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CLASSIFICATION

• value t to predict are from a discrete domain, where each value denotes a class
• most common case: disjoint classes, each input has to assigned to exactly one class
• input space is partitioned into decision regions
• in linear classification models decision boundaries are linear functions of input x
(D− 1-dimensional hyperplanes in the D-dimensional feature space)

• datasets such as classes correspond to regions which may be separated by linear decision
boundaries are said linearly separable
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REGRESSION AND CLASSIFICATION

• Regression: the target variable t is a vector of reals
• Classification: several ways to represent classes (target variable values)
• Binary classification: a single variable t ∈ {0, 1}, where t = 0 denotes class C0 and t = 1
denotes class C1

• K > 2 classes: “1 of K” coding. t is a vector of K bits, such that for each class Cj all bits are 0
except the j-th one (which is 1)
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APPROACHES TO CLASSIFICATION

Three general approaches to classification
1. find f : X 7→ {1, . . . ,K} (discriminant function) which maps each input x to some class Ci, such
that i = f(x)

2. discriminative approach: determine the conditional probabilities p(Cj|x) (inference phase);
use these distributions to assign an input to a class (decision phase)

3. generative approach: determine the class conditional distributions p(x|Cj), and the class
prior probabilities p(Cj); apply Bayes’ formula to derive the class posterior probabilities
p(Cj|x) ; use these distributions to assign an input to a class
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DISCRIMINATIVE APPROACHES

• Approaches 1 and 2 are discriminative: they tackle the classification problem by deriving
from the training set conditions (such as decision boundaries) that , when applied to a point,
discriminate each class from the others

• The boundaries between regions are specified by discrimination functions
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GENERALIZED LINEAR MODELS

• In linear regression, a model predicts the target value; the prediction is made through a
linear function y(x) = wTx + w0 (linear basis functions could be applied)

• In classification, a model predicts probabilities of classes, that is values in [0, 1]; the
prediction is made through a generalized linear model y(x) = f(wTx + w0), where f is a non
linear activation function from IR to [0, 1]

• boundaries correspond to solution of y(x) = c for some constant c; this results into
wTx + w0 = f−1(c), that is a linear boundary. The inverse function f−1 is said link function.
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GENERATIVE APPROACHES

• Approach 3 is generative: it works by defining, from the training set, a model of items for
each class

• The model is a probability distribution (of features conditioned by the class) and could be
used for random generation of new items in the class

• By comparing an item to all models, it is possible to verify the one that best fits
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LINEAR DISCRIMINANT FUNCTIONS IN BINARY CLASSIFICATION

• Decision boundary: (d− 1)-dimensional hyperplane of all points s.t. y(x) = wTx + w0 = 0

• Given x1, x2 on the hyperplane, y(x1) = y(x2) = 0. Hence,

wTx1 + w0 − wTx2 − w0 = wT(x1 − x2) = 0

that is, vectors x1 − x2 and w are orthogonal
• For any x, the dot product w · x = wTx is the length of the projection of x in the direction of w
(orthogonal to the hyperplane wTx + w0 = 0), in multiples of ||w||2

• By normalizing wrt to ||w||2 =
√∑

i w2
i , we get the length of the projection of x in the

direction orthogonal to the hyperplane, assuming ||w||2 = 1

Prof. Giorgio Gambosi Machine learning Agenda



LINEAR DISCRIMINANT FUNCTIONS IN BINARY CLASSIFICATION

• For any x, y(x) = wTx+w0 returns the distance (in multiples of ||w||) of x from the hyperplane
• The sign of the returned value discriminates in which of the regions separated by the
hyperplane the point lies
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LINEAR DISCRIMINANT FUNCTIONS IN MULTICLASS CLASSIFICATION

• Define K linear functions

yi(x) = wT
i x + wi0 1 ≤ i ≤ K

Item x is assigned to class Ck iff yk(x) > yj(x) for all j 6= k: that is,

k = argmax
j

yj(x)

• Decision boundary between Ci and Cj: all points x s.t. yi(x) = yj(x), a d− 1-dimensional
hyperplane

(wi − wj)
Tx + (wi0 − wj0) = 0
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LINEAR DISCRIMINANT FUNCTIONS IN MULTICLASS CLASSIFICATION

The resulting decision regions are connected and convex

Ri

Rj

Rk

xA

xB

x̂
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GENERALIZED DISCRIMINANT FUNCTIONS

• The definition can be extended to include terms relative to products of pairs of feature
values (Quadratic discriminant functions)

y(x) = w0 +

D∑
i=1

wixi +
D∑
i=1

i∑
j=1

wijxixj

d(d+ 1)

2
additional parameters wrt the d+ 1 original ones: decision boundaries can be

more complex
• In general, generalized discriminant functions through set of functions ϕi, . . . , ϕm

y(x) = w0 +

M∑
i=1

wiϕi(x)
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LINEAR DISCRIMINANT FUNCTIONS AND REGRESSION
• Assume classification with K classes
• Classes are represented through a 1-of-K coding scheme: set of variables z1, . . . , zK, class Ci
coded by values zi = 1, zk = 0 for k 6= i

• K discriminant functions yi are derived as linear regression functions with variables zi as
targets

• To each variable zi a discriminant function yi(x) = wT
i x + wi0 is associated: x is assigned to

the class Ck s.t.
k = argmax

i
yi(x)

• Then, zk(x) = 1 and zj(x) = 0 (j 6= k) if k = argmax
i

yi(x)

• Group all parameters together as

y(x) = WTx =


w10 w11 · · · w1D
w20 w21 · · · w2D
...

...
. . .

...
wK0 wK1 · · · wKD




1
x1
...
xD
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LINEAR DISCRIMINANT FUNCTIONS AND REGRESSION

• In general, a regression function provides an estimation of the target given the input E[t|x]
• yi(x) can be seen as an estimate of the conditional expectation E[zi|x] of binary variable zi
given x

• If we assume zi is distributed according to a Bernoulli distribution, the expectation
corresponds to the posterior probability

yi(x) ' E[zi|x]
= P(zi = 1|x) · 1 + P(zi = 0|x) · 0
= P(zi = 1|x)
= P(Ci|x)

• However, yi(x) is not a probability itself (we may not assume it takes value only in the
interval [0, 1])
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LEARNING FUNCTIONS yi
Given a training set X, t, a regression function can be derived by least squares
• An item in the training set is a pair (xi, ti), xi ∈ IRD and ti ∈ {0, 1}K

• X ∈ IRn×(D+1) is the matrix of feature values for all items in the training set

X =


1 x11 · · · x1D
1 x21 · · · x2D
...

...
. . .

...
1 xn1 · · · xnD


• Then, for matrix Y = XW, of size n× K, we have Yij = wj0 +

∑D
k=1 xikwjk = yj(xi) hence

Y =


y1(x1) y2(x1) · · · yK(x1)
y1(x2) y2(x2) · · · yK(x2)
...

...
. . .

...
y1(xn) y2(xn) · · · yK(xn)


where, as observed before, yj(xi) is the estimate of p(Cj|xi)
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LEARNING FUNCTIONS yi
All targets, coded in 1-of-K format, can be represented as a n× K matrix T, where Tij = tij.

T =


t11 t12 · · · t1K
t21 t22 · · · t2K
...

...
. . .

...
tn1 tn2 · · · tnK


As usual, yj(xi) is then compared to tij, providing the residue

rij = yj(xi)− tij =
D∑

k=1

xikwjk + wj0 − tij = (XW − T)ij

R =


y1(x1)− t11 y2(x1)− t12 · · · yK(x1)− t1K
y1(x2)− t21 y2(x2)− t22 · · · yK(x2)− t2K

...
...

. . .
...

y1(xn)− tn1 y2(xn)− tn2 · · · yK(xn)− tnK

 =


r11 r12 · · · r1k
r21 r22 · · · r2k
...

...
. . .

...
rn1 rn2 · · · rnK
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LEARNING FUNCTIONS yi
• If we consider the K× K matrix RTR, we have that

RTR =


r11 r21 · · · rn1
r12 r22 · · · rn2
...

...
. . .

...
r1n rn2 · · · rnK




r11 r12 · · · r1K
r21 r22 · · · r2K
...

...
. . .

...
rn1 rn2 · · · rnK

 =


∑n

i=1 r
2
i1

∑n
i=1 ri1ri2 · · ·

∑n
i=1 ri1riK∑n

i=1 ri2ri1
∑n

i=1 r
2
i2 · · ·

∑n
i=1 ri2riK

...
...

. . .
...∑n

i=1 riKri1
∑n

i=1 riKri2 · · ·
∑n

i=1 r
2
iK


• Summing all elements on the diagonal of RTR provides the overall sum, on all items in the
training set, of the squared differences between observed values and values computed by
the model, with parameters W, that is

K∑
j=1

n∑
i=1

(yj(xi)− tij)2

• This corresponds to the trace of RTR. Hence, we have to minimize:

E(W) =
1

2
tr
(

RTR
)
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LEARNING FUNCTIONS yi

• If we apply the standard approach of trying to solve

∂E(W)

∂W = 0

it is possible to show that
∂E(W)

∂W = XTXW − XTT

• which is equal to 0 if
W = (XTX)−1XTT

The resulting set of discriminant functions is then

y(x) = WTx = TTX(XTX)−1x
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FISHER LINEAR DISCRIMINANT

• The idea of Linear Discriminant Analysis (LDA) is to find a linear projection of the training set
into a suitable subspace where classes are as linearly separated as possible

• A common approach is provided by Fisher linear discriminant, where all items in the training
set (points in a D-dimensional space) are projected to one dimension, by means of a linear
transformation of the type

y = w · x = wTx
where w is the D-dimensional vector corresponding to the direction of projection (in the
following, we will consider the one with unit norm).
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LDA

If K = 2, given a threshold ỹ, item x is assigned to C1 iff its projection y = wTx is such that y > ỹ;
otherwise, x is assigned to C2.
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LDA
Different line directions, that is different parameters w, may induce quite different separability
properties.
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DERIVING w IN THE BINARY CASE

Let n1 be the number of items in the training set belonging to class C1 and n2 the number of
items in class C2. The mean points of both classes are

m1 =
1

n1
∑
x∈C1

x m2 =
1

n2
∑
x∈C2

x

A simple measure of the separation of classes, when the training set is projected onto a line, is
the difference between the projections of their mean points

m2 −m1 = wT(m2 − m1)

where mi = wTmi is the projection of mi onto the line.
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DERIVING w IN THE BINARY CASE

• We wish to find a line direction w such that m2 −m1 is maximum
• wT(m2 − m1) can be made arbitrarily large by multiplying w by a suitable constant, at the
same time maintaining the direction unchanged. To avoid this drawback, we consider unit
vectors, introducing the constraint ||w||2 = wTw = 1

• This results into the constrained optimization problem

max
w

wT(m2 − m1)

where wTw = 1

• This can be transformed into an equivalent unconstrained optimization problem by means of
lagrangian multipliers

max
w,λ

wT(m2 − m1) + λ(1− wTw)
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DERIVING w IN THE BINARY CASE

Setting the gradient of the function wrt w to 0

∂

∂w (wT(m2 − m1) + λ(1− wTw)) = m2 − m1 + 2λw = 0

results into
w =

m2 − m1

2λ
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DERIVING w IN THE BINARY CASE

Setting the derivative wrt λ to 0

∂

∂λ
(wT(m2 − m1) + λ(1− wTw)) = 1− wTw = 0

results into
λ =

√
(m2 − m1)T(m2 − m1)

2
=
||m2 − m1||2

2

Combining with the result for the gradient, we get

w =
m2 − m1

||m2 − m1||2
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DERIVING w IN THE BINARY CASE

The best direction w of the line, wrt the measure considered, is the one from m1 to m2.

However, this may result in a poor separation of classes.

Projections of classes are dispersed (high variance) along the direction of m1 − m2. This may
result in a large overlap.
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DERIVING w IN THE BINARY CASE: REFINEMENT

• Choose directions s.t. classes projections show as little dispersion as possible
• Possible in the case that the amount of class dispersion changes wrt different directions,
that is if the distribution of points in the class is elongated

• We wish then to maximize a function which:
• is growing wrt the separation between the projected classes (for example, their mean points)
• is decreasing wrt the dispersion of the projections of points of each class
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DERIVING w IN THE BINARY CASE: REFINEMENT

• The within-class variance of the projection of class Ci (i = 1, 2) is defined as

s2i =
∑
x∈Ci

(wTx −mi)
2

The total within-class variance is defined as s21 + s22
• Given a direction w, the Fisher criterion is the ratio between the (squared) class separation
and the overall within-class variance, along that direction

J(w) =
(m2 −m1)

2

s21 + s22

• Indeed, J(w) grows wrt class separation and decreases wrt within-class variance
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DERIVING w IN THE BINARY CASE: REFINEMENT

Let S1, S2 be the within-class covariance matrices, defined as

Si =
∑
x∈Ci

(x − mi)(x − mi)
T

Then,

s2i =
∑
x∈Ci

(wTx −mi)
2 = wTSiw
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DERIVING w IN THE BINARY CASE: REFINEMENT

Let also SW = S1 + S2 be the total within-class covariance matrix and

SB = (m2 − m1)(m2 − m1)
T

be the between-class covariance matrix.

Then,

J(w) =
(m2 −m1)

2

s21 + s22
=

wTSBw
wTSWw
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DERIVING w IN THE BINARY CASE: REFINEMENT

As usual, J(w) is maximized wrt w by setting its gradient to 0

∂

∂w
wTSBw
wTSWw = 0

which results into
(wTSBw)SWw − (wTSWw)SBw = 0

that is
(wTSBw)SWw = (wTSWw)SBw
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DERIVING w IN THE BINARY CASE: REFINEMENT

Observe that:
• wTSBw is a scalar, say cB
• wTSWw is a scalar, say cW
• (m2 − m1)

Tw is a scalar, say cm
Then, the condition (wTSBw)SWw = (wTSWw)SBw can be written as

cBSWw = cW(m2 − m1)cm

which results into
w =

cWcm
cB

S−1
W (m2 − m1)

Since we are interested into the direction of w, that is in any vector proportional to w, we may
consider the solution

ŵ = S−1
W (m2 − m1) =(S1 + S2)

−1(m2 − m1)
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DERIVING w IN THE BINARY CASE: CHOOSING A THRESHOLD
Possible approach:
• model p(y|Ci) as a gaussian: derive mean and variance by maximum likelihood

mi =
1

ni
∑
x∈Ci

wTx σ2
i =

1

ni − 1

∑
x∈Ci

(wTx −mi)
2

where ni is the number of items in training set belonging to class Ci
• derive the class probabilities

p(Ci|y) ∝ p(y|Ci)p(Ci) = p(y|Ci)
ni

n1 + n2
∝ nie

−
(y−mi)

2

2σ2
i

• the threshold ỹ can be derived as the minimum y such that

p(C2|y)
p(C1|y)

=
n2
n1
p(y|C2)
p(y|C1)

> 1
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PERCEPTRON

• Introduced in the ’60s, at the basis of the neural network approach
• Simple model of a single neuron
• Hard to evaluate in terms of probability
• Works only in the case that classes are linearly separable
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DEFINITION

It corresponds to a binary classification model where an item x is classified on the basis of the
sign of the value of the linear combination wTx. That is,

y(x) = f(wTx)

f() is essentially the sign function

f(i) =
{

−1 if i < 0

1 if i ≥ 0

The resulting model is a particular generalized linear model. A special case is the one when ϕ is
the identity, that is y(x) = f(wTx).
By the definition of the model, y(x) can only be ±1: we denote y(x) = 1 as x ∈ C1 and y(x) = −1
as x ∈ C2.

To each element xi in the training set, a target value is then associated ti ∈ {−1, 1}.
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COST FUNCTION

• A natural definition of the cost function would be the number of misclassified elements in
the training set

• This would result into a piecewise constant function and gradient optimization could not be
applied (we would have zero gradient almost everywhere)

• A better choice is using a piecewise linear function as cost function
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COST FUNCTION

We would like to find a vector of parameters w such that, for any xi, wTxi > 0 if xi ∈ C1 and
wTxi < 0 if xi ∈ C2: in short, wTxiti > 0.

Each element xi provides a contribution to the cost function as follows
1. 0 if xi is classified correctly by the model
2. −wTxiti > 0 if xi is misclassified

LetM be the set of misclassified elements. Then the cost is

Ep(w) = −
∑

xi∈M

tixTi w

The contribution of xi to the cost is 0 if xi 6∈ M and it is a linear function of w otherwise
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GRADIENT OPTIMIZATION

The minimum of Ep(w) can be found through gradient descent

w(k+1) = w(k) − η
∂Ep(w)

∂w

∣∣∣
w(k)

the gradient of the cost function wrt to w is

∂Ep(w)

∂w = −
∑

xi∈M

xiti

Then gradient descent can be expressed as

w(k+1) = w(k) + η
∑

xi∈Mk

xiti

whereMk denotes the set of points misclassified by the model with parameter w(k)
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GRADIENT OPTIMIZATION

Online (or stochastic gradient descent): at each step, only the gradient wrt a single item is
considered

w(k+1) = w(k) + ηxiti
where xi ∈ Mk and the scale factor η > 0 controls the impact of a badly classified item on the
cost function
The method works by circularly iterating on all elements and applying the above formula.
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GRADIENT OPTIMIZATION

In black, decision boundary and corresponding parameter vector w; in red misclassified item
vector xi, added by the algorithm to the parameter vector as ηxi
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GRADIENT OPTIMIZATION

At each step, if xi is well classified then w(k) is unchanged; else, its contribution to the cost is
modified as follows

−xTi w(k+1)ti = −xTi w(k)ti − η(xiti)Txiti
= −xTi w(k)ti − η||xi||2

< −xTi w(k)ti

This contribution is decreasing, however this does not guarantee the convergence of the method,
since the cost function could increase due to some other element becoming misclassified if
w(k+1) is used
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PERCEPTRON CONVERGENCE THEOREM

It is possible to prove that, in the case the classes are linearly separable, the algorithm converges
to the correct solution in a finite number of steps.

Let ŵ be a solution (that is, it discriminates C1 and C2): if xk+1 is the element considered at
iteration (k+ 1) and it is misclassified, then

w(k+1) − αŵ = (w(k) − αŵ) + ηxk+1tk+1

where α > 0 is a suitable constant
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