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CURSE OF DIMENSIONALITY

In general, many features: high-dimensional spaces.
• sparseness of data
• increase in the number of coefficients, for example for dimension D and order 3 of the
polynomial,

y(x,w) = w0 +

D∑
i=1

wixi +
D∑
i=1

D∑
j=1

wijxixj +
D∑
i=1

D∑
j=1

D∑
k=1

wijkxixjxk

number of coefficients is O(DM)
High dimensions lead to difficulties in machine learning algorithms (lower reliability or need of
large number of coefficients) this is denoted as curse of dimensionality
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DIMENSIONALITY REDUCTION

• for any given classifier, the training set size required to obtain a certain accuracy grows
exponentially wrt the number of features

• it is important to bound the number of features, identifying the less discriminant ones
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DIMENSIONALITY REDUCTION

• Feature selection: identify a subset of features which are still discriminant, or, in general, still
represent most dataset variance

• Feature extraction: identify a projection of the dataset onto a lower-dimensional space, in
such a way to still represent most dataset variance

• Linear projection: principal component analysis, probabilistic PCA, factor analysis
• Non linear projection: manifold learning, autoencoders
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SEARCHING HYPERPLANES FOR THE DATASET

• verifying whether training set elements lie on a hyperplane (a space of lower dimensionality),
apart from a limited variability (which could be seen as noise)

• principal component analysis looks for a d′-dimensional subspace (d′ < d) such that the
projection of elements onto such suspace is a “faithful” representation of the original dataset

• as “faithful” representation we mean that distances between elements and their projections
are small, even minimal
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PCA FOR d′ = 0

• Objective: represent all d-dimensional vectors x1, . . . , xn by means of a unique vector x0, in
the most faithful way, that is so that

J(x0) =
n∑
i=1

||x0 − xi||2

is minimum
• it is easy to show that

x0 = m =
1

n

n∑
i=1

xi
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PCA FOR d′ = 0
• In fact,

J(x0) =
n∑
i=1

||(x0 − m)− (xi − m)||2

=
n∑
i=1

||x0 − m||2 − 2
n∑
i=1

(x0 − m)T(xi − m) +
n∑
i=1

||xi − m||2

=

n∑
i=1

||x0 − m||2 − 2(x0 − m)T
n∑
i=1

(xi − m) +

n∑
i=1

||xi − m||2

=
n∑
i=1

||x0 − m||2 +
n∑
i=1

||xi − m||2

• since
n∑
i=1

(xi − m) =
n∑
i=1

xi − n · m = n · m − n · m = 0

• the second term is independent from x0, while the first one is equal to zero for x0 = m
Prof. Giorgio Gambosi Dimensionality reduction Slide 7 / 37



PCA FOR d′ = 1

• a single vector is too concise a representation of the dataset: anything related to data
variability gets lost

• a more interesting case is the one when vectors are projected onto a line passing through m
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PCA FOR d′ = 1

• let u1 be unit vector (||u1|| = 1) in the line direction: the line equation is then

x = αu1 + m

where α is the distance of x from m along the line
• let x̃i = αiu1 + m be the projection of xi (i = 1, . . . ,n) onto the line: given x1, . . . , xn, we wish
to find the set of projections minimizing the quadratic error
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PCA FOR d′ = 1

The quadratic error is defined as

J(α1, . . . , αn, u1) =

n∑
i=1

||x̃i − xi||2

=
n∑
i=1

||(m + αiu1)− xi||2

=
n∑
i=1

||αiu1 − (xi − m)||2

=
n∑
i=1

+α2
i ||u1||2 +

n∑
i=1

||xi − m||2 − 2

n∑
i=1

αiuT1(xi − m)

=

n∑
i=1

α2
i +

n∑
i=1

||xi − m||2 − 2

n∑
i=1

αiuT1(xi − m)

Prof. Giorgio Gambosi Dimensionality reduction Slide 10 / 37



PCA FOR d′ = 1

Its derivative wrt αk is
∂

∂αk
J(α1, . . . , αn, u1) = 2αk − 2uT1(xk − m)

which is zero when αk = uT1(xk − m) (the orthogonal projection of xk onto the line).

The second derivative turns out to be positive

∂

∂α2
k
J(α1, . . . , αn, u1) = 2

showing that what we have found is indeed a minimum.
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PCA FOR d′ = 1

To derive the best direction u1 of the line, we consider the covariance matrix of the dataset

S =
1

n

n∑
i=1

(xi − m)(xi − m)T

By plugging the values computed for αi into the definition of J(α1, . . . , αn, u1), we get

J(u1) =

n∑
i=1

α2
i +

n∑
i=1

||xi − m||2 − 2

n∑
i=1

α2
i

= −
n∑
i=1

[uT1(xi − m)]2 +

n∑
i=1

||xi − m||2

= −
n∑
i=1

uT1(xi − m)(xi − m)Tu1 +

n∑
i=1

||xi − m||2

= −nuT1Su1 +

n∑
i=1

||xi − m||2
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PCA FOR d′ = 1

• uT1(xi − m) is the projection of xi onto the line
• the product

uT1(xi − m)(xi − m)Tu1

is then the variance of the projection of xi wrt the mean m
• the sum

n∑
i=1

uT1(xi − m)(xi − m)Tu1 = nuT1Su1

is the overall variance of the projections of vectors xi wrt the mean m

Prof. Giorgio Gambosi Dimensionality reduction Slide 13 / 37



PCA FOR d′ = 1

Minimizing J(u1) is equivalent to maximizing uT1Su1. That is, J(u1) is minimum if u1 is the direction
which keeps the maximum amount of variance in the dataset

Hence, we wish to maximize uT1Su1 (wrt u1), with the constraint ||u1|| = 1.

By applying Lagrange multipliers this results equivalent to maximizing

u = uT1Su1 − λ1(uT1u1 − 1)

This can be done by setting the first derivative wrt u1:

∂u
∂u1

= 2Su1 − 2λ1u1

to 0, obtaining
Su1 = λ1u1
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PCA FOR d′ = 1

Note that:
• u is maximized if u1 is an eigenvector of S
• the overall variance of the projections is then equal to the corresponding eigenvalue

uT1Su1 = uT1λ1u1 = λ1uT1u1 = λ1

• the variance of the projections is then maximized (and the error minimized) if u1 is the
eigenvector of S corresponding to the maximum eigenvalue λ1
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PCA FOR d′ > 1

• The quadratic error is minimized by projecting vectors onto a hyperplane defined by the
directions associated to the d′ eigenvectors corresponding to the d′ largest eigenvalues of S

• If we assume data are modeled by a d-dimensional gaussian distribution with mean µ and
covariance matrix Σ, PCA returns a d′-dimensional subspace corresponding to the
hyperplane defined by the eigenvectors associated to the d′ largest eigenvalues of Σ

• The projections of vectors onto that hyperplane are distributed as a d′-dimensional
distribution which keeps the maximum possible amount of data variability
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AN EXAMPLE OF PCA

• Digit recognition (D = 28× 28 = 784)
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CHOOSING d′

Eigenvalue size distribution is usually characterized by a fast initial decrease followed by a small
decrease

This makes it possible to identify the number of eigenvalues to keep, and thus the dimensionality
of the projections.
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CHOOSING d′

Eigenvalues measure the amount of distribution variance kept in the projection.

Let us consider, for each k < d, the value

rk =
∑k

i=1 λ
2
i∑n

i=1 λ
2
i

which provides a measure of the variance fraction associated to the k largest eigenvalues.

When r1 < . . . < rd are known, a certain amount p of variance can be kept by setting

d′ = argmin
i∈{1,...,d}

ri > p
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PROBABILISTIC APPROACH TO PCA: IDEA

Introduce a latent variable model to relate a d-dimensional observation vector to a
corresponding d′-dimensional gaussian latent variable (with d′ < d)

x = Wz + µ+ ϵ

where
• z is a d′-dimensional gaussian latent variable (the “projection” of x on a lower-dimensional
subspace)

• W is a d× d′ matrix, relating the original space with the lower-dimensional subspace
• ϵ is a d-dimensional gaussian noise: noise covariance on different dimensions is assumed to
be 0. Noise variance is assumed equal on all dimensions: hence p(ϵ) = N (0, σ2I)

• µ is the d-dimensional vector of the means

ϵ and µ are assumed independent.
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GRAPHICAL MODEL

σ ϵi

xi ziµ

W

n

1. z ∈ IRd′ , x, ϵ ∈ IRd,d′ < d
2. p(z) = N (0, I)
3. p(ϵ) = N (0, σ2I), (isotropic gaussian noise)
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GENERATIVE PROCESS
This can be interpreted in terms of a generative process
1. sample the latent variable z ∈ IRd′ from

p(z) = 1

(2π)d′/2
e−

||z||2
2

2. linearly project onto IRd

y = Wz + µ

3. sample the noise component ϵ ∈ IRd from

p(ϵ) = 1

(2π)d/2
e−

||ϵ||2

2σ2

4. add the noise component ϵ
x = y + ϵ

This results into p(x|z) = N (Wz + µ, σ2I)
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GENERATIVE PROCESS

z

p(z)

ẑ

x2

x1

µ

p(x|ẑ)

}

ẑ|w|

w
x2

x1

µ

p(x)
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LATENT VARIABLE MODEL

The joint distribution is
p
([

z
x

])
= N (µzx,Σ)

By definition,
µzx =

[
µz
µx

]
• Since p(z) = N (0, I), then µz = 0.
• Since p(x) = Wz + µ+ ϵ, then

µx = E[x]= E[Wz + µ+ ϵ] = WE[z] + µ+ E[ϵ] = µ

Hence
µzx =

[
0
µ

]

Prof. Giorgio Gambosi Dimensionality reduction Slide 24 / 37



LATENT VARIABLE MODEL

For what concerns the distribution covariance

Σ =

[
Σzz Σzx
Σzx Σxx

]
where

Σzz = E[zzT] = I
Σzx = WT

Σxx = WWT + σ2I
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LATENT VARIABLE MODEL

As a consequence, we get, for the joint distribution,

µzx =

[
0
µ

]
Σ =

[
I WT

W WWT + σ2I

]
The marginal distribution of x is then p(x) = N (µ,WWT + σ2I)

The conditional distribution of z given x is p(z|x) = N (µz|x,Σz|x) with

µz|x = WT(WWT + σ2I)−1(x − µ)

Σz|x = I − WT(WWT + σ2I)−1W = σ2(σ2I + WTW)−1
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MAXIMUM LIKELIHOOD FOR PCA

Setting C = WWT + σ2I, the log-likelihood of the dataset in the model is

logp(X|W,µ, σ2) =
n∑
i=1

logp(xi|W,µ, σ2)

= −nd
2

log(2π)− n
2

log |C| − 1

2

n∑
i=1

(xn − µ)C−1(xi − µ)T

Setting the derivative wrt µ to zero results into

µ = x =
1

n

n∑
i=1

xi
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MAXIMUM LIKELIHOOD FOR PCA

Maximization wrt W and σ2 is more complex: however, a closed form solution exists:

W = Ud′(Ld′ − σ2I)1/2

where
• Ud′ is the d× d′ matrix whose columns are the eigenvectors corresponding to the d′ largest
eigenvalues

• Ld′ is the d′ × d′ diagonal matrix of the largest eigenvalues

The columns of W are the principal components eigenvectors scaled by the variance λi − σ2
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MAXIMUM LIKELIHOOD FOR PCA

For what concerns maximization wrt σ2, it results

σ2 =
1

d− d′

d∑
i=d′+1

λi

since eigenvalues provide measures of the dataset variance along the corresponding eigenvector
direction, this corresponds to the average variance along the discarded directions.
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MAPPING POINTS TO SUBSPACE

The conditional distribution

p(z|x) = N (WT(WWT + σ2I)−1(x − µ), σ2(σ2I + WTW)−1)

can be applied.

In particular, the conditional expectation

E[z|x] = WT(WWT + σ2I)−1(x − µ)

can be assumed as the latent space point corresponding to x.
The projection onto the d′-dimensional subspace can then be performed as

x′ = WE[z|x] + µ = WWT(WWT + σ2I)−1(x − µ) + µ

Even if the log-likelihood has a closed form maximization, applying EM can sometimes be useful.
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FACTOR ANALYSIS

Noise components still gaussian and independent, but with different variance.

Ψ ϵi

xi ziµ

W

n

1. z ∈ IRd, x, ϵ ∈ IRD,d << D
2. p(z) = N (0, I)
3. p(ϵ) = N (0,Ψ),Ψ diagonal (independent gaussian noise)
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FACTOR ANALYSIS

Model distribution are modified accordingly.

Joint distribution
p
([

z
x

])
= N

([
0
W

]
,

[
I WT

Λ WWT +Ψ

])

Marginal distribution
p(x) = N (µ,WWT +Ψ)

Conditional distribution

The conditional distribution of z given x is now p(z|x) = N (µz|x,Σz|x) with

µz|x = WT(WWT +Ψ)−1(x − µ)

Σz|x = I − WT(WWT +Ψ)−1W
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MAXIMUM LIKELIHOOD FOR FA

The log-likelihood of the dataset in the model is now

logp(X|W,µ,Ψ) =
n∑
i=1

logp(xi|W,µ,Ψ)

= −nd
2

log(2π)− n
2

log |WWT +Ψ| − 1

2

n∑
i=1

(xn − µ)(WWT +Ψ)−1(xi − µ)T

Setting the derivative wrt µ to zero results gain into

µ = x =
1

n

n∑
i=1

xi

Estimating parameters through log-likelihood maximization does not provide a closed form
solution for W andΨ. Iterative techniques such as EM must be applied.
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