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MULTILAYER NETWORKS

e Up to now, only models with a single level of parameters to be learned were considered.
® The model has a generalized linear model structure such as y = f(w'¢(x)): model
parameters are directly applied to input values.

e More general classes of models can be defined by means of sequences of transformations
applied on input data, corresponding to multilayered networks of functions.
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EXTENDED LINEAR MODELS

Linear regression

Logistic regression () o @ B

Softmax regression e
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ADDING BASE FUNCTIONS
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ADDING A LAYER
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ADDING ONE MORE LAYER
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MULTILAYER NETWORK STRUCTURE: FIRST LAYER

For any d-dimensional input vector x = (x1,...,Xq), the first layer of a neural network derives
m; > 0 activations agl), o a,(,,ll) through suitable linear combinations of xi,..., x4

d
) _ Wy ™ — oD 2
g =3 wixi+wy) =w %
i=1

where M is a given, predefined, parameter and X = (1,x1,...,Xq)".
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MULTILAYER NETWORK STRUCTURE: FIRST LAYER

Each activation aj(l) is tranformed by means of a non-linear activation function h; to provide a
vector z1) = (zgl), . ,zﬁ,,lf)T as output from the layer, as follows

1 1 1) —
Zj< ) = h1(aj( )) = h1(W)~( ) -X)

here h; is some approximate threshold function, such as a sigmoid

1

W= e

or a hyperbolic tangent

¥ —e* 1 1

tanh(x) = e ter l1te > 1+eX

= 0(2X) — o(—2x)

Observe that this corresponds to defining m; units, where unit j implements a GLM on x to derive
(1)
zZ .

J
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FIRST LAYER

Inputs

(1)
ZM1
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MULTILAYER NETWORK STRUCTURE: INNER LAYERS

Vector z(Y) provides an input to the next layer, where m, hidden units compute a vector
2 = (z<12), .. (1)) by first performing linear combinations of the input values

a® — Zw(z) 2V 1@ = w® g0

and then applying function h,, as follows

z) = hy(wy? -z1)
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MULTILAYER NETWORK STRUCTURE: INNER LAYERS

The same structure can be repeated for each inner layer, where layer r has m, units which, from
input vector z"~V, derive output vector z"~V) through linear combinations
) = w .z

and non linear transformation
20 = (w700
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INNER LAYERS
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MULTILAYER NETWORK STRUCTURE: OUTPUT LAYER

For what concerns the last layer, say layer t, an output vector y = z(¥ is again produced by means
of m; output units by first performing linear combinations on z(*~V

a® = w® .z
and then applying function h;
ye =2 = hy(w - 7Y)
where:
e h; is the identity function in the case of regression
e h; is a sigmoid in the case of binary classification
® h;is a softmax in the case of multiclass classification
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OUTPUT LAYER: REGRESSION

(D—1)

I

I

I

AN

3 a(D) — Z(D) =y
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OUTPUT LAYER: BINARY CLASSIFICATION
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OUTPUT LAYER: K-CLASS CLASSIFICATION
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3 LAYER NETWORKS

A sufficiently powerful model is provided in the case of 3 layers (input, hidden, output).

For example, applying this model for K-class classification corresponds to the following overall
network function for each y,, R =1,...,K

M d
s (S (Sui ) ) i)
j=1 i=1

where the number M of hidden units is a model structure parameter and s is the softmax function.

The resulting network can be seen as a GLM where base functions are not predefined wrt to data,
but are instead parameterized by coefficients in w().
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3 LAYER NETWORKS

Inputs Hidden units Output units

Z,(<2) = Yk
2(12) =V

7~ — 1
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APPROXIMATING FUNCTIONS WITH NEURAL NETWORKS

Neural networks, despite their simple structure, are sufficient powerful models to act as universal
approximators.

It is possible to prove that any continuous function can be approximated, at any by means of
two-layered neural networks with sigmoidal activation functions. The approximation can be
indefinitely precise, as long as a suitable number of hidden units is defined.
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ITERATIVE METHODS TO MINIMIZE E(w)

The error function E(w) is usually quite hard to minimize:

e there exist many local minima
e for each local minimum there exist many equivalent minima

® any permutation of hidden units provides the same result
® changing signs of all input and output links of a single hidden unit provides the same result

Analytical approaches to minimization cannot be applied: resort to iterative methods (possibly
comparing results from different runs).

WD (0 A )
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GRADIENT DESCENT

At each step, two stages:
1. the derivatives of the error functions wrt all weights are evaluated at the current point
2. weights are adjusted (resulting into a new point) by using the derivatives
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ON-LINE (STOCHASTIC) GRADIENT DESCENT

We exploit the property that the error function is the sum of a collection of terms, each
characterizing the error corresponding to each observation

E(w) = > Ei(w)

the update is based on one training set element at a time

(k+1) _ (k) _ 35;(W)‘
W -V T ow  lww

e at each step the weight vector is moved in the direction of greatest decrease wrt the error for
a specific data element

¢ only one training set element is used at each step: less expensive at each step (more steps
may be necessary)

* makes it possible to escape from local minima
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BATCH GRADIENT DESCENT

The gradient is computed by considering a subset (batch) B of the training set

WD _ ) nazmeB B OEi(w)

ow w(k) ow ‘ww)
x;€B

Since the overall gradient computed from a batch B is just the sum of the gradients from the
single items, in the following we shall consider E(w) as the loss function wrt a single item.
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COMPUTING GRADIENTS

In order to apply a gradient based method, the set of derivatives

OE(w)
o

must be derived for all i,j, k in order to be iteratively evaluated for different values of w during
gradient descent.

As we shall see, in order to evaluate

OE(w)
o)
we may start by evaluating
OE(w)
80,.(")
that is the derivatives of the cost function wrt each activation value aﬁd), A a,(,g) at the final layer

(the d-th, here) of the network.
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REGRESSION

@@

Here, we have y = 29 = ¢(a'?) and

I R T D) NS N Y
E=S—1"=5( )" =5l t)

as a consequence,
OE

—a® _t— @
g =@ —t=29 -t

Prof. Giorgio Gambosi Multilayer perceptrons



BINARY CLASSIFICATION

Here, we have y = 29 = gq® and

E=—(tlogy + (1 —t)log(1 —y)) = —(tlogz'¥ + (1 — t)log(1 — zV))

OF t 1—t\  zZ9—t
ozed) — \z@ 1z ) T zZd)(1 = z(d)
since, by the properties of the logistic function,
5z @

pa@ — @)1 —a@?) =291 -29)

it results
OE OE 8z<d> o (d)

9a @ — 9z ga@ —
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K-CLASS CLASSIFICATION

Here, we have

(d)

a.
) e
Vi=aT =
e

j=1

and

K
E=- tilogz”
i=1

OE t;

RO
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K-CLASS CLASSIFICATION

Since
(d) (d) (d) _(d)
(d) q; K oe% —efi el
077 _ €' Xyl —e€l el @@ _ 29(1 — 2)
d) 2 ] i i ] i
804( K al@
! (Zj:l e’ >
d a@ a(@
07" e 4 ) L
oa? @\2 A 1
" (2
it results
d d
OE z":at oz” z’(:taz”
(@ — (d) 5,0d) ECRPC)
aa; Y az. aaq; z aa;
ti (@) D) _ () (d)
,_Wzl 1=z + > (d>, Z9 = —t(1-z")+ > tz
1<j<K / 1<j<K
J#i A
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BACKPROPAGATION

Algorithm applied to evaluate derivatives of the error wrt all weights

It can be interpreted in terms of backward propagation of a computation in the network, from the
output towards input units.

It provides an efficient method to evaluate derivatives wrt weights. It can be applied also to
compute derivatives of output wrt to input variables, to provide evaluations of the Jacobian and
the Hessian matrices at a given point.
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BACKPROPAGATION

Let us now show that, for any layer, knowing the current weights W,.(I.S) and the values a,.(s),z,.(s)
resulting by submitting the current item to the network, the knowledge of the derivatives
E .
OE 1<j<n
oa"
J
makes it possible to compute the derivatives

OE
(r)
awU

0<i<ne_1,1<j<n

to be applied for gradient descent, and

OE

W 1<i<ne_,
i

where ns is the number of units at the s-th layer
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BACKPROPAGATION AT LAYER r

\m
N
70
N

(2
L
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BACKPROPAGATION AT LAYER r

Here,

Nr—1

O _ N 0,1 (0
qff =3 wz" Y
i=1

® "
04" - oq;
= Ol
3WU 6W0}.
and, as a consequence,
o 0FE 99"  oE S
ow!”  oa"” ow"  9a"
ij j ij j
oF  oF 94  oE

N = 5,0 a0 50
8W0j 6aj awoj 8aj
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BACKPROPAGATION AT LAYER r

G
99 _ o

(r T =W’ itresults

Moreover, since

(r n
OE Z"’ oE 0q; Z’ 9E
92D T L 0 T 2 50"
i J J

~ 00" 0" = oa"
(r>
and smcez h( "), then (r) =h (a(’)) and
I
(r—=1) r
OE _ OE 8Zir _ OE h(a(r 1)) h/(a'(rfl))nz ol W(r)
1

dal" " B 82" 9al" Y 82(' b — 80}” i
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BACKPROPAGATION

Reassuming, it results

ga@d ~ %~
OE _ (d) o
(d) i
oa;
and,
for each layerr=d,...,2
OE  OE 41
ow? ~ 9a"
ij j
OE OE

(N = 5,0
aw0i daj

OE 1y (r—1) o
ey =hE) Y
80"(r—1) i =

Prof. Giorgio Gambosi

t for regression and binary classification

t; for multiclass classification

for the first layer,

OE (r—1)

aagr) ij

J

Multilayer perceptrons
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BACKPROPAGATION

Reassuming, it results
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BACKPROPAGATION AND ACTIVATION FUNCTIONS

In the case of a sigmoidal activation function h(x) = &(x), it results, in particular,

nr

oE -1 (r-1) OF (1)
S = o@™ 1 —o(a"")) Z Vi
i Jj=1 J
while if a RELU activation function is applied, we get
"\ OE
OE > - 7 WI.(j’_l) ifa" " >0
gar 0 ) =1 99
! 0 otherwise
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BACKPROPAGATION

Iterate the preceding steps on all items in the batch set. In fact, since
n
E(w) = Ei(w)
i=1

itis
n

OE Z OE;

" )
owy i 0wy

OE(w)

This provides an evaluation of at the current point w.
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BACKPROPAGATION

OE(w)
ow

Once is known, a single step of gradient descent can be performed

WD _ 0 _  9E(W)

ow  lw(®
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COMPUTATIONAL EFFICIENCY OF BACKPROPAGATION

A single evaluation of error function derivatives requires O(|w|) steps

Alternative approach: finite differences. Perturb each weight wj in turn and approximate the

derivative as follows 5 o ) )
E; ki Wij +¢)—E; Wi — e 2
8W,'j B 2e * O(E )

This requires O(|w|) steps for each weight, hence O(|w|?) steps overall.
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