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ENSEMBLE METHODS

Improve performance by combining multiple models, in some way, instead of using a single
model.
• train a committee of L different models and make predictions by averaging the predictions
made by each model on dataset samplings (bagging)

• train different models in sequence: the error function used to train a model depend on the
performance of previous models (boosting)
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BAGGING

• Classifiers (especially some of them, such as decision trees) may have low performances due
to their high variance: their behavior may largely differ in presence of slightly different
training sets (or even of the same training set).

• For example, in trees, the separations made by splits are enforced at all lower levels: hence,
if the data is perturbed slightly, the new tree can have a considerably different sequence of
splits, leading to a different classification rule
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BOOTSTRAP

• The bootstrap is a fundamental resampling tool in statistics. The basic underlying idea is to
estimate the true distribution of data F by the so-called empirical distribution F̂

• Given the training data (xi, ti), i = 1, . . . ,n, the empirical distribution function F̂ is defined as

p̂(x, t) =
{

1
n if ∃i : (x, t) = (xi, ti)
0 otherwise

• This is just a discrete probability distribution, putting equal weight 1
n on each of the

observed training points
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BOOTSTRAP

• A bootstrap sample of size m from the training data is

(x∗
i , t∗i ) i = 1, . . . ,m

where each (x∗
i , t∗i ) is drawn uniformly at random from (x1, t1), . . . , (xn, tn), with replacement

• This corresponds exactly to m independent draws from F̂ : it approximates what we would
see if we could sample more data from the true F . We often consider m = n, which is like
sampling an entirely new training set
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BAGGING

• Given a training set (xi, yi), i = 1, . . . ,n, bagging averages the predictions done by classifiers
of the same type (such as decision trees) over a collection of boostrap samples. For
b = 1, . . . ,B (e.g., B = 100), n bootstrap items (xbi , ybi ), i = 1, . . . ,n are sampled and a classifier
is fit on this set.

• At the end, to classify an input x, we simply take the most commonly predicted class, among
all B classifiers

• This is just choosing the class with the most votes
• In the case of regression, the predicted value is derived as the average among the
predictions returned by the B regressors
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BAGGING VARIANT

If the used classifier returns class probabilities p̂bk(x), the final bagged probabilities can be
computed by averaging

pbk(x) =
1

B

B∑
b=1

p̂bk(x)

the predicted class is, again, the one with highest probability
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BAGGING CLASSIFICATION

• Why is bagging working?
• Let us consider, for simplicity, a binary classification problem. Suppose that for a given input

x, we have B independent classifiers, each with a given misclassification rate e (for example,
e = 0.4). Assume w.l.o.g. that the true class at x is 1: so the probability that the b-th classifier
predicts class 0 is e = 0.4

• Let B0 ≤ B be the number of classifiers returning class 0 on input x: the probability of B0 is
clearly distributed according to a binomial (if classifiers are independent)

B0 ∼ Binomial(B, e)

the misclassification rate of the bagged classifier is then

p
(
B0 >

B
2

)
=

B∑
k= B

2
+1

(
B
k

)
ek(1− e)B−k

which tends to 0 as B increases.
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BAGGING REGRESSION
• Expected error of one model yi(x) wrt the true function h(x):

Ex[(yi(x)− h(x))2] = Ex[εi(x)2]

• Average expected error of the models

Eav =
1

m

m∑
i=1

Ex[εi(x)2]

• Committee expected error

Ec = Ex

[(
1

m

m∑
i=1

yi(x)− h(x)
)2]

= Ex

[(
1

m

m∑
i=1

εi(x)
)2]

If Ex[εi(x)εj(x)] = 0 if i ̸= j (errors are uncorrelated) then Ec = 1
mEav.

• This is usually not verified: errors from different models are highly correlated.
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RANDOM FOREST

Application of bagging to a set of (random) decision trees: classification performed by voting.
1. For b = 1 to B:

1.1 Bootstrap sample from training set
1.2 Grow a decision tree Tb on such data by performing the following operations for each node:

1.2.1 select m variables at random
1.2.2 pick the best variable among them
1.2.3 split the node into two children

2. output the collection of trees T1, . . . , TB
Overall prediction is performed as majority (for classification) or average (for regression) among
trees predictions.
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BOOSTING

• Boosting is a procedure to combine the output of many weak classifiers to produce a
powerful committee.

• A weak classifier is one whose error rate is only slightly better than random guessing.
• Boosting produces a sequence of weak classifiers ym(x) for m = 1, . . . ,m whose predictions
are then combined through a weighted majority to produce the final prediction

y(x) = sgn

 m∑
j=1

αjyj(x)


• Each αj > 0 is computed by the boosting algorithm and reflects how accurately ym classified
the data.
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BOOSTING

Adaboost (adaptive boosting)
• Models are trained in sequence: each model is trained using a weighted form of the dataset
• Element weights depend on the performances of the previous models (misclassified points
receive larger weights)

• Predictions are performed through a weighted majority voting scheme on all models
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BOOSTING

{w(1)
n } {w(2)

n } {w(M)
n }

y1(x) y2(x) yM (x)

YM (x) = sign

(
M∑
m

αmym(x)

)
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ADABOOST

Binary classification, dataset (X, t) of size n, with ti ∈ {−1, 1}. The algorithm maintains a set of
weights w(x) = (w1, . . . ,wn) associated to the dataset elements.

• Initialize weights as w(0)

i = 1
n for i = 1, . . . ,n

• For j = 1, . . . ,m:
• Train a weak learner yj(x) on X in such a way to minimize the weighted misclassification wrt to
w(j)(x).

• Let

π(j) =

∑
xi∈E(j) w(j)

i∑
i w

(j)
i

where E(j) is the set of dataset elements misclassified by yj(x).
▶ If π(j) > 1

2 , consider the reverse learner, which returns opposite predictions for all elements.
▶ π(j) can be interpreted as the probability that a random item from the training set is misclassified, assuming

that item xi can be sampled with probability
w(j)i∑
i w

(j)
i
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ADABOOST

• Compute the learner confidence as log odds of a random item being well classified (1− π(j))
vs being misclassified π(j)

αj =
1

2
log 1− π(j)

π(j) > 0

• For each xi, update the corresponding weight as follows

w(j+1)

i = w(j)
i e

−αjtiyj(xi)

which results into

w(j+1)

i =

{
w(j)
i e

αj > w(j)
i if xi ∈ E(j)

w(j)
i e

−αj < w(j)
i otherwise

• Normalize the set of w(j+1)

i by dividing each of them by
∑n

i=1 w
(j+1)

i , in order to get a
distribution
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ADABOOST

The overall prediction is

y(x) = sgn

 m∑
j=1

αjyj(x)


since yj(x) ∈ {−1, 1}, this corresponds to a voting procedure, where each learner vote (class
prediction) is weighted by the learner confidence.
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ADABOOST
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ADABOOST
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WHY DOES IT WORK?

• It minimizes a loss function related to classification error
• Suppose we have a classifier y(x) = sgn f(x)
• We know that 0/1 loss

l(y(x), t) =
{

0 if tf(x) > 0

1 otherwise

has drawbacks (non convex, gradient 0 almost everywhere). We need a surrogate loss.
• Exponential loss

l(y(x), t) = e−tf(x)
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ADDITIVE MODELS

• Additive models are defined as the additive composition of simple “base” predictors

y(x) =
m∑
j=1

αjyj(x)

where, for each j, αj is a weight and yj(x) = h(x;wj) ∈ IR is a simple function of the input x
parameterized by wj ∈ IRp for a given p

• in this case, the predictors are binary classifiers; that is, yj(x) = h(x;wj) ∈ {−1, 1}
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FITTING ADDITIVE MODELS

• As usual, an additive model is fit by minimizing a loss function averaged over the training
data:

min
α,W

L (ti, y(x)) = min
α,W

n∑
i=1

L
(
ti,

m∑
k=1

αkh(xi;wk)

)
with α = {α1, . . . , αm} and W = ∪m

j=1wj

• For many loss functions L and/or additive predictors h this is too hard
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FORWARD STAGEWISE ADDITIVE MODELING

We may make things simpler by greedily adding one predictor at a time as follows.
• Set y0(x) = 0
• For k = 1, . . . ,m:

• Compute

(α̂k, ŵk) = argmin
αk,wk

n∑
i=1

L
(
ti, yk−1(xi) + αkh(xi;wk)

)
• Set yk(x) = yk−1(x) + α̂kh(x; ŵk)

That is, fitting is performed not modifying previously added terms (greedy paradigm)

Prof. Giorgio Gambosi Ensemble methods Slide 22 / 36



ADABOOST AS ADDITIVE MODEL

Adaboost can be interpreted as fitting an additive model with exponential loss

L(t, y(x)) = e−ty(x)

that is, minimizing
n∑
i=1

e−ti
∑m

k=1 αkh(xi;wk)

with respect to w1, . . . ,wm and α1, . . . , αm.

In Adaboost, we have that p = n. That is, the number of parameters in h(x,w) is equal to the
number of items: hence, wk = (wk1, . . . ,wkn) for all k.
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GRADIENT BOOSTING

General idea:
• Fit an additive model

∑m
j=1 αjyj(x) in a forward stage-wise manner.

• At each stage, introduce a weak learner to compensate the shortcomings of existing ones.
• Shortcomings are identified by high-weight data points.
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GRADIENT BOOSTING

• You are given (xi, ti), i = 1, . . . ,n, and the task is to fit a model y(x) to minimize square loss.
• Assume a model y(1)(x) is available, with residuals ti − y(1)i = ti − y(1)(xi)
• A new dataset (xi, ti − y(1)i ), i = 1, . . . ,n can be defined, and a model h(1)(x) can be fit to
minimize square loss wrt such dataset

• Clearly, y2(x) = y1(x) + h1(x) is a model which improves y1(x)
• The role of h1(x) is to compensate the shortcoming of y(x)
• If y2(x) is unsatisfactory, we may define new models h2(x) and y3(x) = y2(x) + h2(x)
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GRADIENT BOOSTING
How is this related to gradient descent?
• Let us consider the squared loss function L(t, y) = 1

2
(t− y)2

• We want to minimize the empirical risk R =
∑n

i=1 L(ti, yi) by adjusting y1, . . . , yn, considered
as parameters

• For each yi we consider the derivative

∂R
∂yi

= yi − ti

The residuals correspond then to negative gradients

ti − yi = − ∂R
∂yi

• Model h(x) can then be derived by considering the dataset

(xi, ti − yi) =
(

xi,−
∂R
∂yi

)
i = 1, . . . ,n
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GRADIENT BOOSTING

Looking at the new dataset {(
xi,−

∂R
∂yi

)
, . . . ,

(
xn,−

∂R
∂yn

)}
We wonder what is the meaning of looking for a predictor h which fits such points.

• The idea is that h(xi) should be small if the current cost derived from the current prediction
yi of xi is almost constant: modifying the prediction results into a limited gain wrt the cost

• similarly, if the cost would increase considerably by increasing the prediction value, then
h(xi) should modify such cost by decreasing it; that is it should be more negative

• finally, by symmetry, if the cost would decrease considerably by increasing the prediction
value, then h(xi) should modify such cost by increasing it; that is it should be more positive
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GRADIENT BOOSTING FOR REGRESSION

The following algorithm results
• Set y(1)(x) = 1

n
∑n

i=1 ti
• For k = 1, . . . ,m:

• Compute negative gradients

−g(k)i = −
∂R
∂yi

∣∣∣
yi=y(k)(xi)

= −
∂

∂yi
L(ti, yi)

∣∣∣
yi=y(k)(xi)

= ti − y(k)(xi)

• Fit a weak learner h(k)(x) to negative gradients, considering dataset (xi,−g
(k)
i ), i = 1, . . . , n

• Derive the new classifier y(k+1)(x) = y(k)(x) + h(k)(x)
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GRADIENT BOOSTING FOR REGRESSION
• The benefit of formulating this algorithm using gradients is that it allows us to consider other
loss functions and derive the corresponding algorithms in the same way.

• For example, square loss is easy to deal with mathematically, but not robust to outliers, i.e.
pays too much attention to outliers.

• Different loss functions
• Absolute loss

▶
L(t, y) = |t− y|

▶
−g = sgn(t− y)

• Huber loss
▶

L(t, y) =

{
1
2 (t− y)2 |t− y| ≤ δ

δ(|t− y|) − δ
2 |t− y| > δ

▶

−g =

{
y− t |t− y| ≤ δ

δ · sgn(t− y) |t− y| > δ
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GRADIENT BOOSTING FOR CLASSIFICATION

A similar approach can be applied on K-class classification, with

R =

n∑
i=1

L(ti, y1(xi), . . . , yK(xi)) =
n∑
i=1

L((ti1, . . . , tiK), (yi1, . . . , yiK))

for a given loss function
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WHICH WEAK LEARNERS?

• Regression trees (special case of decision trees)
• Decision stumps (trees with only one node)
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