MACHINE LEARNING

Ensemble methods

Corso di Laurea Magistrale in Informatica

Università di Roma Tor Vergata

Prof. Giorgio Gambosi

a.a. 2023-2024

Improve performance by combining multiple models, in some way, instead of using a single model.

- *•* train a *committee* of *L* different models and make predictions by averaging the predictions made by each model on dataset samplings (bagging)
- *•* train different models in sequence: the error function used to train a model depend on the performance of previous models (boosting)

BAGGING

- *•* Classifiers (especially some of them, such as decision trees) may have low performances due to their high variance: their behavior may largely differ in presence of slightly different training sets (or even of the same training set).
- *•* For example, in trees, the separations made by splits are enforced at all lower levels: hence, if the data is perturbed slightly, the new tree can have a considerably different sequence of splits, leading to a different classification rule

BOOTSTRAP

- *•* The bootstrap is a fundamental resampling tool in statistics. The basic underlying idea is to estimate the true distribution of data $\mathcal F$ by the so-called empirical distribution $\hat{\mathcal F}$
- \bullet Given the training data (x_i,t_i) , $i=1,\ldots,n$, the empirical distribution function $\hat{\mathcal{F}}$ is defined as

$$
\hat{p}(x,t) = \begin{cases} \frac{1}{n} & \text{if } \exists i : (x,t) = (x_i, t_i) \\ 0 & \text{otherwise} \end{cases}
$$

 \bullet This is just a discrete probability distribution, putting equal weight $\frac{1}{n}$ on each of the observed training points

BOOTSTRAP

• A bootstrap sample of size *m* from the training data is

 (x_i^*, t_i^*) $i = 1, ..., m$

where each $(\mathbf{x}^*_i, \mathbf{t}^*_i)$ is drawn uniformly at random from $(\mathbf{x}_1, \mathbf{t}_1), \ldots, (\mathbf{x}_n, \mathbf{t}_n)$, with replacement

• This corresponds exactly to *m* independent draws from *F*ˆ: it approximates what we would see if we could sample more data from the true $\mathcal F$. We often consider $m = n$, which is like sampling an entirely new training set

BAGGING

- \bullet Given a training set (\mathbf{x}_i, y_i) , $i = 1, \ldots, n$, bagging averages the predictions done by classifiers of the same type (such as decision trees) over a collection of boostrap samples. For $b = 1, \ldots, B$ (e.g., B = 100), *n* bootstrap items (x_i^b, y_i^b) , $i = 1, \ldots, n$ are sampled and a classifier is fit on this set.
- *•* At the end, to classify an input *x*, we simply take the most commonly predicted class, among all *B* classifiers
- *•* This is just choosing the class with the most votes
- *•* In the case of regression, the predicted value is derived as the average among the predictions returned by the *B* regressors

BAGGING VARIANT

If the used classifier returns class probabilities $\hat{p}_k^b({\rm x})$, the final bagged probabilities can be computed by averaging

$$
p_k^b(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^B \hat{p}_k^b(\mathbf{x})
$$

the predicted class is, again, the one with highest probability

BAGGING CLASSIFICATION

- *•* Why is bagging working?
- *•* Let us consider, for simplicity, a binary classification problem. Suppose that for a given input x, we have *B* independent classifiers, each with a given misclassification rate *e* (for example, $e = 0.4$). Assume w.l.o.g. that the true class at x is 1: so the probability that the *b*-th classifier predicts class 0 is $e = 0.4$
- *•* Let *B*⁰ *≤ B* be the number of classifiers returning class 0 on input x: the probability of *B*⁰ is clearly distributed according to a binomial (if classifiers are independent)

*B*⁰ \sim *B*inomial(*B, e*)

the misclassification rate of the bagged classifier is then

$$
p\left(B_0 > \frac{B}{2}\right) = \sum_{k=\frac{B}{2}+1}^{B} {B \choose k} e^k (1-e)^{B-k}
$$

which tends to 0 as *B* increases.

BAGGING REGRESSION

• Expected error of one model $y_i(x)$ wrt the true function $h(x)$:

 $E_x[(y_i(x) - h(x))^2] = E_x[\epsilon_i(x)^2]$

• Average expected error of the models

$$
E_{av} = \frac{1}{m} \sum_{i=1}^{m} E_{\mathbf{x}}[\varepsilon_i(\mathbf{x})^2]
$$

• Committee expected error

$$
E_c = E_x \left[\left(\frac{1}{m} \sum_{i=1}^m y_i(x) - h(x) \right)^2 \right] = E_x \left[\left(\frac{1}{m} \sum_{i=1}^m \epsilon_i(x) \right)^2 \right]
$$

If $E_x[\varepsilon_i(\mathbf{x})\varepsilon_j(\mathbf{x})] = 0$ if $i \neq j$ (errors are uncorrelated) then $E_c = \frac{1}{m}E_{av}$.

• This is usually not verified: errors from different models are highly correlated.

RANDOM FOREST

Application of bagging to a set of (random) decision trees: classification performed by voting.

- 1. For $b = 1$ to B :
	- 1.1 Bootstrap sample from training set
	- 1.2 Grow a decision tree T_b on such data by performing the following operations for each node:
		- 1.2.1 select *m* variables at random
		- 1.2.2 pick the best variable among them
		- 1.2.3 split the node into two children
- 2. output the collection of trees T_1, \ldots, T_B

Overall prediction is performed as majority (for classification) or average (for regression) among trees predictions.

BOOSTING

- *•* Boosting is a procedure to combine the output of many weak classifiers to produce a powerful committee.
- *•* A weak classifier is one whose error rate is only slightly better than random guessing.
- Boosting produces a sequence of weak classifiers $y_m(x)$ for $m = 1, \ldots, m$ whose predictions are then combined through a weighted majority to produce the final prediction

$$
y(\mathbf{x}) = \text{sgn}\left(\sum_{j=1}^{m} \alpha_j y_j(\mathbf{x})\right)
$$

• Each α ^{*j*} $>$ 0 is computed by the boosting algorithm and reflects how accurately y_m classified the data.

BOOSTING

Adaboost (adaptive boosting)

- *•* Models are trained in sequence: each model is trained using a weighted form of the dataset
- *•* Element weights depend on the performances of the previous models (misclassified points receive larger weights)
- *•* Predictions are performed through a weighted majority voting scheme on all models

BOOSTING

Binary classification, dataset (X, t) of size *n*, with $t_i \in \{-1, 1\}$. The algorithm maintains a set of weights $w(x) = (w_1, \ldots, w_n)$ associated to the dataset elements.

- Initialize weights as $w_i^{(0)} = \frac{1}{n}$ for $i = 1, \ldots, n$
- For $j = 1, ..., m$:
	- $\bullet\,$ Train a weak learner $y_j(\text{x})$ on X in such a way to minimize the weighted misclassification wrt to *w*(*j*) (x).
	- *•* Let

$$
\pi^{(j)} = \frac{\sum_{\mathbf{x}_i \in \mathcal{E}^{(j)}} \mathbf{w}_i^{(j)}}{\sum_i \mathbf{w}_i^{(j)}}
$$

where $\mathcal{E}^{(j)}$ is the set of dataset elements misclassified by $y_j(\mathrm{x}).$

- ▶ If $\pi^{(j)} > \frac{1}{2}$, consider the reverse learner, which returns opposite predictions for all elements.
- \blacktriangleright $\pi^{(j)}$ can be interpreted as the probability that a random item from the training set is misclassified, assuming that item \mathbf{x}_i can be sampled with probability $\frac{w_i^{(j)}}{\sum_i w_i^{(j)}}$

 \bullet Compute the learner confidence as log odds of a random item being well classified $(1-\pi^{(j)})$ vs being misclassified $\pi^{(j)}$

$$
\alpha_j = \frac{1}{2} \log \frac{1 - \pi^{(j)}}{\pi^{(j)}} > 0
$$

• For each x*ⁱ* , update the corresponding weight as follows

$$
w_i^{(j+1)} = w_i^{(j)} e^{-\alpha_j t_i y_j(x_i)}
$$

which results into

$$
w_i^{(j+1)} = \begin{cases} w_i^{(j)} e^{\alpha_j} > w_i^{(j)} & \text{if } x_i \in \mathcal{E}^{(j)} \\ w_i^{(j)} e^{-\alpha_j} < w_i^{(j)} & \text{otherwise} \end{cases}
$$

 \bullet Normalize the set of $w_i^{(j+1)}$ by dividing each of them by $\sum_{i=1}^n w_i^{(j+1)}$, in order to get a distribution

The overall prediction is

$$
y(\mathbf{x}) = \text{sgn}\left(\sum_{j=1}^m \alpha_j y_j(\mathbf{x})\right)
$$

since *yj*(x) *∈ {−*1*,* 1*}*, this corresponds to a voting procedure, where each learner vote (class prediction) is weighted by the learner confidence.

WHY DOES IT WORK?

- *•* It minimizes a loss function related to classification error
- Suppose we have a classifier $y(x) = sgn f(x)$
- *•* We know that 0/1 loss

$$
l(y(x),t) = \begin{cases} 0 & \text{if } tf(x) > 0\\ 1 & \text{otherwise} \end{cases}
$$

has drawbacks (non convex, gradient 0 almost everywhere). We need a surrogate loss.

• Exponential loss

 $l(y(x), t) = e^{-tf(x)}$

ADDITIVE MODELS

• Additive models are defined as the additive composition of simple "base" predictors

$$
y(\mathbf{x}) = \sum_{j=1}^{m} \alpha_j \overline{y}_j(\mathbf{x})
$$

where, for each *j*, α_j is a weight and $\overline{y}_j(\text{x}) = h(\text{x};\text{w}_j) \in \rm I\!R$ is a simple function of the input x parameterized by $\mathbf{w}_j \in \mathbb{R}^p$ for a given *p*

• in this case, the predictors are binary classifiers; that is, $\overline{y}_j(\mathbf{x}) = h(\mathbf{x}; \mathbf{w}_j) \in \{-1, 1\}$

FITTING ADDITIVE MODELS

• As usual, an additive model is fit by minimizing a loss function averaged over the training data:

$$
\min_{\alpha, \mathbf{W}} L(t_i, y(\mathbf{x})) = \min_{\alpha, \mathbf{W}} \sum_{i=1}^n L\left(t_i, \sum_{k=1}^m \alpha_k h(\mathbf{x}_i; \mathbf{w}_k)\right)
$$

 \mathbf{w} ith $\boldsymbol{\alpha} = \{\alpha_1, \dots, \alpha_m\}$ and $\mathbf{W} = \cup_{j=1}^m \mathbf{w}_j$

• For many loss functions *L* and/or additive predictors *h* this is too hard

We may make things simpler by greedily adding one predictor at a time as follows.

- Set $v_0(\mathbf{x}) = 0$
- For $k = 1, ..., m$:
	- *•* Compute

$$
(\hat{\alpha}_k, \hat{\mathbf{w}}_k) = \underset{\alpha_k, \mathbf{w}_k}{\operatorname{argmin}} \sum_{i=1}^n L(t_i, y_{k-1}(\mathbf{x}_i) + \alpha_k h(\mathbf{x}_i; \mathbf{w}_k))
$$

• Set $y_k(x) = y_{k-1}(x) + \hat{\alpha}_k h(x; \hat{w}_k)$

That is, fitting is performed not modifying previously added terms (greedy paradigm)

Adaboost can be interpreted as fitting an additive model with exponential loss

 $L(t, y(x)) = e^{-ty(x)}$

that is, minimizing

$$
\sum_{i=1}^n e^{-t_i\sum_{k=1}^m \alpha_k h(x_i; \mathbf{w}_k)}
$$

with respect to w_1, \ldots, w_m and $\alpha_1, \ldots, \alpha_m$.

In Adaboost, we have that $p = n$. That is, the number of parameters in $h(x, w)$ is equal to the number of items: hence, $w_k = (w_{k1}, \ldots, w_{kn})$ for all *k*.

General idea:

- \bullet Fit an additive model $\sum_{j=1}^m\alpha_jy_j(\mathrm{x})$ in a forward stage-wise manner.
- At each stage, introduce a weak learner to compensate the shortcomings of existing ones.
- *•* Shortcomings are identified by high-weight data points.

- \bullet You are given (x_i,t_i) , $i=1,\ldots,n$, and the task is to fit a model $y(\mathrm{x})$ to minimize square loss.
- *•* Assume a model $y^{(1)}(x)$ is available, with residuals $t_i y_i^{(1)} = t_i y^{(1)}(x_i)$
- *•* A new dataset (x*ⁱ ,tⁱ − y* (1)), *i* = 1*, . . . , n* can be defined, and a model *h* (1)(x) can be fit to minimize square loss wrt such dataset
- Clearly, $y_2(x) = y_1(x) + h_1(x)$ is a model which improves $y_1(x)$
- The role of $h_1(x)$ is to compensate the shortcoming of $v(x)$
- If $y_2(x)$ is unsatisfactory, we may define new models $h_2(x)$ and $y_3(x) = y_2(x) + h_2(x)$

How is this related to gradient descent?

- \bullet Let us consider the squared loss function $L(t, y) = \frac{1}{2}(t y)^2$
- \bullet We want to minimize the empirical risk $R = \sum_{i=1}^n L(t_i,y_i)$ by adjusting y_1,\ldots,y_n , considered as parameters
- *•* For each *yⁱ* we consider the derivative

$$
\frac{\partial R}{\partial y_i} = y_i - t_i
$$

The residuals correspond then to negative gradients

$$
t_i - y_i = -\frac{\partial R}{\partial y_i}
$$

• Model *h*(x) can then be derived by considering the dataset

$$
(\mathbf{x}_i, t_i - y_i) = \left(\mathbf{x}_i, -\frac{\partial R}{\partial y_i}\right) \qquad i = 1, \ldots, n
$$

Looking at the new dataset

$$
\left\{\left(\mathbf{x}_i,-\frac{\partial R}{\partial y_i}\right),\ldots,\left(\mathbf{x}_n,-\frac{\partial R}{\partial y_n}\right)\right\}
$$

We wonder what is the meaning of looking for a predictor *h* which fits such points.

- *•* The idea is that *h*(x*i*) should be small if the current cost derived from the current prediction y_i of x_i is almost constant: modifying the prediction results into a limited gain wrt the cost
- *•* similarly, if the cost would increase considerably by increasing the prediction value, then $h(x_i)$ should modify such cost by decreasing it; that is it should be more negative
- *•* finally, by symmetry, if the cost would decrease considerably by increasing the prediction value, then $h(x_i)$ should modify such cost by increasing it; that is it should be more positive

GRADIENT BOOSTING FOR REGRESSION

The following algorithm results

- Set $y^{(1)}(x) = \frac{1}{n} \sum_{i=1}^{n} t_i$
- For $k = 1, ..., m$:
	- *•* Compute negative gradients

$$
-g_i^{(k)} = -\frac{\partial R}{\partial y_i}\Big|_{y_i = y^{(k)}(x_i)} = -\frac{\partial}{\partial y_i}L(t_i, y_i)\Big|_{y_i = y^{(k)}(x_i)} = t_i - y^{(k)}(x_i)
$$

- \bullet Fit a weak learner $h^{(k)}(x)$ to negative gradients, considering dataset $(x_i, -g_i^{(k)}), i = 1, ..., n$
- Derive the new classifier $y^{(k+1)}(x) = y^{(k)}(x) + h^{(k)}(x)$

GRADIENT BOOSTING FOR REGRESSION

- *•* The benefit of formulating this algorithm using gradients is that it allows us to consider other loss functions and derive the corresponding algorithms in the same way.
- *•* For example, square loss is easy to deal with mathematically, but not robust to outliers, i.e. pays too much attention to outliers.
- *•* Different loss functions
	- *•* Absolute loss

▶

▶

▶

▶

 $L(t, v) = |t - v|$ *−g* = sgn(*t − y*) *•* Huber loss $L(t, y) = \begin{cases} \frac{1}{2}(t - y)^2 & |t - y| \le \delta \\ \frac{c}{2}(t - y)^2 & \delta \le |t - y| > \delta \end{cases}$ $\delta(|t - y|) - \frac{\delta}{2} \quad |t - y| > \delta$ $-g = \begin{cases} y - t & |t - y| \leq \delta \\ \delta \cdot \text{sgn}(t - y) & |t - y| > \delta \end{cases}$ *δ ·* sgn(*t − y*) *|t − y| > δ*

GRADIENT BOOSTING FOR CLASSIFICATION

A similar approach can be applied on *K*-class classification, with

$$
R = \sum_{i=1}^{n} L(t_i, y_1(x_i), \dots, y_K(x_i)) = \sum_{i=1}^{n} L((t_{i1}, \dots, t_{iK}), (y_{i1}, \dots, y_{iK}))
$$

for a given loss function

WHICH WEAK LEARNERS?

- *•* Regression trees (special case of decision trees)
- *•* Decision stumps (trees with only one node)