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PARTITIONAL CLUSTERING

Problem

Given a dataset X = (xi,...,x5), Wwithx; e R%(i=1,...,n).

We wish to derive a set of clusters (i.e. a partition of X into subsets of “near” elements). Clusters
are represented by their prototypes (my, ..., mg), with m; € RYj=1,...,k

Rappresentation of a clustering

1. Cluster prototypes (my, ..., mg), withm; € RY(j = 1,...,R)

2. Element assignment to clusters: for each x;, k binary flags rj € {0,1},j =1,..., k. Ifx;is
assigned the t-th cluster, thenry = 1 and r; = 0 forj # t
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CLUSTERING TYPES

Partitional clustering

Given a set of items (points) X = {xi,...,xn}, we wish to partition X by assigning each element to
one out of k clusters Cy, ..., Cx in such a way to maximize (or minimize) a given cost J. The number
k of clusters could be given or should have to be computed.

Hierarchical clustering

Given a set of items (points) X = {x1,...,x,}, we wish to derive a set of nested partitions of X,
from the partition composed by all singletons (one cluster for each node) to the one composed
by a single item (the whole set).
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K-MEANS CLUSTERING

Dataset X = (xi,...,xn), x; € IR%: we wish to derive k clusters with prototypes m, ..., mg

Assignment of elements to cluster: for each x;, k binary flags r; (j = 1,...,k)
e if x; is assigned to cluster s, then ri; = 1,and rj = 0 for j # k

Cost: sum of the distances of each point from the prototype of the corresponding cluster
n kR
2
JRM) =D " ryj|[xi — my|

i=1 j=1

Objective: finding rjand m; (i=1,...,n,j=1,..., k) to minimize J(R, M)
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ALGORITHM

1. Given a set of prototypes m;, minimize wrt r; (assigning elements to clusters).
For each x;, minimize 37 r; | |x; — my| 2.
The minimum is obtained for ry, = 1 (and r; = 0 for j # k), where ||x; — m||? is the minimum
distance. That is, each point is assigned to the cluster of the nearest prototype.

2. Given a set of assignments rj;, minimize wrt m; (defining new cluster prototypes)
Foreachmy, J = Y20, S°F | ry||x — my||* is a quadratic function of m,. By setting its
derivative to zero, the values of m; providing its minimum are obtained

Zi 1 lipXj
ZI 1 rh

That is, the new prototype is the mean of the elements assigned to the cluster

Trnk—QZr,k —mk —0:>mk

At each step, / does not increase. There is a convergence to a local minimum.
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EXAMPLE OF APPLICATION OF K-MEANS
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EXAMPLE OF APPLICATION OF K-MEANS
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EXAMPLE OF APPLICATION OF K-MEANS
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EXAMPLE OF APPLICATION OF K-MEANS

Objective
25
1
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HOw TO CHOOSE K

Cross validation

e Apply cross validation for different values of K, measuring the quality of the clustering
obtained
e How to measure the quality of a clustering?

1. mean distance of elements from the prototypes of their clusters
2. log-likelihood of the elements wrt the resulting mixture model

Note

Measures improves as K increases (overfitting). A value such that further increases provide
limited improvement should be found

N
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HIERARCHICAL CLUSTERING

Aim
Derivation of a binary tree. Node: cluster; arc: inclusion.

The tree specifies a set of pairwise merge of clusters.
e Aggregation, starting from n singleton clusters
e Separation, starting from a single cluster of size n

Requirements

k-means requires:

® a number K of clusters

e an initial assignment

e a distance function between elements
Hierarchical clustering requires:

e asimilarity function between clusters
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HIERARCHICAL CLUSTERING BY AGGREGATION

e define n clusters (singleton)
® repeat

® compute the matrix of distances between clusters
® merge the pair of clusters which are “nearest”

e until a single cluster has remained

Prof. Giorgio Gambosi Clustering



HIERARCHICAL CLUSTERING BY AGGREGATION

e Each tree prefix is a partition of elements

e The algorithm provides a partial order of clusterings

e The best clustering has to be found

e Monotonicity: similarity between paired clusters decreases

Dendrogram

® Tree of cluster pairings
e The height of the nodes is inversely proportional to the similarity of the paired clusters
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DENDROGRAM

Sir Ronald Fisher's Iris Data Set
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CLUSTER SIMILARITY

Many measures. Most frequent ones:
e Similarity between nearest nodes (Single linkage)

dSL(C1,C2) = min d(X,’,Xj)

x1€C1,x2€C2
e Similarity between farthest nodes (Complete linkage)
dCL(Cl, CQ) = max d(X,’, X}')

x1 €Cy,x2E€Co

e Mean similarity (Group average)

1
dea(C1, Co) = m Z Z d(x,-,X,')

x1 €C1 x0€Co

Different measures provide different dendrograms
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DENDROGRAM WITH COMPLETE LINKAGE

Sir Ronald Fisher's Iris Data Set

Distance
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MIXTURES OF DISTRIBUTIONS

Linear combinations of probability distributions

e Same type of distributions q(x|6)
e Differ by parameter values

p(x|m, ) Zwkq (x]6k)

where
7T=(7T1,...,7TK) 62(91,...,0;()

Mixing coefficients
K
0<m<1 k=1,....K > me=1
k=1
Terms 7, have the properties of probability values
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MIXTURES OF DISTRIBUTIONS

Provide extensive capabilities to model complex distributions. For example, almost all continuous
distributions can be modeled by the linear combination of a suitable number of gaussians.
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MIXTURE PARAMETERS ESTIMATION

Given a dataset X = (x1,...,xn), the parameters =, 8 of a mixture can be estimated by maximum

likelihood.
L(8,7|X) = p(X|0, ) Hp (x;|0, ) Hqu x|0k)

i=1 k=1

or maximum log-likelihood

n K
[(6,m|X) =logp(X]|0, ) Zlogp xi|0, ) ZIOg (Z wkq(x,-|€k)>
i=1 k=1

i=1

Maximization is however constrained by the conditions 0 < 7; < 1 for all i and Zf;l m = 1.

By applying the lagrangian multipliers method, we will maximize

K
L(0,7,)) =16, 7|X) + \1- ) m)
i=1
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MIXTURE PARAMETERS ESTIMATION

Let us first consider the derivatives with respect to the weights 7, which we set to 0

oL, 7|X)  0l(0, w|X)

871'1' o 871'1' —A=0

This is equivalent to

0, 7|X) ~ 0 :
A= % 07_ |:; l()f-, <Z /Akq Xlgl?>>:| - ; (DLTI'I |:1Og (; 7qubq9k)>:|
! i) i
_ Z X ‘ _ Z /)TX _ Z'}/} X,
J

i=1 Zfe 17kq (xi[Or) i=1 i=1

where,
7.q (x| 0k)

W) = S 16
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MIXTURE PARAMETERS ESTIMATION

By setting the derivative wrt \ to 0

oL, xX) 9
N an

(8, 7|X) + A\(1 — Zm) =0

i=1

we obtain
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MIXTURE PARAMETERS ESTIMATION
As a consequence, since, as shown above,

1 n
= > ri(xi)
i=1

it results

j=1
which implies
! L 7q(xi|0;) !
IS SR ZZ%*ZH"
j=1 i=1 i=1 j=1 i=1 j=1 Zk erq(xt‘ k) i—1
and, finally,
1 n
= > w(xi)
i=1
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MIXTURE PARAMETERS ESTIMATION

For what concerns derivatives (or gradients) wrt distribution parameters 8, it results

n

% 06; [Zlog <Zmeq (xi|0k) >] d(i) {1‘) <Z7‘_’?q<x"9k)>}

i=1 k=1

_ Z iq Xl|6 0 qu(xf‘ej)
“ S ko1 7RG (xi|0r) 00;
(91 0;
—Z osait)
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MIXTURE PARAMETERS ESTIMATION

Log likelihood maximization is intractable analytically: its solution cannot be given in closed
form.

e 7 and 6 can be derived from ~,(x;)
® Also, v(x;) can be derived from = e 6

Iterative techniques

e Given an estimation for 7 e 6...

e derive an estimation for ~,(x;), from which ...

e derive a new estimation for = e 0, from which ...
e derive a new estimation for (x;) ...
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MIXTURES AS GENERATIVE PROCESSES

Graphical model representation of a mixture of distributions.

—>

@
@ |-®
n

® Terms z; are latent random variable with domainz € {1,...,K}
e While x; is observed, the value of z; cannot be observed
® z; denotes the component distribution q(x|0) responsible for the generation of x;
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MIXTURES AS GENERATIVE PROCESSES

Generation process

1. Starting from the distribution 7y, ..., mk, the component distribution to apply to sample the
value of x; is sampled: its index is given by z;. Hence z; is dependent from =

2. Let z; = k: then, x; is sampled from distribution q(x|6). That is, x; is dependent from both z;
and 6 (through 6y,)
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MIXTURES AS GENERATIVE PROCESSES

Example of generation of dataset from mixture of 3 gaussians
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MIXTURES AS GENERATIVE PROCESSES

Distributions with latent variables

p(x|z=R,0,7) = p(x|z=R,0) = q(x|6k)

Marginalizing wrt z,

I

=

p(x|0,m) = p(x,z=k|0,7)=> p(x|z=k,m 0)p(z=k|O,)
k=1

M~ 1M

K
p(x|z =R,0)p(z = klw) = q(x|6x)p(z = k)
k=1

>

=il

Since, by definition,
p(x|6, ) Zﬁkq xi|0r)

it results
7 = p(z = ki)
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MIXTURES AS GENERATIVE PROCESSES

Responsibilities

An interpretation for ¢ (x) can be derived as follows

o ()

W) = S 16,
__pe=hpelz=k)
> pa=jpee=p "¢ "N

Mixing coefficients and responsibilities

e A mixing coefficient 7, = p(z = R) can be seen as the prior (wrt to the observation of the

point) probability that the next point is generated by sampling the k-th component
distribution

e Aresponsibility vx(x) = p(z = R|x) can be seen as the posterior (wrt to the observation of the
point) probability that a point has been generated by sampling the k-th component
distribution
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MIXTURES AS GENERATIVE PROCESSES

In the case, of mixtures of gaussian distribution, we have q(x|6x) = N (x|pr, Zk)-
As a consequence,
e N (%] e, B)

S MmN (x|, )

Te(x) =

and the likelihood is maximized for
1 n
n Z’Yj(xi)
=1

Z fﬂogN (xil 1> )

26, =0
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MAXIMUM LIKELIHOOD

Data set
® Let X = (x1,...,%xn) be the set of values of observed variables and let Z = (zi,...,z,) be the
set of values of the latent variables. Then (X, Z) is the complete dataset: it includes the
values of all variables in the model
e X isthe observed dataset (incomplete). It only includes “real” data, that is observed data.

Indeed, Z is unknown. If values have been assigned to model parameters, the only possible
knowledge about Z is given by the posterior distribution p(Z|X, 8, 7).

Prof. Giorgio Gambosi Clustering Slide 31/ 39



INFERRING PARAMETERS FOR GAUSSIAN MIXTURES

e |f we assume that the complete dataset (X, Z) is known (that is the observed points together
with their corresponding components) a maximum likelihood estimation of 7 and 6 would be
easy. In particular,

e For the mixing coefficients r, it would result, as usual

Nk
Th = —
k n

where ny, is the number of elements of the set C, such thatz =k
® For component parameters 0, = (1, 3¢) the usual estimations for gaussians would provide

1
I"'k:r_TkZX

x€Cy

1
= " > (%= pe)(x — )
x€Cp
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LOG LIKELIHOOD OF COMPLETE DATASET

The above results derive from the maximimization, wrt my, pr, 3k, (R =1,...,K) of the log
likelihood

n K
(2, p, w|X,2) = log p(X, 2|, p, w) = log [ | [ ] w4V (xil e, S)

i=1 k=1

n K
=3 Cir(logm + log N (i 1k, Tie))

i=1 k=1

where, (i, is the k-component of the 1-to-K coding of z;, that is, (i, = 1 iff z; = k, and 0 otherwise
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DEALING WITH LATENT VARIABLES

Unfortunately, since Z is unknown, the log-likelihood of the complete dataset cannot be defined
(the sets C, are not known).

Our approach will be to consider for maximization, instead of the log-likelihood where each z; is
specified,
e jts expectation wrt to the conditional distribution p(Z|X), that is

n K
Epz (13, 1, 7[X,2)] = S 3" p(z; = Rixi)(log m, + log N (xiljak, i)
i=1 k=1

n K
=3 > e(xi)(log mk + log N (x| ik, )

i=1 k=1

Observe that this expectation can be derived if p(Z|X) (that is the set of all values ~(x;)) is known.
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MAXIMIZATION OF EXPECTED LOG-LIKELIHOOD

The maximization of E,zx) [[(2, p, 7| X, Z)] wrt to m, fir, 3k, results easily into

1 n
TR = Hzl’yk(xj)
i=

1 n
Se= g D i) (xi = ) (xi — pae)”
i=1

this is named M-step (from “Maximization”)
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A NEW EXPECTATION

The computed values for the parameters result into new, different values for v (x;) = p(z; = R|x;),
and a different expectation Epzix) [I(3, p, |X, Z)].
This is named E-step (from “Expectation”)
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ML AND MIXTURES OF GAUSSIANS: ITERATIVE APPROACH

1. Assign an initial estimate to p;, %, 7j,j = 1,...,K

2. Repeat
2.1 Compute
K
1 .
(X)) = ;WJN(XIWJH %)) with Vi = meN (Xl %))
! k=1
2.2 Compute
nl- n
7Tj = F with n}- = Z'y,(x,)
i=1
2.3 Compute
1 n
= D X
Ji=1
2.4 Compute

1 n
5= n*} D 00 6 — 1) (6 — )"
i=1

3. until some convergence property is verified
The convergence test may refer to the the increase of log-likelihood in the last iteration
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EXPECTATION MAXIMIZATION ALGORITHM

This algorithm is indeed the application of a general schema named Expectation-Maximization
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