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PARTITIONAL CLUSTERING

Problem

Given a dataset X = (x1, . . . , xn), with xi ∈ IRd(i = 1, . . . ,n).

We wish to derive a set of clusters (i.e. a partition of X into subsets of “near” elements). Clusters
are represented by their prototypes (m1, . . . ,mk), with mj ∈ IRd, j = 1, . . . , k.

Rappresentation of a clustering

1. Cluster prototypes (m1, . . . ,mk), with mj ∈ IRd(j = 1, . . . , k)
2. Element assignment to clusters: for each xi, k binary flags rij ∈ {0, 1}, j = 1, . . . , k. If xi is
assigned the t-th cluster, then rit = 1 and rij = 0 for j ̸= t
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CLUSTERING TYPES

Partitional clustering

Given a set of items (points) X = {x1, . . . , xn}, we wish to partition X by assigning each element to
one out of k clusters C1, . . . , Ck in such a way to maximize (or minimize) a given cost J. The number
k of clusters could be given or should have to be computed.

Hierarchical clustering

Given a set of items (points) X = {x1, . . . , xn}, we wish to derive a set of nested partitions of X,
from the partition composed by all singletons (one cluster for each node) to the one composed
by a single item (the whole set).
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K-MEANS CLUSTERING

Dataset X = (x1, . . . , xn), xi ∈ IRd: we wish to derive k clusters with prototypes m1, . . . ,mk

Assignment of elements to cluster: for each xi, k binary flags rij (j = 1, . . . , k)
• if xi is assigned to cluster s, then ris = 1, and rij = 0 for j ̸= k

Cost: sum of the distances of each point from the prototype of the corresponding cluster

J(R,M) =
n∑
i=1

k∑
j=1

rij
∣∣∣∣xi − mj

∣∣∣∣2

Objective: finding rij and mj (i = 1, . . . ,n, j = 1, . . . , k) to minimize J(R,M)
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ALGORITHM

1. Given a set of prototypes mij, minimize wrt rij (assigning elements to clusters).
For each xi, minimize

∑k
j=1 rij

∣∣∣∣xi − mj
∣∣∣∣2.

The minimum is obtained for rik = 1 (and rij = 0 for j ̸= k), where ||xi − mk||2 is the minimum
distance. That is, each point is assigned to the cluster of the nearest prototype.

2. Given a set of assignments rij, minimize wrt mij (defining new cluster prototypes)
For each mk, J =

∑n
i=1

∑k
j=1 rij

∣∣∣∣xi − mj
∣∣∣∣2 is a quadratic function of mk. By setting its

derivative to zero, the values of mk providing its minimum are obtained

∂J
∂mk

= 2

n∑
i=1

rik(xi − mk) = 0 =⇒ mk =

∑n
i=1 rikxi∑n
i=1 rik

That is, the new prototype is the mean of the elements assigned to the cluster
At each step, J does not increase. There is a convergence to a local minimum.
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EXAMPLE OF APPLICATION OF K-MEANS
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EXAMPLE OF APPLICATION OF K-MEANS
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EXAMPLE OF APPLICATION OF K-MEANS
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EXAMPLE OF APPLICATION OF K-MEANS

Prof. Giorgio Gambosi Clustering Slide 9 / 39



HOW TO CHOOSE K
Cross validation
• Apply cross validation for different values of K, measuring the quality of the clustering
obtained

• How to measure the quality of a clustering?
1. mean distance of elements from the prototypes of their clusters
2. log-likelihood of the elements wrt the resulting mixture model

Note

Measures improves as K increases (overfitting). A value such that further increases provide
limited improvement should be found

#cluster

m
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a
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HIERARCHICAL CLUSTERING

Aim

Derivation of a binary tree. Node: cluster; arc: inclusion.

The tree specifies a set of pairwise merge of clusters.
• Aggregation, starting from n singleton clusters
• Separation, starting from a single cluster of size n

Requirements

k-means requires:
• a number K of clusters
• an initial assignment
• a distance function between elements

Hierarchical clustering requires:
• a similarity function between clusters
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HIERARCHICAL CLUSTERING BY AGGREGATION

Algorithm
• define n clusters (singleton)
• repeat

• compute the matrix of distances between clusters
• merge the pair of clusters which are “nearest”

• until a single cluster has remained
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HIERARCHICAL CLUSTERING BY AGGREGATION

Properties
• Each tree prefix is a partition of elements
• The algorithm provides a partial order of clusterings
• The best clustering has to be found
• Monotonicity: similarity between paired clusters decreases

Dendrogram
• Tree of cluster pairings
• The height of the nodes is inversely proportional to the similarity of the paired clusters
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DENDROGRAM
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CLUSTER SIMILARITY

Many measures. Most frequent ones:
• Similarity between nearest nodes (Single linkage)

dSL(C1, C2) = min
x1∈C1,x2∈C2

d(xi, xj)

• Similarity between farthest nodes (Complete linkage)

dCL(C1, C2) = max
x1∈C1,x2∈C2

d(xi, xj)

• Mean similarity (Group average)

dGA(C1, C2) =
1

|C1| · |C2|
∑

x1∈C1

∑
x2∈C2

d(xi, xj)

Different measures provide different dendrograms
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DENDROGRAM WITH COMPLETE LINKAGE
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MIXTURES OF DISTRIBUTIONS

Linear combinations of probability distributions
• Same type of distributions q(x|θ)
• Differ by parameter values

p(x|π,θ) =
K∑

k=1

πkq(x|θk)

where
π = (π1, . . . , πK) θ = (θ1, . . . , θK)

Mixing coefficients

0 ≤ πk ≤ 1 k = 1, . . . ,K
K∑

k=1

πk = 1

Terms πk have the properties of probability values
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MIXTURES OF DISTRIBUTIONS
Provide extensive capabilities to model complex distributions. For example, almost all continuous
distributions can be modeled by the linear combination of a suitable number of gaussians.
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MIXTURE PARAMETERS ESTIMATION
Given a dataset X = (x1, . . . , xn), the parameters π,θ of a mixture can be estimated by maximum
likelihood.

L(θ,π|X) = p(X|θ,π) =
n∏
i=1

p(xi|θ,π) =
n∏
i=1

K∑
k=1

πkq(x|θk)

or maximum log-likelihood

l(θ,π|X) = logp(X|θ,π) =
n∑
i=1

logp(xi|θ,π) =
n∑
i=1

log
( K∑
k=1

πkq(xi|θk)
)

Maximization is however constrained by the conditions 0 ≤ πi ≤ 1 for all i and
∑K

i=1 πi = 1.

By applying the lagrangian multipliers method, we will maximize

L(θ,π, λ) = l(θ,π|X) + λ(1−
K∑
i=1

πi)
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MIXTURE PARAMETERS ESTIMATION

Let us first consider the derivatives with respect to the weights π, which we set to 0

∂L(θ,π|X)

∂πj
=

∂l(θ,π|X)

∂πj
− λ = 0

This is equivalent to

λ =
∂l(θ,π|X)

∂πj
=

∂

∂πj

[ n∑
i=1

log
( K∑
k=1

πkq(xi|θk)
)]

=
n∑
i=1

∂

∂πj

[
log
( K∑
k=1

πkq(xi|θk)
)]

=

n∑
i=1

q(xi|θj)∑K
k=1 πkq(xi|θk)

=
n∑
i=1

γj(xi)
πj

=
1

πj

n∑
i=1

γj(xi)

where,
γk(x) =

πkq(x|θk)∑K
j=1 πjq(x|θj)
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MIXTURE PARAMETERS ESTIMATION

By setting the derivative wrt λ to 0

∂L(θ,π|X)

∂λ
=

∂

∂λ

(
l(θ,π|X) + λ(1−

K∑
i=1

πi)

)
= 0

we obtain
K∑
i=1

πi = 1
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MIXTURE PARAMETERS ESTIMATION
As a consequence, since, as shown above,

πj =
1

λ

n∑
i=1

γj(xi)

it results
K∑
j=1

πj =
1

λ

K∑
j=1

n∑
i=1

γj(xi) = 1

which implies

λ =

K∑
j=1

n∑
i=1

γj(xi) =
n∑
i=1

K∑
j=1

γj(xi) =
n∑
i=1

K∑
j=1

πjq(xi|θj)∑K
k=1 πkq(xi|θk)

=

n∑
i=1

1 =n

and, finally,

πk =
1

n

n∑
i=1

γk(xi)
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MIXTURE PARAMETERS ESTIMATION

For what concerns derivatives (or gradients) wrt distribution parameters θ, it results

∂L(θ,π|X)

∂θj
=

∂

∂θj

[ n∑
i=1

log
( K∑
k=1

πkq(xi|θk)
)]

=
n∑
i=1

∂

∂θj

[
log
( K∑
k=1

πkq(xi|θk)
)]

=

n∑
i=1

πjq(xi|θj)∑K
k=1 πkq(xi|θk)

∂ logq(xi|θj)
∂θj

=

n∑
i=1

γj(xi)
∂ logq(xi|θj)

∂θj
= 0
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MIXTURE PARAMETERS ESTIMATION

Log likelihood maximization is intractable analytically: its solution cannot be given in closed
form.
• π and θ can be derived from γk(xi)
• Also, γk(xi) can be derived from π e θ

Iterative techniques
• Given an estimation for π e θ...
• derive an estimation for γk(xi), from which ...
• derive a new estimation for π e θ, from which ...
• derive a new estimation for γk(xi) ...
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MIXTURES AS GENERATIVE PROCESSES

Graphical model representation of a mixture of distributions.

π zi

xiθ

n

Latent variables
• Terms zi are latent random variable with domain z ∈ {1, . . . ,K}
• While xi is observed, the value of zi cannot be observed
• zi denotes the component distribution q(x|θ) responsible for the generation of xi
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MIXTURES AS GENERATIVE PROCESSES

Generation process

1. Starting from the distribution π1, . . . , πK, the component distribution to apply to sample the
value of xi is sampled: its index is given by zi. Hence zi is dependent from π

2. Let zi = k: then, xi is sampled from distribution q(x|θk). That is, xi is dependent from both zi
and θ (through θk)
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MIXTURES AS GENERATIVE PROCESSES

Example of generation of dataset from mixture of 3 gaussians
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MIXTURES AS GENERATIVE PROCESSES
Distributions with latent variables

p(x|z = k,θ,π) = p(x|z = k,θ) = q(x|θk)

Marginalizing wrt z,

p(x|θ,π) =
K∑

k=1

p(x, z = k|θ,π) =
K∑

k=1

p(x|z = k,π,θ)p(z = k|θ,π)

=

K∑
k=1

p(x|z = k,θ)p(z = k|π) =
K∑

k=1

q(x|θk)p(z = k|π)

Since, by definition,

p(x|θ,π) =
K∑

k=1

πkq(xi|θk)

it results
πk = p(z = k|π)
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MIXTURES AS GENERATIVE PROCESSES
Responsibilities

An interpretation for γk(x) can be derived as follows

γk(x) =
πkq(x|θk)∑K
j=1 πjq(x|θj)

=
p(z = k)p(x|z = k)∑K
j=1 p(z = j)p(x|z = j)

= p(z = k|x)

Mixing coefficients and responsibilities
• A mixing coefficient πk = p(z = k) can be seen as the prior (wrt to the observation of the
point) probability that the next point is generated by sampling the k-th component
distribution

• A responsibility γk(x) = p(z = k|x) can be seen as the posterior (wrt to the observation of the
point) probability that a point has been generated by sampling the k-th component
distribution
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MIXTURES AS GENERATIVE PROCESSES

In the case, of mixtures of gaussian distribution, we have q(x|θk) = N (x|µk,Σk).
As a consequence,

γk(x) =
πkN (x|µk,Σk)∑K
j=1 πjN (x|µj,Σj)

and the likelihood is maximized for

πj =
1

n

n∑
i=1

γj(xi)

n∑
i=1

γj(xi)
∂ logN (xi|µj,Σj)

∂θj
= 0
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MAXIMUM LIKELIHOOD

Data set
• Let X = (x1, . . . , xn) be the set of values of observed variables and let Z = (z1, . . . , zn) be the
set of values of the latent variables. Then (X, Z) is the complete dataset: it includes the
values of all variables in the model

• X is the observed dataset (incomplete). It only includes “real” data, that is observed data.
Indeed, Z is unknown. If values have been assigned to model parameters, the only possible
knowledge about Z is given by the posterior distribution p(Z|X,θ,π).
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INFERRING PARAMETERS FOR GAUSSIAN MIXTURES

• If we assume that the complete dataset (X, Z) is known (that is the observed points together
with their corresponding components) a maximum likelihood estimation of π and θ would be
easy. In particular,

• For the mixing coefficients πk it would result, as usual

πk =
nk
n

where nk is the number of elements of the set Ck such that z = k
• For component parameters θk = (µk,Σk) the usual estimations for gaussians would provide

µk =
1

nk
∑
x∈Ck

x

Σk =
1

nk
∑
x∈Ck

(x − µk)(x − µk)
T
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LOG LIKELIHOOD OF COMPLETE DATASET

The above results derive from the maximimization, wrt πk, µk,Σk, (k = 1, . . . ,K) of the log
likelihood

l(Σ,µ,π|X, Z) = logp(X, Z|Σ,µ,π) = log
n∏
i=1

K∏
k=1

π
ζik
k N (xi|µk,Σk)

ζik

=
n∑
i=1

K∑
k=1

ζik(logπk + logN (xi|µk,Σk))

where, ζik is the k-component of the 1-to-K coding of zi, that is, ζik = 1 iff zi = k, and 0 otherwise
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DEALING WITH LATENT VARIABLES

Unfortunately, since Z is unknown, the log-likelihood of the complete dataset cannot be defined
(the sets Ck are not known).

Our approach will be to consider for maximization, instead of the log-likelihood where each zi is
specified,
• its expectation wrt to the conditional distribution p(Z|X), that is

Ep(Z|X)[l(Σ,µ,π|X, Z)] =
n∑
i=1

K∑
k=1

p(zi = k|xi)(logπk + logN (xi|µk,Σk))

=
n∑
i=1

K∑
k=1

γk(xi)(logπk + logN (xi|µk,Σk))

Observe that this expectation can be derived if p(Z|X) (that is the set of all values γk(xi)) is known.
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MAXIMIZATION OF EXPECTED LOG-LIKELIHOOD

The maximization of Ep(Z|X)[l(Σ,µ,π|X, Z)] wrt to πk, µk,Σk results easily into

πk =
1

n

n∑
i=1

γk(xj)

µk =
1

nk

n∑
i=1

γk(xi)xi

Σk =
1

nk

n∑
i=1

γj(xi)(xi − µk)(xi − µk)
T

this is named M-step (from “Maximization”)
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A NEW EXPECTATION

The computed values for the parameters result into new, different values for γk(xi) = p(zi = k|xi),
and a different expectation Ep(Z|X)[l(Σ,µ,π|X, Z)].
This is named E-step (from “Expectation”)
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ML AND MIXTURES OF GAUSSIANS: ITERATIVE APPROACH
1. Assign an initial estimate to µj,Σj, πj, j = 1, . . . ,K
2. Repeat

2.1 Compute

γj(xi) =
1

γi
πjN (xi|µj,Σj) with γi =

K∑
k=1

πkN (xi|µj,Σj)

2.2 Compute

πj =
nj
n

with nj =
n∑
i=1

γj(xi)

2.3 Compute

µj =
1

nj

n∑
i=1

γj(xi)xi

2.4 Compute

Σj =
1

nj

n∑
i=1

γj(xi)(xi − µj)(xi − µj)
T

3. until some convergence property is verified
The convergence test may refer to the the increase of log-likelihood in the last iteration
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EXPECTATION MAXIMIZATION ALGORITHM

This algorithm is indeed the application of a general schema named Expectation-Maximization
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