + ea

• σ(x) is the logistic function or (sigmoid)
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SIGMOID

−5 0 5
0

0.5

1

Useful properties of the sigmoid
• σ(−x) = 1− σ(x)

• dσ(x)
dx = σ(x)(1− σ(x))
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DERIVING POSTERIOR PROBABILITIES
• In the case K > 2, the general formula holds

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

• Let us define, for each k = 1, . . . ,K

ak(x) = log(p(x|Ck)p(Ck)) = logp(x|Ck) + logp(Ck)

• Then, we may write

p(Ck|x) =
eak∑
j e

aj = s(ak)

• s(x) is the softmax function (or normalized exponential) and it can be seen as an extension
of the sigmoid to the case K > 2 and as a smoothed version of the maximum
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GAUSSIAN DISCRIMINANT ANALYSIS

In Gaussian discriminant analysis (GDA) all class conditional distributions p(x|Ck) are assumed
gaussians. This implies that the corresponding posterior distributions p(Ck|x) can be easily
derived.

Hypothesis
All distributions p(x|Ck) have same covariance matrix Σ, of size D× D. Then,

p(x|Ck) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x − µk)

TΣ−1(x − µk)

)

Prof. Giorgio Gambosi Probabilistic classification - generative models Slide 6 / 21



BINARY CASE

If K = 2,
p(C1|x) = σ(a(x))

where

a(x) = log p(x|C1)p(C1)p(x|C2)p(C2)

=
1

2
(µT

2Σ
−1µ2 − xTΣ−1µ2 − µT

2Σ
−1x)− 1

2
(µT

1Σ
−1µ1 − xTΣ−1µ1 − µT

1Σ
−1x) + log p(C1)p(C2)
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BINARY CASE
Observe that the results of all products involving Σ−1 are scalar, hence, in particular

xTΣ−1µ1 = µT
1Σ

−1x
xTΣ−1µ2 = µT

2Σ
−1x

Then,

a(x)= 1

2
(µT

2Σ
−1µ2 − µT

1Σ
−1µ1) + (µT

1Σ
−1 − µT

2Σ
−1)x + log p(C1)p(C2)

= wTx + w0

with

w = Σ−1(µ1 − µ2)

w0 =
1

2
(µT

2Σ
−1µ2 − µT

1Σ
−1µ1) + log p(C1)p(C2)

p(C1|x) = σ(wTx + w0) is computed by applying a non-linear function to a linear combination of
the features (generalized linear model)
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EXAMPLE

Left, the class conditional distributions p(x|C1),p(x|C2), gaussians with D = 2. Right the posterior
distribution of C1, p(C1|x) with sigmoidal slope.
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DISCRIMINANT FUNCTION

The discriminant function can be obtained by the condition p(C1|x) = p(C2|x), that is,
σ(a(x)) = σ(−a(x)).
This is equivalent to a(x) = −a(x) and to a(x) = 0. As a consequence, it results

wTx + w0 = 0

or

Σ−1(µ1 − µ2)x +
1

2
(µT

2Σ
−1µ2 − µT

1Σ
−1µ1) + log p(C2)p(C1)

= 0

Simple case: Σ = λI (that is, σii = λ for i = 1, . . . ,d). In this case, the discriminant function is

2(µ2 − µ1)x + ||µ1||2 − ||µ2||2 + 2λ log p(C2)p(C1)
= 0
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MULTIPLE CLASSES

In this case, we refer to the softmax function:

p(Ck|x) = s(ak(x))

where ak(x) = log(p(x|Ck)p(Ck)).
By the above considerations, it easily turns out that

ak(x) =
1

2

(
µT
kΣ

−1x − µT
kΣ

−1µk

)
+ logp(Ck)−

d
2

log(2π)− 1

2
log |Σ| = wT

kx + w0k

Again, p(Ck|x) = σ(wTx + w0) is computed by applying a non-linear function to a linear
combination of the features (generalized linear model)
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MULTIPLE CLASSES

Decision boundaries corresponding to the case when there are two classes Cj, Ck such that the
corresponding posterior probabilities are equal, and larger than the probability of any other
class. That is,

p(Ck|x) = p(Cj|x) p(Ci|x) < p(Ck|x) i ̸= j, k
hence

eak(x) = eaj(x) eai(x) < ea
k(x) i ̸= j, k

that is,
ak(x) = aj(x) ai(x) < ak(x) i ̸= j, k

As shown, this implies that boundaries are linear.
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GENERAL COVARIANCE MATRICES, BINARY CASE

The class conditional distributions p(x|Ck) are gaussians with different covariance matrices

a(x) = log p(x|C1)p(C1)p(x|C2)p(C2)

=
1

2

(
(x − µ2)

TΣ−1
2 (x − µ2)− (x − µ1)

TΣ−1
1 (x − µ1)

)
+

1

2
log |Σ2|

|Σ1|
+ log p(C1)p(C2)
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GENERAL COVARIANCE MATRICES, BINARY CASE

By applying the same considerations, the decision boundary turns out to be(
(x − µ2)

TΣ−1
2 (x − µ2)− (x − µ1)

TΣ−1
1 (x − µ1)

)
+ log |Σ2|

|Σ1|
+ 2 log p(C1)p(C2)

= 0

Classes are separated by a (at most) quadratic surface.
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GENERAL COVARIANCE, MULTIPLE CLASSE
It can be proved that boundary surfaces are at most quadratic.
Example
Left: 3 classes, modeled by gaussians with different covariance matrices.
Right: posterior distribution of classes, with boundary surfaces.
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GDA AND MAXIMUM LIKELIHOOD

The class conditional distributions p(x|Ck) can be derived from the training set by maximum
likelihood estimation.

For the sake of simplicity, assume K = 2 and both classes share the same Σ.

It is then necessary to estimate µ1,µ2, Σ, and π = p(C1) (clearly, p(C2) = 1− π).
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GDA AND MAXIMUM LIKELIHOOD

Training set T : includes n elements (xi, ti), with

ti =
{

0 se xi ∈ C2
1 se xi ∈ C1

If x ∈ C1, then p(x, C1) = p(x|C1)p(C1) = π · N (x|µ1,Σ)
If x ∈ C2, p(x, C2) = p(x|C2)p(C2) = (1− π) · N (x|µ2,Σ)

The likelihood of the training set T is

L(π,µ1,µ2,Σ|T ) =
n∏
i=1

(π · N (xi|µ1,Σ))ti((1− π) · N (xi|µ2,Σ))1−ti
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GDA AND MAXIMUM LIKELIHOOD
The corresponding log likelihood is

l(π,µ1,µ2,Σ|T ) =

n∑
i=1

(ti logπ + ti log(N (xi|µ1,Σ)))+

+

n∑
i=1

((1− ti) log(1− π) + (1− ti) log(N (xi|µ2,Σ)))

Its derivative wrt π is

∂l
∂π

=
∂

∂π

n∑
i=1

(ti logπ + (1− ti) log(1− π)) =
n∑
i=1

(
ti
π
− (1− ti)

1− π

)
=
n1
π

− n2
1− π

which is equal to 0 for
π =

n1
n
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GDA AND MAXIMUM LIKELIHOOD
The maximum wrt µ1 (and µ2) is obtained by computing the gradient

∂l
∂µ1

=
∂

∂µ1

n∑
i=1

ti log(N (xi|µ1,Σ)) = Σ−1
n∑
i=1

ti(xi − µ1)

As a consequence, we have ∂l
∂µ1

= 0 for

n∑
i=1

tixi =
n∑
i=1

tiµ1

hence, for
µ1 =

1

n1
∑

xi∈C1

xi

Similarly, ∂l
∂µ2

= 0 for

µ2 =
1

n2
∑

xi∈C2

xi
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GDA AND MAXIMUM LIKELIHOOD

Maximizing the log-likelihood wrt Σ provides

Σ =
n1
n S1 +

n2
n S2

where

S1 =
1

n1
∑

xi∈C1

(xi − µ1)(xi − µ1)
T

S2 =
1

n2
∑

xi∈C2

(xi − µ2)(xi − µ2)
T
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GDA: DISCRETE FEATURES
• In the case of d discrete (for example, binary) features we may apply the Naive Bayes
hypothesis (independence of features, given the class)

• Then, we may assume that, for any class Ck, the value of the i-th feature is sampled from a
Bernoulli distribution of parameter pki; by the conditional independence hypothesis, it
results into

p(x|Ck) =
d∏
i=1

pxiki(1− pki)1−xi

where pki = p(xi = 1|Ck) could be estimated by ML, as in the case of language models
• Functions ak(x) can then be defined as:

ak(x) = log(p(x|Ck)p(Ck)) =
D∑
i=1

(xi logpki + (1− xi) log(1− pki)) + logp(Ck)

These are still linear functions on x.
• The same considerations can be done in the case of non binary features, where, for any class
Ck, we may assume the value of the i-th feature is sampled from a distribution on a suitable
domain (e.g. Poisson in the case of count data)
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