Probability recall

Course of Machine Learning
Master Degree in Computer Science
University of Rome "Tor Vergata"
a.a. 2023-2024

Giorgio Gambosi

1 Probability

Discrete random variables

A discrete random variable X can take values from some finite or countably infinite set \mathcal{X}. A probability mass function (pmf) associates to each event $X=x$ a probability $p(X=x)$.

Properties

- $0 \leq p(x) \leq 1$ for all $x \in \mathcal{X}$
- $\sum_{x \in \mathcal{X} p(x)=1}$

Note: we shall denote as x the event $X=x$

Discrete random variables

Joint and conditional probabilities

Given two events x, y, it is possible to define:

- the probability $p(x, y)=p(x \wedge y)$ of their joint occurrence
- the conditional probability $p(x \mid y)$ of x under the hypothesis that y has occurred

Union of events

Given two events x, y, the probability of x or y is defined as

$$
p(x \vee y)=p(x)+p(y)-p(x, y)
$$

in particular,

$$
p(x \vee y)=p(x)+p(y)
$$

The same definitions hold for probability distributions.

Discrete random variables

Product rule

The product rule relates joint and conditional probabilities

$$
p(x, y)=p(x \mid y) p(y)=p(y \mid x) p(x)
$$

where $p(x)$ is the marginal probability.
In general,

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{n}\right) & =p\left(x_{2}, \ldots, x_{n} \mid x_{1}\right) p\left(x_{1}\right) \\
& =p\left(x_{3}, \ldots, x_{n} \mid x_{1}, x_{2}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right) \\
& =\cdots \\
& =p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) p\left(x_{n-1} \mid x_{1} \ldots x_{n-2}\right) \cdots p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)
\end{aligned}
$$

Discrete random variables

Sum rule and marginalization
The sum rule relates the joint probability of two events x, y and the probability of one such events $p(y)$ (or $p(y)$)

$$
p(x)=\sum_{y \in \mathcal{Y}} p(x, y)=\sum_{y \in \mathcal{Y}} p(x \mid y) p(y)
$$

Applying the sum rule to derive a marginal probability from a joint probability is usually called marginalization

Discrete random variables

Bayes rule

Since

$$
\begin{aligned}
p(x, y) & =p(x \mid y) p(y) \\
p(x, y) & =p(y \mid x) p(x) \\
p(y) & =\sum_{x \in \mathcal{X}} p(x, y)=\sum_{x \in \mathcal{X}} p(y \mid x) p(x)
\end{aligned}
$$

it results

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}=\frac{p(y \mid x) p(x)}{\sum_{x \in \mathcal{X}} p(y \mid x) p(x)}
$$

Terminology

- $p(x)$: Prior probability of x (before knowing that y occurred)
- $p(x \mid y)$: Posterior of x (if y has occurred)
- $p(y \mid x)$: Likelihood of y given x
- $p(y)$: Evidence of y

Independence

Definition

Two random variables X, Y are independent $(X \Perp Y)$ if their joint probability is equal to the product of their marginals

$$
p(x, y)=p(x) p(y)
$$

or, equivalently,

$$
p(x \mid y)=p(x) \quad p(y \mid x)=p(y)
$$

The condition $p(x \mid y)=p(x)$, in particular, states that, if two variables are independent, knowing the value of one does not add any knowledge about the other one.

Independence

Conditional independence

Two random variables X, Y are conditionally independent w.r.t. a third r.v. $Z(X \Perp Y \mid Z)$ if

$$
p(x, y \mid z)=p(x \mid z) p(y \mid z)
$$

Conditional independence does not imply (absolute) independence, and vice versa.

Continuous random variables

A continuous random variable X can take values from a continuous infinite set \mathcal{X}. Its probability is defined as cumulative distribution function (cdf) $F(x)=p(X \leq x)$.

The probability that X is in an interval $(a, b]$ is then $p(a<X \leq b)=F(b)-F(a)$.

Probability density function

The probability density function (pdf) is defined as $f(x)=\frac{d F(x)}{d x}$. As a consequence,

$$
p(a<X \leq b)=\int_{a}^{b} f(x) d x
$$

and

$$
p(x<X \leq x+d x) \approx f(x) d x
$$

for a sufficiently small $d x$.

Sum rule and continuous random variables

In the case of continuous random variables, their probability density functions relate as follows.

$$
f(x)=\int_{\mathcal{Y}} f(x, y) d y=\int_{y \in \mathcal{Y}} p(x \mid y) p(y) d y
$$

Expectation

Definition

Let x be a discrete random variable with distribution $p(x)$, and let $g: \mathbb{R} \mapsto \mathbb{R}$ be any function: the expectation of $g(x)$ w.r.t. $p(x)$ is

$$
E_{p}[g(x)]=\sum_{x \in V_{x}} g(x) p(x)
$$

If x is a continuous r.v., with probability density $f(x)$, then

$$
E_{f}[g(x)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

Mean value

Particular case: $g(x)=x$

$$
E_{p}[x]=\sum_{x \in V_{x}} x p(x) \quad E_{f}[x]=\int_{-\infty}^{\infty} x f(x) d x
$$

Elementary properties of expectation

- $E[a]=a$ for each $a \in \mathbb{R}$
- $E[a f(x)]=a E[f(x)]$ for each $a \in \mathbb{R}$
- $E[f(x)+g(x)]=E[f(x)]+E[g(x)]$

Variance

Definition

$$
\operatorname{Var}[X]=E\left[(x-E[x])^{2}\right]
$$

We may easily derive:

$$
\begin{aligned}
E\left[(x-E[x])^{2}\right] & =E\left[x^{2}-2 E[x] x+E[x]^{2}\right] \\
& =E\left[x^{2}\right]-2 E[x] E[x]+E[x]^{2} \\
& =E\left[x^{2}\right]-E[x]^{2}
\end{aligned}
$$

Some elementary properties:

- $\operatorname{Var}[a]=0$ for each $a \in \mathbb{R}$
- $\operatorname{Var}[a f(x)]=a^{2} \operatorname{Var}[f(x)]$ for each $a \in \mathbb{R}$

Probability distributions

Probability distribution

Given a discrete random variable $X \in V_{X}$, the corresponding probability distribution is a function $p(x)=$ $P(X=x)$ such that

- $0 \leq p(x) \leq 1$
- $\sum_{x \in V_{X}} p(x)=1$
- $\sum_{x \in A} p(x)=P(x \in A)$, with $A \subseteq V_{X}$

Some definitions

Cumulative distribution

Given a continuous random variable $X \in \mathbb{R}$, the corresponding cumulative probability distribution is a function $F(x)=P(X \leq x)$ such that:

- $0 \leq F(x) \leq 1$
- $\lim _{x \rightarrow-\infty} F(x)=0$
- $\lim _{x \rightarrow \infty} F(x)=1$
- $x \leq y \Rightarrow F(x) \leq F(y)$

Some definitions

Probability density

Given a continuous random variable $X \in \mathbb{R}$ with derivable cumulative distribution $F(x)$, the probability density is defined as

$$
f(x)=\frac{d F(x)}{d x}
$$

By definition of derivative, for a sufficiently small Δx,

$$
\operatorname{Pr}(x \leq X \leq x+\Delta x) \approx f(x) \Delta x
$$

The following properties hold:

- $f(x) \geq 0$
- $\int_{-\infty}^{\infty} f(x) d x=1$
- $\int_{x \in A} f(x) d x=P(X \in A)$

Bernoulli distribution

Definition

Let $x \in\{0,1\}$, then $x \sim \operatorname{Bernoulli}(p)$, with $0 \leq p \leq 1$, if

$$
p(x)= \begin{cases}p & \text { se } x=1 \\ 1-p & \text { se } x=0\end{cases}
$$

or, equivalently,

$$
p(x)=p^{x}(1-p)^{1-x}
$$

Probability that, given a coin with head (H) probability p (and tail probability (T) $1-p$), a coin toss result into $x \in\{H, T\}$.

Mean and variance

$$
E[x]=p \quad \operatorname{Var}[x]=p(1-p)
$$

Extension to multiple outcomes

Assume k possible outcomes (for example a die toss).
In this case, a generalization of the Bernoulli distribution is considered, usualy named categorical distribution.

$$
p(x)=\prod_{j=1}^{k} p_{j}^{x_{j}}
$$

where $\left(p_{1}, \ldots, p_{k}\right)$ are the probabilites of the different outcomes $\left(\sum_{j=1}^{k} p_{j}=1\right)$ and $x_{j}=1$ iff the k-th outcome occurs.

Binomial distribution

Definition

Let $x \in \mathbb{N}$, then $x \sim \operatorname{Binomial}(n, p)$, with $0 \leq p \leq 1$, if

$$
p(x)=\binom{n}{x} p^{x}(1-p)^{n-x}=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}
$$

Probability that, given a coin with head (H) probability p, a sequence of n independent coin tosses result into x heads.

Mean and variance

$$
\begin{aligned}
& E[x]=n p \\
& \operatorname{Var}[x]=n p(1-p)
\end{aligned}
$$

Poisson distribution

Definition

Let $x_{i} \in \mathbb{N}$, then $x \sim \operatorname{Poisson}(\lambda)$, with $\lambda>0$, if

$$
p(x)=e^{-\lambda} \frac{\lambda^{x}}{x!}
$$

Probability that an event with average frequency λ occurs x times in the next time unit.
Mean and variance

$$
\begin{aligned}
& E[x]=\lambda \\
& \operatorname{Var}[x]=\lambda
\end{aligned}
$$

Normal (gaussian) distribution

Definition

Let $x \in \mathbb{R}$, then $x \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$, with $\mu, \sigma \in \mathbb{R}, \sigma \geq 0$, if

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Mean and variance

$$
\begin{aligned}
& E[x]=\mu \\
& \operatorname{Var}[x]=\sigma^{2}
\end{aligned}
$$

Beta distribution

Definition

Let $x \in[0,1]$, then $x \sim \operatorname{Beta}(\alpha, \beta)$, with $\alpha, \beta>0$, if

$$
f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}
$$

where

$$
\Gamma(x)=\int_{0}^{\infty} u^{x-1} e^{u} d u
$$

is a generalization of the factorial to the real field \mathbb{R} : in particolar, $\Gamma(n)=(n-1)$! if $n \in \mathbb{N}$

Mean and variance

$$
\begin{aligned}
& E[x]=\frac{\beta}{\alpha+\beta} \\
& \operatorname{Var}[x]=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}
\end{aligned}
$$

Beta distribution

Multivariate distributions

Definition for $k=2$ discrete variables
Given two discrete r.v. X, Y, their joint distribution is

$$
p(x, y)=P(X=x, Y=y)
$$

The following properties hold:

1. $0 \leq p(x, y) \leq 1$
2. $\sum_{x \in V_{X}} \sum_{y \in V_{Y}} p(x, y)=1$

Multivariate distributions

Definition for $k=2$ variables

Given two continuous r.v. X, Y, their cumulative joint distribution is defined as

$$
F(x, y)=P(X \leq x, Y \leq y)
$$

The following properties hold:

1. $0 \leq F(x, y) \leq 1$
2. $\lim _{x, y \rightarrow \infty} F(x, y)=1$
3. $\lim _{x, y \rightarrow-\infty} F(x, y)=0$

If $F(x, y)$ is derivable everywhere w.r.t. both x and y, joint probability density is

$$
f(x, y)=\frac{\partial^{2} F(x, y)}{\partial x \partial y}
$$

The following property derives

$$
\iint_{(x, y) \in A} f(x, y) d x d y=P((X, Y) \in A)
$$

Covariance

Definition

$$
\operatorname{Cov}[X, Y]=E[(X-E[X])(Y-E[Y])]
$$

As for the variance, we may derive

$$
\begin{aligned}
\operatorname{Cov}[X, Y] & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y-X E[Y]-Y E[X]+E[X] E[Y]] \\
& =E[X Y]-E[X] E[Y]-E[Y] E[X]+E[E[X] E[Y]] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

Moreover, the following properties hold:

1. $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y]$
2. If $X \Perp Y$ then $\operatorname{Cov}[X, Y]=0$

Random vectors

Definition

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a set of r.v.: we may then define a random vector as

$$
\mathbf{x}=\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{2}
\end{array}\right) X_{n}
$$

Expectation and random vectors

Definition

Let $g: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ be any function. It may be considered as a vector of functions

$$
g(\mathrm{x})=\left(\begin{array}{c}
\left.g_{1}(\mathrm{x})\right) \\
\vdots \\
\left.g_{2}(\mathrm{x})\right)
\end{array}\right) g_{m}(\mathbf{x})
$$

where $\mathrm{x} \in \mathbb{R}^{n}$.
The expectation of g is the vector of the expectations of all functions g_{i},

$$
E[g(\mathbf{x})]=\left(\begin{array}{c}
E\left[g_{1}(\mathbf{x})\right] \\
\vdots \\
E\left[g_{2}(\mathbf{x})\right]
\end{array}\right) E\left[g_{m}(\mathbf{x})\right]
$$

Covariance matrix

Definition

Let $\mathbf{x} \in \mathbb{R}^{n}$ be a random vector: its covariance matrix Σ is a matrix $n \times n$ such that, for each $1 \leq i, j \leq n$, $\Sigma_{i j}=\operatorname{Cov}\left[X_{i}, X_{j}\right]=E\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]$, where $\mu_{i}=E\left[X_{i}\right], \mu_{j}=E\left[X_{j}\right]$.

Hence,

$$
\begin{aligned}
\Sigma & =\left[\begin{array}{cccc}
\operatorname{Cov}\left[X_{1}, X_{1}\right] & \operatorname{Cov}\left[X_{1}, X_{2}\right] & \cdots & \operatorname{Cov}\left[X_{1}, X_{n}\right] \\
\operatorname{Cov}\left[X_{2}, X_{1}\right] & \operatorname{Cov}\left[X_{2}, X_{2}\right] & \cdots & \operatorname{Cov}\left[X_{2}, X_{n}\right] \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Cov}\left[X_{n}, X_{1}\right] & \operatorname{Cov}\left[X_{n}, X_{2}\right] & \cdots & \operatorname{Cov}\left[X_{n}, X_{n}\right]
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\operatorname{Var}\left[X_{1}\right] & \cdots & \operatorname{Cov}\left[X_{1}, X_{n}\right] \\
\vdots & \ddots & \vdots \\
\operatorname{Cov}\left[X_{n}, X_{1}\right] & \cdots & \operatorname{Var}\left[X_{n}\right]
\end{array}\right]
\end{aligned}
$$

Covariance matrix

By definition of covariance,

$$
\begin{aligned}
\Sigma & =\left[\begin{array}{ccc}
E\left[X_{1}^{2}\right]-E\left[X_{1}\right]^{2} & \cdots & E\left[X_{1} X_{n}\right]-E\left[X_{1}\right] E\left[X_{n}\right] \\
\vdots & \ddots & \vdots \\
E\left[X_{n} X_{1}\right]-E\left[X_{n}\right] E\left[X_{1}\right] & \cdots & E\left[X_{n}^{2}\right]-E\left[X_{n}\right] E\left[X_{n}\right]
\end{array}\right] \\
& =E\left[\mathbf{X X}^{T}\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{T}
\end{aligned}
$$

where $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)^{T}$ is the vector of expectations of the random variables X_{1}, \ldots, X_{n}.

Properties

The covariance matrix is necessarily:

- semidefinite positive: that is, $\mathbf{z}^{T} \Sigma \mathbf{z} \geq 0$ for any $\mathbf{z} \in \mathbb{R}^{n}$
- symmetric: $\operatorname{Cov}\left[X_{i}, X_{j}\right]=\operatorname{Cov}\left[X_{j}, X_{i}\right]$ for $1 \leq i, j \leq n$

Correlation

For any pair of r.v. X, Y, the Pearson correlation coefficient is defined as

$$
\rho_{X, Y}=\frac{\operatorname{Cov}[X, Y]}{\sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}}
$$

Note that, if $Y=a X+b$ for some pair a, b, then

$$
\operatorname{Cov}[X, Y]=E[(X-\mu)(a X+b-a \mu-b)]=E\left[a(X-\mu)^{2}\right]=a \operatorname{Var}[X]
$$

and, since

$$
\operatorname{Var}[Y]=(a X-a \mu)^{2}=a^{2} \operatorname{Var}[X]
$$

it results $\rho_{X, Y}=1$. As a corollary, $\rho_{X, X}=1$.
Observe that if X and Y are independent, $p(X, Y)=p(X) p(Y)$: as a consequence, $\operatorname{Cov}[X, Y]=0$ and $\rho_{X, Y}=0$. That is, independent variables have null covariance and correlation.

The contrary is not true: null correlation does not imply indepedence: see for example X uniform in $[-1,1]$ and $Y=X^{2}$.

Correlation matrix

The correlation matrix of $\left(X_{1}, \ldots, X_{n}\right)^{T}$ is defined as

$$
\begin{aligned}
\Sigma & =\left[\begin{array}{cccc}
\rho_{X_{1}, X_{1}} & \rho_{X_{1}, X_{2}} & \cdots & \rho_{X_{1}, X_{n}} \\
\vdots & \ddots & \vdots & \\
\rho_{X_{n}, X_{1}} & \rho_{X_{n}, X_{2}} & \cdots & \rho_{X_{n}, X_{n}}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & \rho_{X_{1}, X_{2}} & \cdots & \rho_{X_{1}, X_{n}} \\
\vdots & \ddots & \vdots & \\
\rho_{X_{n}, X_{1}} & \rho_{X_{n}, X_{2}} & \cdots & 1
\end{array}\right]
\end{aligned}
$$

Multinomial distribution

Definition

Let $x_{i} \in \mathbb{N}$ for $i=1, \ldots, k$, then $\left(x_{1}, \ldots, x_{k}\right) \sim \operatorname{Mult}\left(n, p_{1}, \ldots, p_{k}\right)$ with $0 \leq p \leq 1$, if

$$
p\left(x_{1}, \ldots, x_{k}\right)=\frac{n!}{x_{1}!\ldots x_{k}!} \prod_{i=1}^{k} p_{i}^{x_{i}} \quad \text { con } \sum_{i=1}^{k} x_{i}=n
$$

Generalization of the binomial distribution to $k \geq 2$ possible toss results t_{1}, \ldots, t_{k} with probabilities p_{1}, \ldots, p_{k} ($\sum_{i=1}^{k} p_{i}=1$).

Probability that in a sequence of n independent tosses p_{1}, \ldots, p_{k}, exactly x_{i} tosses have result $t_{i}(i=1, \ldots, k)$.

Mean and variance

$$
E\left[x_{i}\right]=n p_{i} \quad \operatorname{Var}\left[x_{i}\right]=n p_{i}\left(1-p_{i}\right) \quad i=1, \ldots, k
$$

Dirichlet distribution

Definition

Let $x_{i} \in[0,1]$ for $i=1, \ldots, k$, then $\left(x_{1}, \ldots, x_{k}\right) \sim \operatorname{Dirichlet}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ if

$$
f\left(x_{1}, \ldots, x_{k}\right)=\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{k} x_{i}^{\alpha_{i}-1}=\frac{1}{\Delta\left(\alpha_{1}, \ldots, \alpha_{k}\right)} \prod_{i=1}^{k} x_{i}^{\alpha_{i}-1}
$$

with $\sum_{i=1}^{k} x_{i}=1$.
Generalization of the Beta distribution to the multinomial case $k \geq 2$.
A random variable $\boldsymbol{\phi}=\left(\phi_{1}, \ldots, \phi_{K}\right)$ with Dirichlet distribution takes values on the $K-1$ dimensional simplex (set of points $\mathbf{x} \in \mathbb{R}^{K}$ such that $x_{i} \geq 0$ for $i=1, \ldots, K$ and $\sum_{i=1}^{K} x_{i}=1$)

Mean and variance

$$
E\left[x_{i}\right]=\frac{\alpha_{i}}{\alpha_{0}} \quad \operatorname{Var}\left[x_{i}\right]=\frac{\alpha_{i}\left(\alpha_{0}-\alpha_{i}\right)}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)} \quad i=1, \ldots, k
$$

with $\alpha_{0}=\sum_{j=1}^{k} \alpha_{j}$

Dirichlet distribution

Examples of Dirichlet distributions with $k=3$

Dirichlet distribution

Symmetric Dirichlet distribution

Particular case, where $\alpha_{i}=\alpha$ for $i=1, \ldots, K$

$$
p\left(\phi_{1}, \ldots, \phi_{K} \mid \alpha, K\right)=\operatorname{Dir}(\boldsymbol{\phi} \mid \alpha, K)=\frac{\Gamma(K \alpha)}{\Gamma(\alpha)^{K}} \prod_{i=1}^{K} \phi_{i}^{\alpha-1}=\frac{1}{\Delta_{K}(\alpha)} \prod_{i=1}^{K} \phi_{i}^{\alpha-1}
$$

Mean and variance

In this case,

$$
E\left[x_{i}\right]=\frac{1}{K} \quad \operatorname{Var}\left[x_{i}\right]=\frac{K-1}{K^{2}(\alpha+1)} \quad i=1, \ldots, K
$$

2 The normal distribution

Gaussian distribution

- Properties
- Analytically tractable
- Completely specified by the first two moments
- A number of processes are asintotically gaussian (theorem of the Central Limit)
- Linear transformation of gaussians result in a gaussian

Univariate gaussian

For $x \in \mathbb{R}$:

$$
\begin{aligned}
p(x) & =\mathcal{N}\left(\mu, \sigma^{2}\right) \\
& =\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

with

$$
\begin{aligned}
\mu & =E[x]=\int_{-\infty}^{\infty} x p(x) d x \\
\sigma^{2} & =E\left[(x-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} p(x) d x
\end{aligned}
$$

Univariate gaussian

A univariate gaussian distribution has about 95% of its probability in the interval $|x-\mu| \geq 2 \sigma$.

Multivariate gaussian

For $\mathbf{x} \in \mathbb{R}^{d}$:

$$
\begin{aligned}
p(\mathbf{x}) & =\mathcal{N}(\boldsymbol{\mu}, \Sigma) \\
& =\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})}
\end{aligned}
$$

where

$$
\begin{aligned}
\boldsymbol{\mu} & =E[\mathbf{x}]=\int \mathbf{x} p(\mathbf{x}) d \mathbf{x} \\
\Sigma & =E\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{T}\right]=\int(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{T} p(\mathbf{x}) d \mathbf{x}
\end{aligned}
$$

Multivariate gaussian

- $\boldsymbol{\mu}:$ expectation (vector of size d)
- Σ : matrix $d \times d$ of covariance. $\sigma_{i j}=E\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]$

Multivariate gaussian

Mahalanobis distance

- Probability is a function of \mathbf{x} through the quadratic form

$$
\Delta^{2}=(\mathbf{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})
$$

- Δ is the Mahalanobis distance from $\boldsymbol{\mu}$ to \mathbf{x} : it reduces to the euclidean distance if $\Sigma=\mathbf{I}$.
- Constant probability on the curves (ellipsis) at constant Δ.

Multivariate gaussian

In general,

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x}=\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)^{T}=\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{x}
$$

this implies that

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x}=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\frac{1}{2} \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{x}=\mathbf{x}^{T}\left(\frac{1}{2} \mathbf{A}+\frac{1}{2} \mathbf{A}^{T}\right) \mathbf{x}
$$

- $\mathrm{A}+\mathrm{A}^{T}$ is necessarily symmetric, as a consequence, Σ is symmetric
- as a consequence, its inverse Σ^{-1} does exist.

Diagonal covariance matrix

Assume a diagonal covariance matrix:

$$
\Sigma=\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{n}^{2}
\end{array}\right]
$$

then, $|\Sigma|=\sigma_{1}^{2} \sigma_{n}^{2} \ldots \sigma_{n}^{2}$ and

$$
\Sigma^{-1}=\left[\begin{array}{cccc}
\frac{1}{\sigma_{1}^{2}} & 0 & \cdots & 0 \\
0 & \frac{1}{\sigma_{2}^{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{\sigma_{n}^{2}}
\end{array}\right]
$$

Diagonal covariance matrix

Easy to verify that

$$
(\mathbf{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})=\sum_{i=1}^{n} \frac{\left(x_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

and

$$
f(\mathbf{x} \mid \boldsymbol{\mu}, \Sigma)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma_{i}} \exp \left(-\frac{1}{2} \frac{\left(x_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}\right)
$$

The multivariate distribution turns out to be the product of d univariate gaussians, one for each coordinate x_{i}.

Identity covariance matrix

The distribution is the product of d "copies" of the same univariate gaussian, one copy for each coordinate x_{i}.

Spectral properties of Σ

Σ is real and symmetric: then,

1. all its eigenvalues λ_{i} are in \mathbb{R}
2. there exists a corresponding set of orthonormal eigenvectors i (i.e. such that $\left(i^{T} j=1\right.$ if $i=j$ and 0 otherwise)

Let us define the $d \times d$ matrix \mathbf{U} whose columns correspond to the orthonormal eigenvectors

$$
\mathrm{U}=\left(\begin{array}{lll}
\mid & & \mid \\
1 & \cdots & 2 \\
\mid & & \mid
\end{array}\right) d
$$

and the diagonal $d \times d$ matrix $\boldsymbol{\Lambda}$ with eigenvalues on the diagonal

$$
\boldsymbol{\Lambda}=\left[\begin{array}{lllll}
\lambda_{1} & & & & \\
& \lambda_{2} & & 0 & \\
& & \lambda_{3} & & \\
& 0 & & \ddots & \\
& & & & \lambda_{d}
\end{array}\right]
$$

Multivariate gaussian

Decomposition of Σ

By the definition of \mathbf{U} and $\boldsymbol{\Lambda}$, and since $\Sigma i=i \lambda_{i}$ for all $i=1, \ldots, d$, we may write

$$
\Sigma \mathrm{U}=\mathbf{U} \boldsymbol{\Lambda}
$$

Since the eigenvectors u_{i} are orthonormal, $\mathbf{U}^{-1}=\mathbf{U}^{T}$ by the properties of orthonormal matrices: as a consequence

$$
\Sigma=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{-1}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T}=\sum_{i=1}^{d} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{T}
$$

Then, its inverse matrix is a diagonal matrix itself

$$
\Sigma^{-1}=\sum_{i=1}^{d} \frac{1}{\lambda_{i}} \mathbf{u}_{i} \mathbf{u}_{i}^{T}
$$

Multivariate gaussian

Density as a function of eigenvalues and eigenvectors

As shown before,

$$
\begin{aligned}
\Delta^{2} & =(\mathbf{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})=(\mathbf{x}-\boldsymbol{\mu})^{T} \sum_{i=1}^{d} \frac{1}{\lambda_{i}} i i^{T}(\mathrm{x}-\boldsymbol{\mu}) \\
& =\sum_{i=1}^{d} \frac{1}{\lambda_{i}}(\mathbf{x}-\boldsymbol{\mu})^{T} i i^{T}(\mathbf{x}-\boldsymbol{\mu})=\sum_{i=1}^{d} \frac{1}{\lambda_{i}}\left(i^{T}(\mathbf{x}-\boldsymbol{\mu})\right)^{T} i^{T}(\mathbf{x}-\boldsymbol{\mu}) \\
& =\sum_{i=1}^{d} \frac{\left(i^{T}(\mathbf{x}-\boldsymbol{\mu})\right)^{2}}{\lambda_{i}}
\end{aligned}
$$

Let $y_{i}=i^{T}(\mathbf{x}-\boldsymbol{\mu})$: then

$$
(\mathbf{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})=\sum_{i=1}^{n} \frac{y_{i}^{2}}{\lambda_{i}}
$$

and

$$
f(\mathbf{x} \mid \boldsymbol{\mu}, \Sigma)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \lambda_{i}}} \exp \left(-\frac{1}{2} \frac{y_{i}^{2}}{\lambda_{i}}\right)
$$

Multivariate gaussian

y_{i} is the scalar product of $\mathbf{x}-\boldsymbol{\mu}$ and the i-th eigenvector i, that is the length of the projection of $\mathbf{x}-\boldsymbol{\mu}$ along the direction of the eigenvector. Since eigenvectors are orthonormal, they are the basis of a new space, and for each vector $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$, the values $\left(y_{1}, \ldots, y_{d}\right)$ are the coordinates of \mathbf{x} in the eigenvector space.

Eigenvectors of Σ correspond to the axes of the distribution; each eigenvalue is a scale factor along the axis of the corresponding eigenvector.

Linear transformations

Let $\mathbf{x} \in \mathbb{R}^{d}, \mathbf{A} \in \mathbb{R}^{d \times k}, \mathbf{y}=\mathbf{A}^{T} \mathbf{x} \in \mathbb{R}^{k}$: then, if \mathbf{x} is normally distributed, so is \mathbf{y}.
In particular, if the distribution of \mathbf{x} has mean $\boldsymbol{\mu}$ and covariance matrix Σ, the distribution of \mathbf{y} has mean $\mathbf{A}^{T} \boldsymbol{\mu}$ and covariance matrix $\mathbf{A}^{T} \Sigma \mathbf{A}$.

$$
\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma) \Rightarrow \mathbf{y} \sim \mathcal{N}\left(\mathbf{A}^{T} \boldsymbol{\mu}, \mathbf{A}^{T} \Sigma \mathbf{A}\right)
$$

Marginal and conditional of a joint gaussian

Let $\mathbf{x}_{1} \in \mathbb{R}^{h}, \mathbf{x}_{2} \in \mathbb{R}^{k}$ be such that $\left[\frac{\mathbf{x}_{1}}{\mathbf{x}_{2}}\right] \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ and let

- $\boldsymbol{\mu}=\left[\frac{\boldsymbol{\mu}_{1}}{\boldsymbol{\mu}_{2}}\right]$ with $\boldsymbol{\mu}_{1} \in \mathbb{R}^{h}, \boldsymbol{\mu}_{2} \in \mathbb{R}^{k}$
- $\Sigma=\left[\begin{array}{c|c}\Sigma_{11} & \Sigma_{12} \\ \hline \Sigma_{21} & \Sigma_{22}\end{array}\right]$ with $\Sigma_{11} \in \mathbb{R}^{h \times h}, \Sigma_{12} \in \mathbb{R}^{h \times k}, \Sigma_{21} \in \mathbb{R}^{k \times h}, \Sigma_{22} \in \mathbb{R}^{k \times k}$
then
- the marginal distribution of \mathbf{x}_{1} is $\mathbf{x}_{1} \sim \mathcal{N}\left(\boldsymbol{\mu}_{1}, \Sigma_{11}\right)$
- the conditional distribution of \mathbf{x}_{1} given \mathbf{x}_{2} is $\mathbf{x}_{1} \mid \mathbf{x}_{2} \sim \mathcal{N}\left(\boldsymbol{\mu}_{1 \mid 2}, \Sigma_{1 \mid 2}\right)$ with

$$
\begin{aligned}
& \boldsymbol{\mu}_{1 \mid 2}=\boldsymbol{\mu}_{1}-\Sigma_{12} \Sigma_{22}^{-1}\left(\mathbf{x}_{2}-\boldsymbol{\mu}_{2}\right) \\
& \Sigma_{1 \mid 2}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
\end{aligned}
$$

Bayes' formula and gaussians

Let \mathbf{x}, \mathbf{y} be such that

$$
\mathbf{x} \sim \mathcal{N}\left(\boldsymbol{\mu}, \Sigma_{1}\right) \quad \text { and } \quad \mathbf{y} \mid \mathbf{x} \sim \mathcal{N}\left(\mathbf{A x}+\mathbf{b}, \Sigma_{2}\right)
$$

That is, the marginal distribution of \mathbf{x} (the prior) is a gaussian and the conditional distribution of \mathbf{y} w.r.t. \mathbf{x} (the likelihood) is also a gaussian with (conditional) mean given by a linear combination on \mathbf{x}. Then, both the the conditional distribution of \mathbf{x} w.r.t. \mathbf{y} (the posterior) and the marginal distribution of y (the evidence) are gaussian.

$$
\begin{aligned}
& \mathbf{y} \sim \mathcal{N}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \Sigma_{2}+\mathbf{A} \Sigma_{1} \mathbf{A}^{T}\right) \\
& \mathbf{x} \mid \mathbf{y} \sim \mathcal{N}(\hat{\boldsymbol{\mu}}, \hat{\Sigma})
\end{aligned}
$$

where

$$
\begin{aligned}
& \hat{\boldsymbol{\mu}}=\left(\Sigma_{1}^{-1}+\mathbf{A}^{T} \Sigma_{2}^{-1} \mathbf{A}\right)^{-1}\left(\mathbf{A}^{T} \Sigma_{2}^{-1}(\mathbf{y}-\mathbf{b})+\Sigma_{1}^{-1} \boldsymbol{\mu}\right) \\
& \hat{\Sigma}=\left(\Sigma_{1}^{-1}+\mathbf{A}^{T} \Sigma_{2}^{-1} \mathbf{A}\right)^{-1}
\end{aligned}
$$

3 Bayesian statistics

Bayesian statistics

Classical (frequentist) statistics

- Interpretation of probability as frequence of an event over a sufficiently long sequence of reproducible experiments.
- Parameters seen as constants to determine

Bayesian statistics

- Interpretation of probability as degree of belief that an event may occur.
- Parameters seen as random variables

Bayes' rule

Cornerstone of bayesian statistics is Bayes' rule

$$
p(X=x \mid \Theta=\theta)=\frac{p(\Theta=\theta \mid X=x) p(X=x)}{p(\Theta=\theta)}
$$

Given two random variables X, Θ, it relates the conditional probabilities $p(X=x \mid \Theta=\theta)$ and $p(\Theta=\theta \mid X=x)$.

Bayesian inference

Given an observed dataset X and a family of probability distributions $p(x \mid \Theta)$ with parameter Θ (a probabilistic model), we wish to find the parameter value which best allows to describe X through the model.

In the bayesian framework, we deal with the distribution probability $p(\Theta)$ of the parameter Θ considered here as a random variable. Bayes' rule states that

$$
p(\Theta \mid \mathbf{X})=\frac{p(\mathbf{X} \mid \Theta) p(\Theta)}{p(\mathbf{X})}
$$

Bayesian inference

Interpretation

- $p(\Theta)$ stands as the knowledge available about Θ before \mathbf{X} is observed (a.k.a. prior distribution)
- $p(\Theta \mid \mathbf{X})$ stands as the knowledge available about Θ after \mathbf{X} is observed (a.k.a. posterior distribution)
- $p(\mathrm{X} \mid \Theta)$ measures how much the observed data are coherent to the model, assuming a certain value Θ of the parameter (a.k.a. likelihood)
- $p(\mathbf{X})=\sum_{\Theta^{\prime}} p\left(\mathbf{X} \mid \Theta^{\prime}\right) p\left(\Theta^{\prime}\right)$ is the probability that \mathbf{X} is observed, considered as a mean w.r.t. all possible values of Θ (a.k.a. evidence)

Conjugate distributions

Definition

Given a likelihood function $p(y \mid x)$, a (prior) distribution $p(x)$ is conjugate to $p(y \mid x)$ if the posterior distribution $p(x \mid y)$ is of the same type as $p(x)$.

Consequence

If we look at $p(x)$ as our knowledge of the random variable x before knowing y and with $p(x \mid y)$ our knowledge once y is known, the new knowledge can be expressed as the old one.

Examples of conjugate distributions: beta-bernoulli

The Beta distribution is conjugate to the Bernoulli distribution. In fact, given $x \in[0,1]$ and $y \in\{0,1\}$, if

$$
\begin{aligned}
p(\phi \mid \alpha, \beta) & =\operatorname{Beta}(\phi \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \phi^{\alpha-1}(1-\phi)^{\beta-1} \\
p(x \mid \phi) & =\phi^{x}(1-\phi)^{1-x}
\end{aligned}
$$

then

$$
p(\phi \mid x)=\frac{1}{Z} \phi^{\alpha-1}(1-\phi)^{\beta-1} \phi^{x}(1-\phi)^{1-x}=\operatorname{Beta}(x \mid \alpha+x-1, \beta-x)
$$

where Z is the normalization coefficient

$$
Z=\int_{0}^{1} \phi^{\alpha+x-1}(1-\phi)^{\beta-x} d \phi=\frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+x) \Gamma(\beta-x+1)}
$$

Examples of conjugate distributions: beta-binomial

The Beta distribution is also conjugate to the Binomial distribution. In fact, given $x \in[0,1]$ and $y \in\{0,1\}$, if

$$
\begin{aligned}
& p(\phi \mid \alpha, \beta)=\operatorname{Beta}(\phi \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \phi^{\alpha-1}(1-\phi)^{\beta-1} \\
& p(k \mid \phi, N)=\binom{N}{k} \phi^{k}(1-\phi)^{N-k}=\frac{N!}{(N-k)!k!} \phi^{N}(1-\phi)^{N-k}
\end{aligned}
$$

then

$$
p(\phi \mid k, N, \alpha, \beta)=\frac{1}{Z} \phi^{\alpha-1}(1-\phi)^{\beta-1} \phi^{k}(1-\phi)^{N-k}=\operatorname{Beta}(\phi \mid \alpha+k-1, \beta+N-k-1)
$$

with the normalization coefficient

$$
Z=\int_{0}^{1} \phi^{\alpha+k-1}(1-\phi)^{\beta+N-k-1} d \phi=\frac{\Gamma(\alpha+\beta+N)}{\Gamma(\alpha+k) \Gamma(\beta+N-k)}
$$

Multivariate distributions

Multinomial

Generalization of the binomial

$$
p\left(n_{1}, \ldots, n_{K} \mid \phi_{1}, \ldots, \phi_{K}, n\right)=\frac{n!}{\prod_{i=1}^{K} n_{i}!} \prod_{i=1}^{K} \phi_{i}^{n_{i}} \quad \sum_{i=1}^{k} n_{i}=n, \sum_{i=1}^{k} \phi_{i}=1
$$

the case $n=1$ is a generalization of the Bernoulli distribution

$$
p\left(x_{1}, \ldots, x_{K} \mid \phi_{1}, \ldots, \phi_{K}\right)=\prod_{i=1}^{K} \phi_{i}^{x_{i}} \quad \forall i: x_{i} \in\{0,1\}, \sum_{i=1}^{K} x_{i}=1, \sum_{i=1}^{K} \phi_{i}=1
$$

Likelihood of a multinomial

$$
p\left(\mathrm{X} \mid \phi_{1}, \ldots, \phi_{K}\right) \propto \prod_{i=1}^{N} \prod_{j=1}^{K} \phi_{j}^{x_{i j}}=\prod_{j=1}^{K} \phi_{j}^{N_{j}}
$$

Conjugate of the multinomial

Dirichlet distribution

The conjugate of the multinomial is the Dirichlet distribution, generalization of the Beta to the case $K>2$

$$
\begin{aligned}
p\left(\phi_{1}, \ldots, \phi_{K} \mid \alpha_{1}, \ldots, \alpha_{K}\right) & =\operatorname{Dir}(\boldsymbol{\phi} \mid \boldsymbol{\alpha})=\frac{\Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right)}{\prod_{i=1}^{K} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{K} \phi_{i}^{\alpha_{i}-1} \\
& =\frac{1}{Z^{\prime}} \prod_{i=1}^{K} \phi_{i}^{\alpha_{i}-1}
\end{aligned}
$$

with $\alpha_{i}>0$ for $i=1, \ldots, K$

Random variables and Dirichlet distribution

A random variable $\boldsymbol{\phi}=\left(\phi_{1}, \ldots, \phi_{K}\right)$ with Dirichlet distribution takes values on the $K-1$ dimensional simplex (set of points $\mathbf{x} \in \mathbb{R}^{K}$ such that $x_{i} \geq 0$ for $i=1, \ldots, K$ and $\sum_{i=1}^{K} x_{i}=1$)

Examples of conjugate distributions: dirichlet-multinomial

Assume $\boldsymbol{\phi} \sim \operatorname{Dir}(\boldsymbol{\phi} \mid \boldsymbol{\alpha})$ and $z \sim \operatorname{Mult}(z \mid \boldsymbol{\phi})$. Then,

$$
\begin{aligned}
p(\phi \mid z, \boldsymbol{\alpha}) & =\frac{p(z \mid \boldsymbol{\phi}) p(\boldsymbol{\phi} \mid \boldsymbol{\alpha})}{p(z \mid \boldsymbol{\alpha})}=\frac{1}{Z} \frac{1}{Z^{\prime}} \frac{1}{Z^{\prime \prime}} \prod_{i=1}^{K} \phi_{i}^{z_{i}} \prod_{i=1}^{K} \phi_{i}^{\alpha_{i}-1} \\
& =\frac{1}{Z^{\prime \prime \prime}} \prod_{i=1}^{K} \phi_{i}^{\alpha_{i}+z_{i}-1}=\operatorname{Dir}\left(\boldsymbol{\phi} \mid \boldsymbol{\alpha}^{\prime}\right)
\end{aligned}
$$

where $\boldsymbol{\alpha}^{\prime}=\left(\alpha_{1}+z_{1}, \ldots, \alpha_{K}+z_{K}\right)$

Text modeling

Unigram model

Collection W of N term occurrences: N observations of a same random variable, with multinomial distribution over a dictionary \mathbf{V} of size V.

$$
p(\mathbf{W} \mid \boldsymbol{\phi})=L(\boldsymbol{\phi} \mid \mathbf{W})=\prod_{i=1}^{V} \phi_{i}^{N_{i}} \quad \sum_{i=1}^{V} \phi_{i}=1, \sum_{i=1}^{V} N_{i}=N
$$

Parameter model

Use of a Dirichlet distribution, conjugate to the multinomial

$$
\begin{aligned}
p(\boldsymbol{\phi} \mid \boldsymbol{\alpha}) & =\operatorname{Dir}(\boldsymbol{\phi} \mid \boldsymbol{\alpha}) \\
p(\boldsymbol{\phi} \mid \mathbf{W}, \boldsymbol{\alpha}) & =\operatorname{Dir}(\boldsymbol{\phi} \mid \boldsymbol{\alpha}+\mathbf{N})
\end{aligned}
$$

Information theory

Let X be a discrete random variable:

- define a measure $h(x)$ of the information (surprise) of observing $X=x$
- requirements:
- likely events provide low surprise, while rare events provide high surprise: $h(x)$ is inversely proportional to $p(x)$
- X, Y independent: the event $X=x, Y=y$ has probability $p(x) p(y)$. Its surprise is the sum of the surprise for $X=x$ and for $Y=y$, that is, $h(x, y)=h(x)+h(y)$ (information is additive)
this results into $h(x)=-\log x$ (usually base 2)

Entropy

A sender transmits the value of X to a receiver: the expected amount of information transmitted (w.r.t. $p(x)$) is the entropy of X

$$
H(x)=-\sum_{x} p(x) \log _{2} p(x)
$$

- lower entropy results from more sharply peaked distributions
- the uniform distribution provides the highest entropy

Entropy is a measure of disorder.

Entropy, some properties

- $p(x) \in[0,1]$ implies $p(x) \log _{2} p(x) \leq 0$ and $H(X) \geq 0$
- $H(X)=0$ if there exists x such that $p(x)=1$

Maximum entropy

Given a fixed number k of outcomes, the distribution p_{1}, \ldots, p_{k} with maximum entropy is derived by maximizing $H(X)$ under the constraint $\sum_{i=1}^{k} p_{i}=1$. By using Lagrange multipliers, this amounts to maximizing

$$
-\sum_{i=1}^{k} p_{i} \log _{2} p_{i}+\lambda\left(\sum_{i=1}^{k} p_{i}-1\right)
$$

Setting the derivative of each p_{i} to 0 ,

$$
0=-\log _{2} p_{i}-\log _{2} e+\lambda
$$

results into $p_{i}=2^{\lambda}-e$ for each i, that is into the uniform distribution $p_{i}=\frac{1}{k}$ and $H(X)=\log _{2} k$

Entropy, some properties

$H(X)$ is a lower bound on the expected number of bits needed to encode the values of X

- trivial approach: code of length $\log _{2} k$ (assuming uniform distribution of values for X)
- for non-uniform distributions, better coding schemes by associating shorter codes to likely values of X

Conditional entropy

Let X, Y be discrete r.v. : for a pair of values x, y the additional information needed to specify y if x is known is $-\ln p(y \mid x)$.

The expected additional information needed to specify the value of Y if we assume the value of X is known is the conditional entropy of Y given X

$$
H(Y \mid X)=-\sum_{x} \sum_{y} p(x, y) \ln p(y \mid x)
$$

Clearly, since $\ln p(y \mid x)=\ln p(x, y)-\ln p(x)$

$$
H(X, Y)=H(Y \mid X)+H(X)
$$

that is, the information needed to describe (on the average) the values of X and Y is the sum of the information needed to describe the value of X plus that needed to describe the value of Y is X is known.

KL divergence

Assume the distribution $p(x)$ of X is unknown, and we have modeled is as an approximation $q(x)$.
If we use $q(x)$ to encode values of X we need an average length $-\sum_{x} p(x) \ln q(x)$, while the minimum (known $p(x))$ is $-\sum_{x} p(x) \ln p(x)$.

The additional amount of information needed, due to the approximation of $p(x)$ through $q(x)$ is the KullbackLeibler divergence

$$
\begin{aligned}
K L(p \| q) & =-\sum_{x} p(x) \ln q(x)+\sum p(x) \ln p(x) \\
& =-\sum_{x} p(x) \ln \frac{q(x)}{p(x)}
\end{aligned}
$$

$K L(p \| q)$ measures the difference between the distributions p and q.

- $K L(p \| p)=0$
- $K L(p \| q) \neq K L(q \| p)$: the function is not symmetric, it is not a distance (it would be $d(x, y)=d(y, x)$)

Convexity

A function is convex (in an interval $[a, b]$) if, for all $0 \leq \lambda \leq 1$, the following inequality holds

$$
f(\lambda a+(1-\lambda) b) \leq \lambda f(a)+(1-\lambda) f(b)
$$

- $\lambda a+(1-\lambda) b$ is a point $x \in[a, b]$ and $f(\lambda a+(1-\lambda) b)$ is the corresponding value of the function
- $\lambda f(a)+(1-\lambda) f(b)=f(x)$ is the value at $\lambda a+(1-\lambda) b$ of the chord from $(a, f(a))$ to $(b, f(b))$.

Jensen's inequality and KL divergence

- If $f(x)$ is a convex function, the Jensen's inequality holds for any set of points x_{1}, \ldots, x_{M}

$$
\left.f\left(\sum_{i=1}^{M} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{M} \lambda_{i} f\left(x_{i}\right)\right)
$$

where $\lambda_{i} \geq 0$ for all i and $\sum_{i=1}^{M} \lambda_{i}=1$.

- In particular, if $\lambda_{i}=p\left(x_{i}\right)$,

$$
f(E[x]) \leq E[f(x)]
$$

- if x is a continuous variable, this results into

$$
f\left(\int x p(x) d x\right) \leq \int f(x) p(x) d x
$$

- applying the inequality to $K L(p \| q)$, since the logarithm is convex,

$$
K L(p \| q)=-\int p(x) \ln \frac{q(x)}{p(x)} d x \geq-\ln \int q(x) d x=0
$$

thus proving the $K L$ is always non-negative.

Applying KL divergence

- $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, dataset generated by a unknown distribution $p(x)$
- we want to infer the parameters of a probabilistic model $q_{\theta}(x \mid \theta)$
- approach: minimize

$$
\begin{aligned}
K L\left(p \| q_{\theta}\right) & =-\sum_{x} p(x) \ln \frac{q(x \mid \theta)}{p(x)} \\
& \approx-\frac{1}{n} \sum_{i=1}^{n} \ln \frac{q\left(x_{i} \mid \theta\right)}{p\left(x_{i}\right)} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\ln p\left(x_{i}\right)-\ln q\left(x_{i} \mid \theta\right)\right)
\end{aligned}
$$

First term is independent of θ, while the second one is the negative \log-likelihood of \mathbf{x}. The value of θ which minimizes $K L\left(p \| q_{\theta}\right)$ also maximizes the log-likelihood.

Mutual information

- Measure of the independence between X and Y

$$
I(X, Y)=K L(p(X, Y) \| p(X), p(Y))=-\sum_{x} \sum_{y} p(x, y) \ln \frac{p(x) p(y)}{p(x, y)}
$$

additional encoding length if independence is assumed

- We have:

$$
\begin{aligned}
I(X, Y) & =-\sum_{x} \sum_{y} p(x, y) \ln \frac{p(x) p(y)}{p(x, y)} \\
& =-\sum_{x} \sum_{y} p(x, y) \ln \frac{p(x) p(y)}{p(x \mid y) p(y)} \\
& =-\sum_{x} \sum_{y} p(x, y) \ln \frac{p(x)}{p(x \mid y)} \\
& =-\sum_{x} \sum_{y} p(x, y) \ln p(x)+\sum_{x} \sum_{y} p(x, y) \ln p(x \mid y)=H(X)-H(X \mid Y)
\end{aligned}
$$

- Similarly, it derives $I(X, Y)=H(Y)-H(Y \mid X)$

