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FULLY BAYESIAN REGRESSION

We remind that, in fully bayesian regression, no specific model parameters w∗ are identified, to
be applied in prediction as

y = w∗ϕ(x)

Instead the distribution p(y|x) is derived, under the assumption of gaussianity, with

p(y|x, t,Φ, α, β) = N (y|m(x), σ2(x))
and

m(x) = βϕ(x)TSNΦTt
and variance

σ2(x) = 1

β
+ ϕ(x)TSNϕ(x)
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EQUIVALENT KERNEL

• The prediction y(x) can be returned here as the expectation of the predictive distribution

y(x) = βϕ(x)TSNΦTt =
n∑
i=1

βϕ(x)TSNϕ(xi)ti

• The prediction is not computed by referring to a set of parameters derived by optimization of
a loss function. Instead, it can be seen as a linear combination of the target values ti of all
items in the training set, with weights dependent from the item values xi (and from x)

y(x) =
n∑
i=1

κ(x, xi)ti

The weight function κ(x, x′) = βϕ(x)TSNϕ(x′) is said equivalent kernel
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EQUIVALENT KERNEL

Right: plot on the plane (x, xi) of a sample equivalent kernel, in the case of gaussian basis
functions.
Left: plot as a function of xi for three different values of x

In deriving y, the equivalent kernel tends to assign greater relevance to the target values ti
corresponding to items xi near to x.
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EQUIVALENT KERNEL

The same localization property holds also for different base functions.
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Left, κ(0, x′) in the case of polynomial basis functions.
Right, κ(0, x′) in the case of gaussian basis functions.
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EQUIVALENT KERNEL

• The covariance between y(x) and y(x′) is given by

cov(x, x′) = cov(ϕ(x)Tw,wTϕ(x′)) = Φ(x)TSNϕ(x′) =
1

β
κ(x, x′)

predicted values are highly correlated at nearby points.
• Instead of introducing base functions which results into a kernel, we may define a localized
kernel directly and use it to make predictions
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KERNEL REGRESSION
• In kernel regression methods, the target value corresponding to any item x is predicted by
referring to items in the training set, and in particular to the items which are closer to x.

• This is controlled by referring to a kernel function κh(x), which is non zero only in an interval
around 0

• h is the bandwidth of the kernel, which controls the width of κh(x)

A possible, common kernel, is the gaussian (or RBF) kernel

g(x) = e−
∥x∥2
2h2
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KERNEL REGRESSION

In regression, we are interested in estimating the conditional expectation

f(x) = E[t|x] =
∫
p(t|x)tdt =

∫ p(x, t)
p(x) tdt =

∫
p(x, t)tdt

p(x) =

∫
p(x, t)tdt∫
p(x, t)dt

The joint distribution p(x, t) is approximated by means of a kernel function as

p(x, t) ≈ 1

n

n∑
i=1

κh(x − xi)κh(t− ti)
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KERNEL REGRESSION

This results into

f(x) =

∫
1

n

n∑
i=1

κt(x − xi)κh(t− ti)tdt∫
1

n

n∑
i=1

κh(x − xi)κh(t− ti)dt
=

∑n
i=1 κh(x − xi)

∫
κh(t− ti)tdt∑n

i=1 κh(x − xi)
∫

κh(t− ti)dt

If we assume that the kernel κ(x) is a probability distribution with 0 mean, it results∫
κh(t− ti)dt = 1 and

∫
tκh(t− ti)dt = ti, we get

f(x) =
∑n

i=1 κh(x − xi)ti∑n
i=1 κh(x − xi)
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KERNEL REGRESSION

By setting
wi(x) =

κh(x − xi)∑n
j=1 κh(x − xj)

we can write

f(x) =
n∑
i=1

wi(x)ti

that is, the predicted value is computed as a normalized linear combination of all target values,
weighted by kernels (Nadaraya-Watson)
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LOCALLY WEIGHTED REGRESSION

In Nadaraya-Watson model, the prediction is performed by means of a normalized weighted
combination of constant values (target values in the training set).

Locally weighted regression (LOESS) improves that approach by referring to a weighted version of
the sum of squared differences loss function used in regression.

If a value t has to be predicted for an item x, a “local” version of the loss function is considered,
with weight κi(x).

L(x) =
n∑
i=1

κi(x)(wTxi − ti)2 =

n∑
i=1

κh(x − xi)(wTxi − ti)2

Weights κi(x) are dependent from the “distance” between x and xi, as measured by the kernel
function

κi(x) = κh(x − xi)

Prof. Giorgio Gambosi Nonparametric regression Slide 11 / 62



LOCALLY WEIGHTED REGRESSION

The minimization of this loss function

ŵ(x) = argmin
w

n∑
i=1

κi(x)(wTxi − ti)2

has solution
ŵ(x) = (XT

Ψ(x)X)−1XT
Ψ(x)t

where Ψ(x) is a diagonal n× n matrix with Ψ(x)ii = κi(x).

The prediction is then performed as usual, as

y = ŵ(x)Tx
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LOCAL LOGISTIC REGRESSION

The same approach applied in the case of local regression can be applied for classification, by
defining a weighted loss function to be minimized, with weights dependent from the item whose
target must be predicted.

In this case, a weighted version of the cross entropy function is considered, which has to be
maximized

L(x) =
n∑
i=1

κh(x − xi)(ti logpi − (1− ti) log(1− pi))

with pi = σ(wTxi), as usual.

The loss function minimization can be performed, for example, by applying a suitable
modification of the IRLS algorithm for logistic regression
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GAUSSIAN PROCESSES

An alternative and equivalent way of reaching identical results to the previous ones is possible by
considering inference directly in the space of functions f : IRd 7→ IR. We use a Gaussian process
(GP) to describe a distribution over functions.
More formally:
• A stochastic process f(x) is a collection of (possibly infinite) random variables, {f(x) : x ∈ χ},
the values taken by function f on domain χ. Observe that f is completely described by such
values

• A stochastic process is a Gaussian process if for any finite subset X = (x1, . . . , xn) of χ, the
function values f(x1), . . . , f(xn) have joint multivariate Gaussian distribution

In order to specify the gaussian process in the general case of infinite χ, we must introduce two
rules which, for any set of points X = (x1, . . . , xn), define the distribution p(f(x1), . . . , f(xn)) of the
corresponding values.
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GAUSSIAN PROCESSES

In order to specify the gaussian process in the general case of infinite χ, we must introduce two
rules which, for any set of points X = (x1, . . . , xn), define the distribution p(f(x1), . . . , f(xn)) of the
corresponding values.
• We already know that, by assumption, the distribution p(f(x1), . . . , f(xn)) is a multivariate
normal distribution, characterized then by a mean vector µX and covariance matrix ΣX

1

• We define a mean function m(x) such that m(x) = E[f(x], hence µX = (m(x1), . . . ,m(xm).
Usually, it is possible to safely assume m(x) = 0

• The covariance matrix derives from the application of a predefined covariance function
κ : χ× χ 7→ IR which associates a real value to any pair of points in χ and, in particular, to
any pair in X, hence to all elements of ΣX

1Observe that expectations are taken with respect to the random function f.
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GAUSSIAN PROCESSES

The covariance function κ is assumed to be a positive definite kernel: this means that for any set
of distinct points x1, . . . , xn it must be

n∑
i=1

n∑
j=1

cicjκ(xi, xj) > 0

for any choice of the constants c1, . . . , cn such that not all ci are equal to 0.
Equivalently, the square Gram matrix GX defined as

GX =


κ(x1, x1) κ(x1, x2) · · · κ(x1, xn)
κ(x2, x1) κ(x2, x2) · · · κ(x2, xn)

· · · · · · · · · · · ·
κ(xn, x1) κ(xn, x2) · · · κ(xn, xn)


must have positive eigenvalues.
A collection of positive definite kernels is known in the literature and can be constructed by
applying suitable rules.
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GAUSSIAN PROCESSES

Thus, a Gaussian process is a distribution over functions whose shape (smoothness, ...) is defined
by κ. If points xi and xj are considered to be similar (κ(x,i xj) is small) the function values at these
points, f(xi) and f(xj), can be expected to be similar too.
We may then define the Gaussian process as

f(x) ∼ GP(m(x), κ(x, x′))
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GAUSSIAN PROCESSES

Reassuming, given a gaussian process p(f) = GP(m, κ), for any set of items X = (x1, . . . , xn), the
distribution of f(x1), . . . , f(xn) is a gaussian

p(f) = p(f(x1), . . . , f(xn) = N (f;µX|ΣX)

where
• µX = (m(x1), . . . ,m(xn))T

• ΣX is the Gram matrix GX wrt x1, . . . , xn of a kernel function κ(x, x′)
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GAUSSIAN PROCESSES

For any finite subset X = (x1, . . . , xm) of χ, we can refer to the definition of gaussian process to
obtain the distribution of (f(x1), . . . , f(xm)). In fact:
• it is gaussian by hypothesis
• it can be seen as the marginalization of the distribution on the infinite vector of variables
defined by χ

p(f) = N (f;µX,ΣX)

where µ(X)i = m(xi) and ΣX[i, j] = κ(xi, xj).
For any finite subset X = (x1, . . . , xn) of χ it is possible to sample from p(f) the values of
f(x1), . . . , f(xm) by gaussian sampling from N (f;µX,ΣX)
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KERNELS
Clearly, different kernels provide different processes: one of the most applied kernel is the RBF
kernel

κ(x1, x2) = σ2e−
||x1−x2||2

2τ2

which tends to assign higher covariance between f(x1) and f(x2) if x1 and x2 are nearby points.
Functions drawn from a Gaussian process with RBF kernel tend to be smooth, since values
computed for nearby points tend to be similar. Smoothing is larger for larger τ .
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KERNELS

Samples of functions from p(f). RBF kernel, smaller τ and smoothing
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POSTERIOR DISTRIBUTION
The gaussian process GP(m(x), κ(x, x′)) can be seen as a prior distribution of functions (prior
with respect to the observation of some values (x, f(x)), i.e. of the values actually taken by the
function at some points).
By the considerations above, this results in a prior distribution of function values for any finite
subset of points:

p(f) = N (f;µX,ΣX)
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POSTERIOR DISTRIBUTION

Let us now assume that, given X the corresponding values f(x1), . . . , f(xm) are known: that is, we
assume that a training set X, t is available, and that the target values t1, . . . , tm correspond exactly
to the values of the unknown regression function at the corresponding items, that is ti = f(xi). In
other terms, we assume there is no noise in our observations of the unknown function f. Note
that in the probabilistic model of regression this is not true, since a (gaussian) error is assumed.
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POSTERIOR DISTRIBUTION

By definition of gaussian process, if we now consider an additional set of points Z = (z1, . . . , zr)T,
the joint distribution of f(x1), . . . , f(xm), f(z1), . . . , f(zr) is a multivariate gaussian with mean
µ(X,Z) = (µX,µZ) and covariance matrix

Σ(X,Z) =

(
GX GZ,X
GTZ,X GZ

)
where

GZ,X =


κ(z1, x1) κ(z1, x2) · · · κ(z1, xm)
κ(z2, x1) κ(z2, x2) · · · κ(z2, xm)

...
...

. . .
...

κ(zr, x1) κ(zm, x2) · · · κ(zr, xm)


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POSTERIOR DISTRIBUTION

We wish to derive the predictive distribution of f(z1), . . . , f(zr) given z1, . . . , zr, x1, . . . , xm, and
t1, . . . , tm, which by the no noise assumption is equal to t = (f(x1), . . . , f(xm)), that is the
conditional distribution p(f(Z)|Z,X, t). In order to do that, let us first remind some useful
properties of multivariate gaussian distributions.
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RECAP: SOME PROPERTIES OF THE GAUSSIAN DISTRIBUTION

Let x = (x1, . . . , xn)T be a random vector with gaussian distribution p(x) = N (µ,Σ) and let
x = (xA, xB) be a partition of the components x such that:
• xA = (x1, . . . , xr)T

• xB = (xr+1, . . . , xn)T

Then, the marginal distributions p(xA) and p(xB) are both gaussian with means µA,µB and
covariance matrices ΣA,ΣB which can be derived from µ,Σ by observing that

µ = (µA,µB)
T Σ =

(
ΣA ΣAB
ΣT
AB ΣB

)
Clearly, µA ∈ IRr, µB ∈ IRn−r, ΣA ∈ IRr×r, ΣB ∈ IR(n−r)×(n−r),
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RECAP: SOME PROPERTIES OF THE GAUSSIAN DISTRIBUTION

In the same situation, the conditional distributions p(xA|xB) and p(xB|xA) are also gaussian with
means

µA|B = µA +ΣABΣ
−1
B (xB − µB)

µB|A = µB +ΣBAΣ
−1
A (xA − µA)

and covariance matrices

ΣA|B = ΣA −ΣABΣ
−1
B ΣBA

ΣB|A = ΣB −ΣBAΣ
−1
A ΣAB
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POSTERIOR DISTRIBUTION

From these properties, by setting xA = f(X) and xB = f(Z), it results that

p(f(z1), . . . , f(zr)|z1, . . . , zr, x1, . . . , xm, t1, . . . , tm)

is an r-dimensional gaussian distribution itself with mean and covariance defined as

µpr = µZ + GZ,XG−1
X (t − µX)

Σpr = GZ − GZ,XG−1
X GTZ,X

Observe that even under the assumption that m(x) = 0 in the gaussian process definition the
mean of the predictive distribution may result to be non zero. In fact, in such a case, it would be

µpr = GZ,XG−1
X t
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POSTERIOR DISTRIBUTION

Sampling several functions from such the predictive distribution results in the following situation

Prof. Giorgio Gambosi Nonparametric regression Slide 29 / 62



PREDICTION

In particular, for the prediction of a single test point z, the predictive distribution of f(x) is a
gaussian with mean and variance

µpr = Gz,XG−1
X t

σ2
pr = κ(z, z)− Gz,XG−1

X GTz,X
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PREDICTION

In this case, an interpolation of the given values has been performed: f(xi) = ti for all possible
functions, sampled from p(f|X, t)).

It results, in fact, for all xi ∈ X,

m(f(xi)|X, t) = ti
σ2 = 0
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GAUSSIAN PROCESS REGRESSION: GAUSSIAN NOISE

If we make the more realistic hypothesis that ti only provides a noisy observation of f(xi), we may
behave as in the definition of the probabilistic model for linear regression, that is assume the
gaussianity of noise, hence that p(ti|f, xi) = N (f(xi), σ2

f )

That is, the value ti observed for variable xi differs from the one obtained as f(xi) by a gaussian
and independent noise

ti = f(xi) + ε p(ε) = N (ε; 0, σ2
f )

Under these assumptions, for the prior distribution on the noisy observations we have

cov(f(xi), f(xj)) = κ(xi, xj) + σ2
f δij

where δij is the Kronecker delta which is one iff i = j and zero otherwise. As a consequence, the
covariance matrix ΣX results

Σ(X) = GX + σ2
f I
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GAUSSIAN PROCESS REGRESSION: GAUSSIAN NOISE
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GAUSSIAN PROCESS REGRESSION: GAUSSIAN NOISE

Let us now assume that a training set X, t is available such that the target values in the training
set correspond approximately to the function value ti = f(xi) + ε.
In this case, for any new set of points Z, the joint distribution of (t, f(Z)) is a multivariate gaussian
distribution is a multivariate gaussian with mean µ(X,Z) = (µX,µZ) and covariance matrix

Σ̂(X,Z) =

(
Σ̂X GZ,X
GTZ,X GZ

)
where

Σ̂X = GX + σ2
f I =


κ(x1, x1) + σ2

f κ(x1, x2) · · · κ(x1, xm)
κ(x2, x1) κ(x2, x2) + σ2

f · · · κ(x2, xm)
...

...
. . .

...
κ(xm, x1) κ(xm, x2) · · · κ(xm, xm) + σ2

f


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GAUSSIAN PROCESS REGRESSION: GAUSSIAN NOISE
The predictive distribution of f(z1), . . . , f(zr) given z1, . . . , zr, x1, . . . , xm, and t1, . . . , tm can be again
derived by the gaussian distribution properties, and, by the same considerations, turns out again
to be a gaussian distribution with mean and covariance defined as

µ̂pr = µZ + GZ,XΣ̂(X)−1(t − µX)

Σ̂pr = GZ − GZ,XΣ̂(X)−1GTZ,X

Again, if we assume zero mean in the prior distribution it results

µ̂pr = GZ,XΣ̂
−1

X t
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GAUSSIAN PROCESS REGRESSION: GAUSSIAN NOISE

In particular, for a single test point z, we have now that the corresponding predictive distribution
is again a gaussian with

µpr = m(x) + Gz,XΣ̂
−1

X (t − µX)

σ2
pr = κp(z, z)− Gz,XΣ̂

−1

X GTz,X
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ESTIMATING KERNEL PARAMETERS
The predictive performance of gaussian processes depends exclusively on the suitability of the
chosen kernel.
Let us consider the case of an RBF kernel. Then,

κ(xi, xj) = σ2
f e−

1
2
(xi−xj)

TM(xi−xj) + σ2
y δij

M can be defined in several ways: the simplest one is M = l−2I.
Even in this simple case, varying the values of σf, σy, l returns quite different results.

(figure from K.Murphy “Machine learning: a probabilistic perspective” p. 519, with (l, σf, σy) equal to
(1, 1, 0.1), (0.3, 1.08, 0.00005), (3.0, 1.16, 0.89))

Prof. Giorgio Gambosi Nonparametric regression Slide 37 / 62


