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DEEP NETWORKS

The term deep neural networks usually refers to the ones including at least 2 hidden layers (up to
several tens).

Model complexity (number of coefficients to be learned) depends from several variables:
• depth (number of layers)
• width (number of units) of each layer
• link topology
• sharing of coefficient values between links
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DEEP LEARNING

The increase of complexity implies:
• need of larger training sets
• more expensive steps of forward and backpropagation
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MANY TYPES OF DEEP NETWORKS

• MLP Multilayer perceptrons
• CNN Convolutional Neural Network
• AE Auto Encoders
• RNN Recurrent Neural Networks
• LSTM Long-Short Term Memory Networks
• Tranformers Attention-based Neural Networks
• Graph Neural Networks Graph topology-based Neural Networks
• GAN Generative Adversarial Networks
• …
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LEARNING IN DEEP NETWORKS

Learning of coefficients in deep network follows the general approach of defining:
• Loss function
• Optimization method

Moreover, the choice of the activation function has to be considered
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REGULARIZATION

There are several ways of controlling the capacity of Neural Networks to prevent overfitting:
• L2 regularization
• L1 regularization
• Max norm constraints. Enforce an absolute upper bound on the magnitude of the weight by
clamping the weight vector w of every neuron to satisfy ||w|| < c.

• Dropout. A neuron is kept active with some probability p (a hyperparameter), or setting it to
zero otherwise.
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VANISHING GRADIENT

Appying the sigmoid or the hyperbolic tangent as activation function in a neural network hidden
units is a critical issue since derivative values

∂Ei
∂w(k)

jl

may tend to monotonically decrease, in module, during backpropagation, as k decreases.

This is the problem of vanishing gradient.

Common solution: applying different non linear functions, such as RELU (Rectified Linear Unit)

h(x) = max (0, x)
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EXPLODING GRADIENT

The opposite problem of gradient unbounded increase may also occur, making the network
unstable.

Usually managed through clipping or regularization
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CONVOLUTIONAL NEURAL NETWORKS

Very similar to ordinary Neural Networks
• made up of neurons that have learnable weights and biases
• each neuron receives some inputs, performs a dot product and optionally follows it with a
non-linearity

• the whole network still expresses a single differentiable score function: from the raw image
pixels on one end to class scores at the other

• they still have a fully connected layer as last layer, with suitable loss function: all the
tips/tricks developed for learning regular Neural Networks still apply
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MLP RECAP

• Multilayer Perceptrons receive an input (a single vector), and transform it through a series of
hidden layers

• Each hidden layer is made up of a set of neurons, each neuron fully connected to all neurons
in the previous layer

• The last fully-connected layer is called the output layer and in classification settings it
represents the class scores.
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NEURAL NETWORKS ISSUE WITH IMAGES

• In the CIFAR-10 dataset, images have size 32x32x3 (32 wide, 32 high, 3 color channels): this
results in vectors of 32*32*3 = 3072 values

• a single fully-connected neuron in a first hidden layer of a MLP would be associated to
32*32*3+1 = 3073 weights

• an image of size 200x200x3 would result into a first layer where each neuron is associated
120.001 weights.

• clearly, this full connectivity is wasteful and the huge number of parameters would quickly
lead to overfitting.

• some type of approach to reduce the overall number of coefficients must be applied
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CONVOLUTIONAL NEURAL NETWORKS
Usually applied to images. Fundamental idea: a kernel (coefficient matrix) “moves” on the output
of the previous layer, at each step covering a restricted region and performing a linear
combination (convolution) to produce a value. The set of output values corresponds to the set of
regions considered
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CONVOLUTIONAL NEURAL NETWORKS
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LOCAL CONNECTIONS
Neurons in a layer are connected to a small region of the previous layer, instead of all the
neurons in a fully-connected manner.
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CONVOLUTIONAL NETWORK STRUCTURE

• Units in a layer of a convolutional network are usually arranged in 3 dimensions: width,
height, depth.

• For example, an input image in CIFAR-10 is a 3d volume of values (inputs, for the next layer),
with dimensions 32x32x3 (width, height, depth respectively).

• Each layer gets a 3d volume of inputs from the preceding one and produces a different 3d
volume for the following one:

• width and height depend from width and height of the previous layer and on the type of layer
• depth is a project choice
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LAYERS USED TO BUILD CONVOLUTIONAL NETWORK

Three main types of layers:
• Convolutional Layer: applies a convolution operation to the previous layer, by applying a
kernel (matrix of coefficients to be learned) to each region of a set of overlapping ones

• Pooling Layer: implements a fixed (no coefficients to be learned) downsampling function to
reduce the volume size: a set of regions of the input volume is defined and a single value is
computed from each of them

• RELU Layer: applies a RELU activation function (no coefficients to be learned) to all input
values

• Fully-Connected Layer: an MLP-style layer
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IN SUMMARY

• A convolutional network architecture architecture is a list of layers that transform input
volumes into output volumes

• A few distinct types of layers (e.g. CONV/FC/RELU/POOL)
• Each layer accepts an input 3D volume and transforms it to an output 3D volume through a
differentiable function

• Each layer may or may not have parameters
• Each layer may or may not have additional hyper-parameters
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CONVOLUTIONAL LAYER

• A convolutional layer of dimensions w,h,d can be seen as applying a set of d different filters
on the input volume, each composed of w× h, returning a w× h matrix of values

• A unique kernel is applied for each filter: its w× h units apply the kernel to a different region
of the input volume, that is, they apply the same operation on different parts of the input.

Prof. Giorgio Gambosi Deep learning Slide 20 / 128



CONVOLUTIONAL LAYER
• The r-th convolutional layer arranges its neurons in three dimensions (width, height, depth).
• Assume layer r returns as output a volume w× h× d (“ images” of size w× h, with each “pixel”
characterized by d values, related to d different features).

• • On each width-height layer the bidimensional structure of the image is reported
• Each layer on the depth dimension corresponds to a different feature computed from the output of
the previous network layer

• Then, every layer of a convolutional network transforms the 3D input volume to a 3D output
volume of neuron activations

Prof. Giorgio Gambosi Deep learning Slide 21 / 128



CONVOLUTIONAL LAYER

The structure of layer r+ 1 (and of its output) is characterized by two hyper-parameters:
• Depth: number of layers (features) to be derived. It corresponds to the number of filters to
use, each learning to look for something different in the input.

For example, if the first convolutional layer takes as input the raw image, then different
neurons along the depth dimension may activate in presence of various oriented edges, or
blobs of color. Neurons from different filters that are all looking at the same region of the
input are denoted as depth column
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CONVOLUTIONAL LAYER

• Stride: step of the kernel slide over the output of layer r; that is, increment, from a unit to the
adjacent one, of the position of the central pixel of the window on which the kernel is
applied. When the stride is 1 filters are moved one pixel at a time. When the stride is k then
the filters jump k pixels at a time as they are slided around. This will produce smaller output
volumes spatially.
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CONVOLUTIONAL LAYER

If stride= 1, then width and height of layer r+ 1 are respectively equal to w and h. The case of
window on the border can be managed by assuming a suitable “frame” of null values surrounding
the image (zero-padding) returned by layer r. The size of this zero-padding is a hyper-parameter.

In the opposite case, they will be given by the ratio of w (and h) with the stride value.
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CONVOLUTIONAL LAYER

Usually w = h and the kernel is defined as a square matrix of size f. In this case, the spatial size
of the filter is a function of w, f, the stride s with which the kernel is moved, and the amount p of
zero padding inserted on the border.
It is possible to see that the width of the filter is given by

w′ =
⌈w− f+ 2p

s
⌉
+ 1

. For example for a 7x7 input and a 3x3 kernel with stride 1 and pad 0 we would get a 5x5 filter.
With stride 2 we would get a 3x3 filter.
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CONVOLUTIONAL LAYER

How many connections are defined for each unit?
• this corresponds to the number of values in the input volume which are considered for
computing each output value, plus the bias

• we assume that the input to each unit in the filter is composed by the output values of all
units, for all depths, in the corresponding region of the previous layer, that is f× f× d values
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CONVOLUTIONAL LAYER

Let the input to layer r+ 1 be a volume 32× 32× 3.

Assume a kernel window of size f = 3: each unit in layer r+ 1 has 3× 3× 3 + 1 = 28 values as
input, including bias. Assuming a stride s = 2, each filter at layer r+ 1 has width w′ = 16.

If 5 features are extracted the number of units is then 16× 16× 5 = 1280.

Prof. Giorgio Gambosi Deep learning Slide 27 / 128



EXAMPLE

• Real-world architecture (winner of the ImageNet challenge in 2012). 1.3× 106 high-resolution
images of size 227× 227× 3 in the training set; 1000 different classes.

• On the first convolutional layer, neurons with f = 11, stride s = 4 and no zero padding p = 0;
depth K = 96. Since d(227− 11)/4e+ 1 = 55, the layer output volume had size 55× 55× 96.

• Each of the 55 ∗ 55 ∗ 96 neurons in this volume was connected to a region of size [11× 11× 3]
in the input volume.

• All 96 neurons in each depth column are connected to the same 11× 11× 3 region of the
input, with different weights.
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EXAMPLE

• Overall, this results into 55× 55× 96 = 290.400 neurons in the first convolutional layer, each
with 11× 11× 3 + 1 = 364 weights. This adds up to 290400× 364 = 105.705.600 parameters
just on the first layer of the convolutional network. Clearly, this number is very high.

• Reasonable assumption: if one feature has a certain usefulness to compute at some spatial
position (x, y), then it should have the same usefulness to compute at a different position
(x′, y′).

• As a consequence, neurons in a same filter (depth slice) use the same weights and bias. With
this parameter sharing scheme, the first layer in the example would now have only 96 unique
set of weights (one for each filter), for a total of 96× 364 = 34.848 unique weights.

• All 55× 55 neurons in each depth slice use the same parameters.
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CONVOLUTIONAL LAYER

Sometimes the parameter sharing assumption has to be relaxed (Locally-Connected Layer).

This is especially the case when we should expect that completely different features should be
learned on one side of the image than another. Example: input are faces that have been centered
in the image. You might expect that different eye-specific or hair-specific features could (and
should) be learned in different spatial locations.
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CONVOLUTIONAL LAYER
To summarize, in general a convolutional layer:

• Accepts a volume of size w1 × h1 × d1
• Requires four hyperparameters:

• Number of filters k
• their spatial extent f
• the stride s
• the amount of zero padding p

• Produces a volume of size w2 × h2 × d2 where:

• w2 =
⌈
w1−f+2p

s

⌉
+ 1

• h2 =
⌈
h1−f+2p

s

⌉
+ 1

• d2 = k
• With parameter sharing, it introduces f× f× d1 + 1 weights per filter
• In the output volume, the i-th depth slice (of size w2 × h2) is the result of performing a valid convolution of the i-th
filter over the input volume with stride s, and then offset by i-th bias.

A common setting of the hyperparameters is f = 3, s = 1, p = 1. There are common conventions and rules of thumb that
motivate these hyperparameters.
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POOLING LAYER

A pooling layer aggregates output data from the preceding layer. It reduces the spatial size of the
representation to decrease the amount of parameters and computation in the network, and
hence to also control overfitting.

The aggregation is performed internally to each filter (feature), decreasing its size.

A simple function (such as maximum or mean) is applied to all values in a window.

A volume of values is produced such that:
• the number of layers (depth) is not modified
• width and height are equal to the ones of the input volume, divided by the stride.
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POOLING LAYER

• Accepts a volume of size w1 × h1 × d1

• Requires two hyperparameters: spatial extent f and stride s
• Produces a volume of size w2 × h2 × d2 where:
• w2 = (w1 − f)/s+ 1

• h2 = (h1 − f)/s+ 1

• d2 = d1

• Introduces zero parameters since it computes a fixed function of the input (mean, maximum)
• Usually, no padding

Only two schemes commonly found in practice: pooling layer with f = 3, s = 2, and more
commonly f = 2, s = 2. Pooling sizes with larger receptive fields are too destructive.
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POOLING LAYER
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RELU LAYER

This is just a way of representing the application of a non-linear activation function, such as RELU,
to the results of the dot products performed at layers of different types.
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FULLY-CONNECTED LAYER

• Neurons in a fully connected layer have full connections to all activations in the previous
layer, as seen in regular Neural Networks.

• The only difference between FC and CONV layers is that the neurons in the CONV layer are
connected only to a local region in the input, and that many of the neurons in a CONV volume
share parameters. However, the neurons in both layers still compute dot products, so their
functional form is identical.

Prof. Giorgio Gambosi Deep learning Slide 36 / 128



LAYER PATTERNS

Most common form of a convolutional network architecture

Stack of a few convolutional-RELU layers, followed by POOL layers. Pattern repeated until the
image has been merged spatially to a small size. At some point, transition to fully-connected
layers. The last fully-connected layer holds the output, such as the class scores.
INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC

In practice

One should rarely ever have to train a convolutional network from scratch or design one from
scratch. Better looking at whatever architecture currently works best in a general case
(ImageNet), download a pretrained model and finetune it on our data (transfer learning).
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EXAMPLE

Simple convolutional network for CIFAR-10 classification [INPUT - CONV - RELU - POOL- FC] architecture.
• INPUT [32x32x3] holds the raw pixel values of the image, in this case an image of width 32, height 32, and with 3 color
channels R,G,B.

• CONV layer computes the output of neurons that are connected to local regions in the input, each computing a dot
product between their weights and a small region they are connected to in the input volume. This may result in volume
such as [32x32x12] if we decided to use 12 filters.

• RELU layer applies an elementwise activation function, such as the max(0, x) thresholding at zero. This leaves the size
of the volume unchanged ([32x32x12]).

• POOL layer performs a downsampling operation along the spatial dimensions (width, height), resulting in volume such
as [16x16x12].

• FC layer computes the class scores, resulting in volume of size [1x1x10], where each of the 10 numbers correspond to a
class score, such as among the 10 categories of CIFAR-10. As with ordinary Neural Networks and as the name implies,
each neuron in this layer will be connected to all the numbers in the previous volume.
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CASE STUDIES

Some architectures in the field of Convolutional Networks that have a name. The most common
are:

• LeNet. One of the first successful applications of Convolutional Networks (1998)
• AlexNet. (2012) Very similar architecture to LeNet, but deeper, bigger, and featured Convolutional Layers stacked on top
of each other (previously it was common to only have a single CONV layer always immediately followed by a POOL layer).

• ZF Net. (2013) an improvement on AlexNet obtained by tweaking the architecture hyperparameters, in particular by
expanding the size of the middle convolutional layers and making the stride and filter size on the first layer smaller.

• GoogLeNet. (2014) introduced an Inception Module that dramatically reduced the number of parameters in the network
(4M, compared to AlexNet with 60M).

• VGGNet. (2014) contains 16 CONV/FC layers; only performs 3x3 convolutions and 2x2 pooling from the beginning to the
end.

• ResNet. (2015) very common choice for using ConvNets in practice.
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RECURSIVE NEURAL NETWORKS

Many real-word problems require processing a timed (or in general indexed) sequence or signal
• Sequence classification: sentiment analysis, DNA sequence classification, action recognition
• Sequence synthesis: text, music
• Sequence-to-sequence translation: speech recognition, text translation
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MODELING SEQUENTIAL DATA

• Sample data sequences from a distribution p(x1, . . . , xT)
• Generate data sequences to describe an image p(y1, . . . , yT|I)
• Activity recognition from a sequence p(y|x1, . . . , xT)
• Speech recognition; Object tracking p(y1, . . . , yT|x1, . . . , xT)
• Generate sentences to describe a video; language translation p(y1, . . . , yT′ |x1, . . . , xT)
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RECURRENT NEURAL NETWORKS
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RECURRENT NEURAL NETWORKS

A RNN, differently from MLP and CNN, is applied to sequences of input vectors.

At each new input vector, an output is returned which is a function of such vector and of all past
ones.

This is obtained by using the current output as (part of the) input for the next step.

xt ht

ht−1

f g yt
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RECURRENT NEURAL NETWORKS

Given a sequence x and an initial state h0, the model iteratively computes the sequence of
recurrent states

ht = f(xt,ht−1) = ϕ(W1xt +W2ht−1 + b) t = 1, . . . , T(x)

W1,W2 are weight matrices, learned by backpropagation

ϕ is usually a logistic or a hyperbolic tangent function
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RECURRENT NEURAL NETWORKS

A prediction can be computed at any time step from the recurrent state

yt = g(ht) = ψ(W3ht + b′)

ψ is task-dependent. Usually, a softmax
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RECURRENT NEURAL NETWORKS

xt
d

W1

dh
d

W2

dh

dh

+

b
dh

ϕ ht
dh

ht−1

dh

W3

do
dh

+

b′
do

s yt
do
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RECURRENT NEURAL NETWORKS: ALTERNATE VIEW

xt
d

ht−1

dh
W1

dh

d + dh

+

b
dh

ϕ ht
dh

W2

do
dh

+

b′
do

s yt
do
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RECURRENT NEURAL NETWORKS: UNFOLDED VIEW

x0

h0

y0

x1

h1

y1

x2

h2

y2

h3 ht

xt

ht+1

yt

Network can be seen as a sequence of modules sharing the same coefficients.
Backpropagation through time (BPTT)
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LSTM NETWORKS

Long Short Term Memory networks – usually just called LSTM – are a special kind of RNN, capable
of learning long-term dependencies, that is, situations when yt is strongly dependent from xt′
with t′ << t

RNN, even if capable in principle, are not able in practice to deal with this problem (vanishing
gradient). LSTM specialize the module structure by introducing a set of specialized interacting
layers
Cell state: stores long term information; its value can be modified by suitable operations
• a product (with a vector a values in (0, 1)) decreasing the weights of components
• a sum (with a vector a values in (0, 1)) increasing the weights of components
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GATED RECURRENT UNIT
The Gated Recurrent Unit is one of the simplest and common types of LSTM, introduced to limit
the number of networks coefficients to be learned wrt more complex LSTMs.

In GRUs, the new hidden state is computed as a combination of the previous state and of a new
value, derived from the input by suitably weighing its components.
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GRU

xt ht−1Reset

Update

rt

zt

CHS h̃t

NHS ht

Prof. Giorgio Gambosi Deep learning Slide 51 / 128



GRU: RESET GATE

xt
d

Wrx

dh
d

Wrh

dh

dh

+

ht−1

dh

br
dh

σ rt
dh

(0, 1)

rt = σ(xtWrx + ht−1Wrh + br)
specifies for each component of the hidden state how much the current state must be considered
to modify the component value

Prof. Giorgio Gambosi Deep learning Slide 52 / 128



GRU: UPDATE GATE

xt
d

Wzx

dh
d

Wzh

dh

dh

+

ht−1

dh

bz
dh

σ zt
dh

(0, 1)

1− zt
dh

(0, 1)

zt = σ(xtWzx + ht−1Wzh + bz)
zt = 1− zt

specifies for each component of the hidden state how much its next value should derive from the
current one (lower zt, higher zt) versus how much it must be derived from the current input
(higher zt, lower zt )
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GRU: CANDIDATE HIDDEN STATE

xt
d

Wcx

dh
d

Wch

dh

dh

+

ht−1

dh

rt
dh

(0, 1)

×

dh

bc
dh

tanh h̃t
dh

(−1, 1)

h̃t = tanh(xtWcx + ht−1Wch + bc)
derives a new value for each component of the hidden state by combining the current input and
the previous state value, weighted by rt
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GRU: NEW HIDDEN STATE

ht−1

dh

zt
dh

(0, 1)

×

dh

+

h̃t
dh

(−1, 1)

z̃t
dh

(0, 1) dh

(−1, 1)

×

ht
d1

ht = ztht−1 + z̃th̃t = ztht−1 + (1− zt)h̃t
derives a new value for each component of the hidden state as a convex combination of the old
value and the candidate value derived from the input
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MINIMAL GATED UNIT

A Minimal Gated Unit further limits the number of coefficients wrt GRUs, by using a single gate

ft = σ(xtWfx + ht−1Wfh + bf)
h̃t = tanh(xtWhx + (ft ∗ ht−1)Whh + bh)
ht = (1− ft) ∗ ht−1 + ft ∗ h̃t

Prof. Giorgio Gambosi Deep learning Slide 56 / 128



MINIMAL GATED UNIT

xt ht−1Reset

ft

CHS h̃t

NHS ht
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LSTM NETWORKS: FIRST VERSION

In an LSTM an additional long-term state ct is maintained. No product, only sum (no forget)
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LSTM NETWORK

xt

ht−1

IG2

IG1 c̃t

it

OG1

IG3

OG2

ct−1

ct

ot ht
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LSTM NETWORKS: INPUT GATE

xt
d

Wcx

dh
d

Wch

dh

dh

+

ht−1

dh

bc
dh

tanh c̃t
dh

(−1, 1)

c̃t specifies the increment or decrement of each long term memory component in ct−1

c̃t = tanh(ht−1Wch + xtWcx + bc)
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LSTM NETWORKS: INPUT GATE

xt
d

Wix

dh
d

Wih

dh

dh

+

ht−1

dh

bi
dh

σ it
dh

(0, 1)

it specifies how much each long term memory cell component in ct−1 has to be updated

it = σ(ht−1Wih + xtWix + bi)
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LSTM NETWORKS: INPUT GATE

ct−1

dh
it
dh

(0, 1)

× +

c̃t
dh

(−1, 1)

ct
dhdh

(−1, 1)

Each long term memory component in ct−1 is updated by adding the value from c̃t. Only a
fraction, as specified by it, of the update is performed

ct = ct−1 + itc̃t
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LSTM NETWORKS: OUTPUT GATE

xt
d

Wox

dh
d

Woh

dh

dh

+

ht−1

dh

bo
dh

σ ot
dh

(0, 1)

ot specifies how much each short term memory cell component in ht−1 has to be updated by ct

ot = σ(ht−1Woh + xtWox + bo)
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LSTM NETWORKS: OUTPUT GATE

ot
dh

(0, 1)

×ct
dh

tanh
(−1, 1)

ht
dh

Updates to short term memory components are obtained by squashing long term memory
components in (−1, 1). Only a fraction of update is applied, as specified by ot

ht = ottanh(ct)
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LSTM NETWORKS WITH FORGET LAYER
Forget gate layer: determines the decrease of relevance of long term memory components

ft= σ(ht−1Wfh + xtWfx + bf)
it = σ(ht−1Wih + xtWix + bi)
c̃t = tanh(ht−1Wch + xtWcx + bc)
ct = ftct−1 + it c̃t
ot = σ(ht−1Woh + xtWox + bo)
ht = ottanh(ct)
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LSTM NETWORKS WITH PEEPHOLES

In the networks above there is no direct connection between long term memory and gates: this
lack of information at gates may spoil network performance. To handle this issue, additional
connections (peephole) are defined.
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LSTM NETWORKS WITH PEEPHOLES

ft = σ(ht−1Wfh + xtWfx + ct−1Wfc + bf)
it = σ(ht−1Wih + xtWix + ct−1Wic + bi
c̃t = tanh(ht−1Wch + xtWcx + bc)
ct = ftct−1 + itc̃t
ot = σ(ht−1Woh + xtWox + ct−1Woc + bo)
ht = ot tanh(ct)
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TOPOLOGIES

Recurring cells (in particolar LSTM) can be connected according to many different topologies.
• Stacked networks
• Bidirectional networks
• Multidimensional networks
• Graph networks

Moreover, recurring structures (layer) can be integrated within more complex networks.
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ENCODER-DECODER ARCHITECTURE

Applied for sequence-to-sequence translation

x1x2x3· · ·xn Encoder C Decoder ym · · · y2 y1

• The encoder produces a context from the whole input sequence, which provides a suitable
overall coding of the sequence

• The decoder produces the output sequence step by step, from the context
• Both the encoder and the decoder can be implemented as RNN
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ENCODER
The context derives from the sequence of hidden states traversed by the network

h0

x1

h1

x2

h2 · · ·

xn

hn

C

ht = f(xt,ht−1)

C = q(h1, . . . ,hn)
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ENCODER

A possible context is just the juxtaposition of all hidden states traversed

h0

x1

h1

x2

h2 · · ·

xn

hn

·

C

hnh2 h3 · · ·h1
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DECODER
At each step both the output and the new hidden state derive from the current hidden state and
the context encoding the input sequence (usually, also from the previous output)

y0

h′0

y1

h′1

y2

h′2 · · ·

· · · ym

h′m

C · · ·

h′t = f(h′t−1, yt−1, c)
yt = g(h′t)
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ATTENTION
The attention mechanism computes different contexts for each decoder step by comparing the
current state h′ and the context C.

y0

h′0

y1

h′1

y2

h′2 · · ·

· · ·

· · ·

ym

h′m

hnh2 h3 · · ·h1

C

c0 c1 cm

· · ·
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ATTENTION
Each context ci is usually computed as a non negative linear combination of the encoder hidden
states, which are gathered in the context.

hnh2 h3 · · ·h1

C

d

n

αi

n

ci
d

ci = C · αi
where

C =

 | | · · · |
h1 h2 · · · hn
| | · · · |


hence

ci =
n∑
j=1

αijhj
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ATTENTION

The weights of the linear combination are derived by comparing the current decoder state h′ i
with each encoder hidden state from the context.

hnh2 h3 · · ·h1

C

d
n

n
h′ i

d

s αi
n

αi = softmax(h′ iC)
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ATTENTION

We may abstract the attention mechanism described above as follows:
• given three domains (vector spaces) Q (queries), K (keys) and V (values)
• given a function h : Q× K 7→ IR or in particular h : Q× K 7→ (0, 1)

• let q be a query, a set of n keys k1, . . . , kn be n keys and v1, . . . , vn be n values
• a set of weights α1, . . . , αn can be computed as αi = h(q, ki)
• the attention a(q) associated to query q is the linear combination of v1, . . . , vn weighted by
α1, . . . , αn

a(q) =
n∑
i=1

αivi =
n∑
i=1

h(q, ki)vi

In the above approach, q is the current decoder state h′ i, while both K and V are the encoder
states h1, . . . ,hn
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ATTENTION

k1

k2

k3

k4

...

kn

h

h

h

h

...

h

a1

a2

a3

a4

...

an

q

...

s

α1

α2

α3

α4

...

αn

v1

v2

v3

v4

vn

×

×

×

×
...

×

+ c(q)
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ADDITIVE ATTENTION

A possible tunable implementation of h. Wk, Wq and w provide d(dk + dq + 1) learnable
coefficients

q
dq

k
dk

Wq

d
dq

Wk

d

dk d

d

+

d
tanh

d

(−1, 1)

w
d

a
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SCALED DOWN ATTENTION

A non tunable, simple implementation of h when queries and keys have the same size

q

d

k
d

1√
d a

Let Q ∈ IRn×d, K ∈ IRr×d, V ∈ IRr×m: that is assume there are n queries of size d, and r key-value
pairs, with keys of same size d than queries and values of arbitrary size m. Then applying scaled
down attention results into n vectors αi of size v, computed as the columns of

softmax
(

QKT
√
d

)
V

Usually, r = n, which results in the method returning a context of size m for each input vector.
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MAKING SCALED DOWN TUNABLE
Again, introducing matrices of parameters makes the method tunable

q

k

q'

k'

.

v

v'

Wq

Wk

Wv

a x
a v'
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SCALED DOWN IN CONTEXT DERIVATION

h'

h1

q'

.

Wq

Wk

Wv

a2 x

h2

hm

...

a1

am

...

a2

a1

am

...
s

h1

h2

hm

...

k1

k2

km

v1

v2

vm

a1 v1

a2 v2

am vm

x+ c
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SELF-ATTENTION
In self-attention, the attention mechanism is applied as shown above, but without referring to
hidden states. Instead, queries q1, . . . , qn, keys k1, . . . , kn, and values v1, . . . , vn are all derived
from input tokens x1, . . . , xn
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SELF-ATTENTION

x1

.

Wq

Wk

Wv

x

x2

xn

...

a1 s
k1

k2

kn

v1

v2

vn

ai vj x+ c2

x1

x2

xn

...

x1

x2

xn

...

q2

q1

qn
a2 ... an a1 a2 ... an

c1

...

cn
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MULTI HEAD
Single head:
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MULTI HEAD
The same operations are done in parallel (with different Wq,Wk,Wv triples), deriving K contexts
for each token.
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TRANSFORMER: ENCODER
Both encoder and decoder are composed of sequences of blocks.
Encoder block:
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TRANSFORMER: DECODER
Decoder block:
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TRANSFORMER ARCHITECTURE
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AUTOENCODERS

• An autoencoder is a feed-forward neural net whose job it is to take an input x and predict x.
• To make this non-trivial, we need to add a bottleneck layer whose dimension is much smaller
than the input.
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AUTOENCODERS
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AUTOENCODERS

loss

x

n

e

z = e(x)

p

d

y = d(z)

n
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WHY AUTOENCODERS?

• Map high-dimensional data to two dimensions for visualization
• Compression (i.e. reducing the file size)
• Learn abstract features in an unsupervised way so you can apply them to a supervised task
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LINEAR AUTOENCODER
• The simplest kind of autoencoder has one hidden layer, linear activations, and squared error
loss L(x1, x2) =|| x1 − x2 ||2
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LINEAR AUTOENCODER

loss

x
n

We

p

n

+

b
p

z
p

Wd

n

p
+

b′
n

y
n
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PCA

• This network computes x̃ = UVx, a linear function. If K ≥ D, U and V can be chosen such that
UV = I is the identity. This is not very interesting

• If K < D
• V maps x from a D dimensional space to a K dimensional space, defined by the column space of U.
So it is doing dimensionality reduction

• U maps Vx from a K dimensional space to the D dimensional space
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PCA

• What is the best possible mapping to choose?
• It is well known that the best mapping corresponds to the column of U being the eigenvectors
of the scatter matrix S = 1

n
∑n

i=1(xi −m)(xi −m)T corresponding to the K largest eigenvalues
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EXTENSION TO NONLINEAR MAPPINGS

• PCA relies on linear mapping: projection is done into a linear subspace
• lower information loss if mapping on nonlinear manifold is allowed
• neural networks can be applied
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ALTERNATIVE PERSPECTIVE
• It should be simple to relate the operations of PCA to those of a two-layer fully-connected
neural network without activations

• This would allow us to work in exactly the same scenario, but derive mappings using
backpropagation

z = Vx
x = Uz
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ALTERNATIVE PERSPECTIVE
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SO WHAT?

• Thus far, our (linear) autoencoder is only capable of the same kind of expressivity as PCA.
Indeed, it is simply a rephrasing of PCA

• More so, it was doing so inefficiently compared to PCA. It applied backpropagation to
approximately derive the optimum solution, which is easily computable directly

• However, enabling training by backpropagation means that we can now introduce depth and
nonlinearity into the model

• This should allow us to capture complex non linear manifolds more accurately
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AUTOENCODERS

• Encoder: z = σ(Vx)
• Decoder: x′ = g(Uz) = g(Uσ(Vx))
• g could be the identity if x is defined on real values or σ if they are binary {0, 1}
• Loss functions vary accordingly from squared loss || x− x′ ||2 to cross entropy

−(x log x′ + (1− x) log(1− x′)
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DEEP AUTOENCODERS

• We introduce additional non linear layers of r (ReLU) activations

z = r(W2r(W1x))
x = g(W4r(W3z))

Prof. Giorgio Gambosi Deep learning Slide 102 / 128



DEEP AUTOENCODERS
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AUTOENCODERS ON MNIST IMAGES
Line by line: original data, reconstruction with 30d PCA, reconstruction with 30d nonlinear
autoencoder, reconstruction with 30d deep autoencoder
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EXTENSIONS

• The autoencoder may be extended in several ways, such as
• Sparse autoencoders
• Denoising autoencoders
• Variational autoencoders
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SPARSE AUTOENCODER

A sparse autoencoder is one that is regularized to not only minimize loss, but to also incorporate
sparse features.
One way to deal with this aim is to enforce sparsity on the hidden activations. This can be added
on top of the bottleneck enforcement, or instead of it.
The first way to do so, is to apply L1 regularization, which is known to induce sparsity. Thus, the
autoencoder optimization objective becomes:

argmin
θ,ϕ

(
Ex [L(x,d(e(x;θ),ϕ))] + λ

∑
i

|ai|
)

where ai is the activation at the ith hidden layer and i iterates over all the hiddens activations.

This is intuitive, as we know L1-regularization introduces sparsity.
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SPARSE AUTOENCODER

Another way to do so, is to use the KL-divergence.
Instead of tweaking the λ parameter as in the L1 regularization, we can assume the activation of
each neuron acts as a Bernoulli variable with probability π and tweak that probability.
At each batch, the actual probability is then measured, and the difference is calculated and
applied as a regularization factor.
Let sl be the size of the l-th hidden layer; the calculated empirical probability for the j-th neuron
in this layer is then π̂(l)

j = 1
n
∑n

i=1 a
(l)
j (xi), where a(l)j (xi) is the value of the activation of neuron j in

layer l when the input is xi.
Then, we wish the empirical probability of activation of this neuron to be approximately equal to
a small constant probability π, known also as sparsity parameter, that is

π̂
(l)
j ≈ π
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SPARSE AUTOENCODER

This constraint is achieved by adding a penalty term into the loss function, related to the
difference (measured by the KL-divergence) between a Bernoulli distribution with probability π
and another Bernoulli distribution with probability π̂(l)

j . The overall loss function includes then a
penalty term which is the sum of the penalties for each neuron (here L denotes the overall
number of layers).

argmin
θ,ϕ

Ex [L(x,d(e(x;θ),ϕ))] +
L∑

l=1

sl∑
j=1

DKL
(
π||π̂(l)

j

)
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KL DIVERGENCE

The Kullback-Leibler divergence between p1(z) and p2(z), measures the difference between the
two distributions.

DKL (p1(z)||p2(z)) = Ez∼p1(z)

[
log p1(z)

p2(z)

]
=

∫
Z
p1(z) log p1(z)

p2(z)
dz

The following basic properties of KL divergence are relevant

DKL (p1(z)||p2(z)) ≥ 0

DKL (p1(z)||p2(z)) = 0 iff p1(z) = p2(z)∀z
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DENOISING AUTOENCODER

• An autoencoder that is robust to noise.
• Assume an additional noise ε, so that x̃ = x+ ε.
• Then, the loss function of the autoencoder could be defined as

L(x,g(h(x̃)))

and it would learn to denoise x̃ to reproduce x.
the input x is partially corrupted to x̃. This is obtained either by adding Gaussian noise to or by
masking some values of the input vector in a stochastic manner, for example according to a
Bernoulli distribution.
Note that in both cases x̃ is a random variable derived by composing x and a random noise.
The autoencoder is expected to reconstruct the clean version x of the input from the corrupted
value x̃
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DENOISING AUTOENCODER

lossx

n

ϵ

n

+

x̃

n

e

z = e(x̃)

p

d

y = d(z)

n

Observe that the model is trained to recover the original input, not the corrupt one. That is, the
loss function compares the input value x and the output value d(e(x̃)) as follows

(θ∗,ϕ∗) = argmin
θ,ϕ

Ex [L(x,d(e(x̃;θ),ϕ))]
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VARIATIONAL AUTOENCODER

The idea of a variational autoencoder derives from that of latent variable models, where
observed data items are assumed distributed according to the model

z ∼ p(z; ξ)
x ∼ p(x|z;ϕ)

or, in graphical form,

ξ

ϕ

z

x
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DEEP LATENT VARIABLE MODELS

In a deep latent variable model, we assume that:
1. the latent variable z has a very simple distribution, such as for example z ∼ N (0, I)
2. the dependance of the observed variable from the latent one, modeled by the distribution
p(x|z;ϕ) can be fairly complex, thus making its marginal distribution p(x;ϕ) = p(z)p(x|z;ϕ)
arbitrarily complex

3. in particular, we assume that p(x|z;ϕ) = P(x; fΦ(z)), where fΦ(z) is a complex parametric
function and P is a parametric distribution

4. finally, we assumed that fΦ(z) is implemented by a deep neural network NΦ denoted as
decoder
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DEEP LATENT VARIABLE MODELS
Example of gaussian-categorical DLVM with z ∈ IR3 and x ∈ {1, . . . , 5}
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DEEP LATENT VARIABLE MODELS

The role of the decoder NΦ is:
• to transform the code z into a specific distribution on the domain of x by computing its
parameters as fΦ(z)

• the decoder parameters Φ are learned from data

Prof. Giorgio Gambosi Deep learning Slide 115 / 128



DEEP LATENT VARIABLE MODELS

z f(z)f
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LEARNING THE PARAMETERS OF A LATENT VARIABLE MODEL

Given an observation x, we learn a parameter value ϕ∗ by maximizing the log-likelihood

logp(x;ϕ)

where
p(x;ϕ) =

∫
p(x|z;ϕ)p(z)dz

Unfortunately, computing this integral is usually intractable, making p(x;ϕ) practically
impossible to evaluate. Moreover, p(z|x;ϕ) is intractable too.
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VARIATIONAL INFERENCE

Since p(x;ϕ) cannot be computed, variational inference approximately maximizes the
log-likelihood by maximizing the evidence lower bound

ELBO(ϕ,q, x) = Ez∼q

[
log p(x, z;ϕ)q(z)

]
= logp(x;ϕ)− DKL (q(z)||p(z|x;ϕ)) ≤ logp(x;ϕ)

where q(z) is any distribution and the gap between the ELBO and the log-likelihood is smaller for
functions more similar to p(z|x;ϕ).
In order to maximize the ELBO, a sequence of two-phases steps is performed:
1. for a given ϕ, find the distribution q(z) which better approximates p(z|x;ϕ), thus making the
gap between the ELBO and the log-likelihood as small as possible

2. for the given q(z), maximize the ELBO wrt ϕ
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VARIATIONAL INFERENCE

We have to define a set of distributions Q within which we may search for the best q for any ϕ.

Usually, this is a parametric class of distributions Q(z;ψ), which makes the ELBO a function of the
parameters

ELBO(ϕ,ψ, x) = Ez∼Q(z;ψ)

[
log p(x, z;ϕ)Q(z;ψ)

]
= logp(x;ϕ)− DKL (Q(z;ψ)||p(z|x;ϕ)) ≤ logp(x;ϕ)

Maximizing the log-likelihood of x then results into finding values ϕ∗,ψ∗ which make

ELBO(ϕ∗,ψ∗, x) as large as possible, hence:
• Q(z;ψ∗) is as similar as possible to p(z|x;ϕ∗)

• p(x;ϕ∗) is as large as possible
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VARIATIONAL INFERENCE

Given a set X of observations, the ELBO is

ELBO(ϕ, 〈ψ1, . . . ,ψn〉,X) =

n∑
i=1

Ez∼Q(z;ψi)

[
log p(xi, z;ϕ)Q(z;ψi)

]
≤

n∑
i=1

logp(xi;ϕ)

The procedure above would result into:
1. for a given ϕ and for each xi, find the value ψi such that Q(z;ψi) better approximates
p(z|xi;ϕ), thus making the gap between the ELBO and the contribution of xi to the
log-likelihood as small as possible

2. for the given set of values ψ1, . . . ,ψn, maximize the ELBO(ϕ, 〈ψ1, . . . , vn〉,X) wrt ϕ
this then results into finding a different distribution Q(z;ψi) for each xi for each step, which is
costly for large datasets.
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AMORTIZED VARIATIONAL INFERENCE

Since the role of Q(z;ψi) is to provide a good (the best, ideally, within the class of distributions
considered) approximation of p(z|xi;ϕ), we may, in order to save computing time, define a
function gΨ such that ψi = gΨ(xi), thus making the ELBO defined as

ELBO(Φ,Ψ,X) =
n∑
i=1

Ez∼Q(z;gΨ(xi))

[
log P(xi; fΦ(z))p(z)

Q(z;gΨ(xi))

]

=
n∑
i=1

(
Ez∼Q(z;gΨ(xi)) [logP(xi; fΦ(z))]− DKL (Q(z;gΨ(xi))||p(z))

)
≤

n∑
i=1

logp(xi;ϕ)
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VARIATIONAL AUTOENCODER

In summary:
• In a variational autoencoder given an input x we do not want to map it into a latent vector

z = e(x;θ) but, instead, into a distribution p(z;ψ), parameterized by ψ = EΨ(x), on a
predefined latent space.

• At the same time, given a latent value z we do not want to map it into a vector x = d(z;θ) but,
instead, into a distribution p(x;ϕ), parameterized by ϕ = DΦ(z)

• A VAE, instead of learning the parameters of functions h() and g() mapping values into
values, learns the parameters of functions E and D mapping values into distributions

• This results into a probabilistic version of an autoencoder
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VARIATIONAL AUTOENCODER

An example:
• P is the set of gaussian distributions: EΦ(x) provides the parameters µ(x),Σ(x) of a
distribution N (z;µ(x),Σ(x)) on latent space

• Q is the set of categorical distributions: DΨ(z) provides the parameters π(z) of a categorical
distribution C(x;π(z)) on observed space

The ELBO results:

ELBO(Φ,Ψ,X) =
n∑
i=1

Ez∼N (z;µi,Σi)

[
log C(x;πi)

N (z;µi,Σi)

]

=
n∑
i=1

(
Ez∼N (z;µi,Σi) [log C(x;πi)]− Ez∼N (z;µi,Σi) [N (z;µi,Σi)]

)
where µi = µΨ(xi), Σi = ΣΨ(xi) and πi = π(z).
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VARIATIONAL AUTOENCODER

The ELBO can be evaluated by iterating on all xi and, at each iteration:
1. compute µi and Σi through the encoder
2. approximating the expectations, by means of a sequence of K samples of z from N (z;µi,Σi)

3. for each sampled z, compute π through the decoder
4. compute the expectations of N (z;µi,Σi) and C(x;πi)
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LOSS FUNCTION

The loss function, to be minimized is defined as the opposite of the ELBO, that is,

L = Lrec + LKL = − logp(x;Φ,Ψ) + DKL (Q(z;gΨ(x))||p(z|x;ϕ))

where Lrec = −
∑n

i=1 logp(xi;Φ,Ψ) is the reconstruction loss, related to the probability of
producing the original dataset X, and LKL =

∑n
i=1 DKL (Q(z;gΨ(xi))||p(z|xi;ϕ)) is the sum of the

differences between the exact posterior distribution p(z|xi;ϕ) and its approximation Q(z;gΨ(xi)).

As shown above,

L = −Ez∼Q(z;gΨ(x)) [logP(x; fΦ(z))] + DKL (Q(z;gΨ(x))||p(z))
which can be interpreted as the expected reconstruction provided by the model plus a
regularization term which penalizes approximations of the posterior distribution which are
different from the prior p(z)
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WHY LEARN DISTRIBUTIONS?

• Often, data is noisy, and a model of them, in the form distribution of a probability
distribution is more useful for a given application.

• Making inference may result easier if the relationship between x and z is complex and non
linear

• The VAE is a generative model. Given the observed data distribution p(x), it is possible to:
• sample x̂ from p(x)
• sample ẑ from p(z|x̂)
• sample x′ from p(x|̂z)

• This enables the generation of data that has similar statistics wrt the input
• In practice, a function g(z) is often used
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VARIATIONAL ENCODER AS NEURAL NETWORK
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GENERATIVE MODELS

Use of latent variables models (representations) to generate data which “looks like” the one
provided in datasets

Fake face/text/music generation

• GAN (Generative Adversarial Network): generator network + discriminator network
• generator trained to provide fake data which is accepted by discriminator
• discriminator trained to effectively discriminate real data (from dataset) from fakes

• Diffusion models
• Large language models
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