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Probabilistic classification methods recap

The application ofprobabilistic classifier requires that che (at least approximate) knowledge of a suitable distribu-
tion is derived from the training set

+ the class conditional distribution p(C%|x) for each class Cf, in the discriminative case, where an item x shall
be assigned to Cj if
i = argmax p(Cy|x)
k

« the class conditional distribution p(x|Cy) (and the prior distribution p(C})) for each class Cj, in the gener-
ative (bayesian) case, where an item x shall be assigned to Cj if

i = argmax p(x|Ck)p(Ck)
k

Parametric approach

The type of probability distribution is assumed to be known: the value of a suitable set of coefficients must be
derived. For example,

in the case of softmax (a discriminative method)

. p(Ck]x) is assumed to be of the type T
et

. p(x|Ck) is assumed to be of the type N(x|;1,k, Ek) in the case ofgaussian discriminant analysis (a generative

method)

In both case, an estimate of parameter values (either wy, or 8y) is performed for all classes. Different approaches

to parameter estimation:

Maximum likelihood :

ML

+ In the discriminative case, the likelihood of the target is considered w"'* = argmax p(t|X, w): predic-

tion is performed as argmax p(C |x, wM1)
« In the generative case, for each class C, the likelihood of the subset Xj, of items belonging the class is in-
stead maximized, that is @21F = argmaxp(Xy|0y): prediction is performed as argmaxp(x| @2 L) p(Cy,)
0 k

Maximum a posteriori : Similar to the previous one:



« Inthe discriminative case, the posterior of the parameters wrt to training set wMAP — argmaxp(w|X, t):

w

prediction is performed as argmax p(Ckx, WMAP)
k

« In the generative case, for each class C}, the posterior of the parameters wrt the items in the class
OMAP = argmax p(0|X},) is maximized: prediction is performed as argmax p(x|@MAP)p(Cy,)
0, k
Bayesian estimate : This approach directly express the predictive distribution as

P(Chlx X, ¢) = / P(Cil, w)p(w|X, )

w

No knowledge whatsoever of the probabilities is assumed.
« 'The class distributions p(x|C;) are directly from data.
« In previous cases, use of (parametric) models for a synthetic description of data in X, ¢
+ In chis case, no models (and parameters): training set items explicitly appear in class distribution estimates.
« Denoted as non parametric models: indeed, an unbounded number of parameters is used
Histograms
« Elementary type of non parametric estimate

« Domain partitioned into m d-dimensional intervals (bins)

n(x)

« The probability P, that an item belongs to the bin containing item x is estimated as

, where n(x) is the

number of element in that bin

« The probability density in the interval corresponding to the bin containing x is then estimated as the ratio
between the above probability and the interval width A(x) (tipically, a constant A)

N n(x)




Kernel density estimators

. Probability that an item is in region 'R(x), containing x

P, = / p(z)dz
R(x)

« Given m items X1, X2, . . . , Xp, the probability that £ among them are in R(x) is given by the binomial distri-

bution
n!

n
k)=, |PF1—-P)"F = ———PF1-P)" "
R L R
- Since E[k] = nP, and 0} = nP(1 — P,), by the binomial distribution properties, we have that, for what

concerns the ratior = —,
n

« Py is the expected fraction of items in R(x), and the ratio r is an estimate. As n — 00 variance decreases
and 7 tends to E[r] = P, we assume

r=—~P
n

Nonparametric estimates

« Let the volume of R(x) be sufficientiy small. Then, the density p(x) is almost constant in the region and
P, = / p(z)dz ~ p(x)V
R(x)

where V' is the volume of R(x)

L
nV

k
« since P, ~ —, it then derives that p(x) ~
n

APPI'O:{C]']GS to nonparametric estimates

k

Two alternative ways to exploit the relation p(x) ~ v to estimate p(x) for any x:
n
1. Fix V and derive k from data (kernel dcnsil‘y estimation)
2. Fix k and derive V' from data (K-nearest neighbor).

[t can be shown that in both cases, under suitable conditions, the estimator tends to the true density p(x) asn — oc.

Kernel density estimation: Parzen windows

« Region associated to a point x: hypercube with edge length A (and volume h?) centered on x.

« Kernel function k(z) (Parzen window) used to count the number of items in the unit hypercube centered on
the origin 0

1 |z <1/2 i=1,...,
k(z):{ <1/ d

0 otherwise
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> = 1iffx/ is in the hypercube of edge length h centered on x

« as a consequence, k (

h

« the number of items in the hypercube is then

« The estimated density is

+ Since

it derives

k(x;m) >0 and /k<xzxi>dx:hd

As a consequence, it results that py, (x) is a probability density.

Cicarly, the window size has a relevant effect on the estimate

Kernels and smoothing
Drawbacks
1. discontinuity of the estimates

2. itemsina region centered on x have uniform Weights: their distance from x is not taken into account

Solution. Use of smooth kernel functions kp,(u) to assign larger weights to points nearer to the origin.
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Assumed characteristics of k£ (u):

/ o (x)dx = 1

/ st (x)dx = 0
/¥M®@>o

Usually kernels are based on smooth radial functions (functions of the distance from the origin)

N

1 _1lu? o
e 202, unlimited support

L. gaussian k(u) =

N

g

1
2. Epanechnikov k(u) =3 <2 — u2>, lu| < %, limited support

3 ...

resulting estimate:

o) = o > (25 =ii§";nh<x—xz~>






Parzen windows and classification

« Parzen windows provide a way to estimate p(x) for any X, given a set of points X

« 'They can be applied to classify an item x by estimating p(x|Cy) for all classes, by referring to the sets
Xi, ..., X of items in the training set belonging to each class

. According to baycsian classification, x is prcdictcd to the class with index

1 X — X
argrinaxp(x|07;)p(0i) = argznax ki ;k‘ < W )p(Ci) =
— remax i [ .
= dr&zndx i 2 .
— ( ;)
=1

« thatis, anitem is assigned to the class with most (weighted by the kernel) points near x, that is in an hypercube

of Cdgc size h with center x

Density estimation through kNN

. The region around x is extended to include k items

« The estimated density is

k

()=
X))~y — = —
P nV  negri(x)

where:

— ¢4 is the volume of the d-dimensional sphere of unitary radius

— 7¢(x) is the distance from x to the k-th nearest item (the radius of the smallest sphere with center x

containing k items)

Classification through kNN
« To estimate p(Cj|x) in order to Classify x, let us consider a hypcrsphcrc of volume V' with center x containing
k items from the training set

« Let k; be the number of such items belonging to class C;. Then, the following approximation holds:

ki

PIC) = =

where n; is the number of items in the training set bclonging to class C;

. Similarly, for the evidence,

k
pix) =+
« And, for the prior distribution,
2
C)=—
p(Ci) =
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The class posterior distribution is then

k; n;
p(x|Ci)p(Ci)  wvw ki
Ci — = = = —
p(Cilx) () 3 ’

Simple rule: an item is classified on the basis of similarity to near training set items

To classify x, determine the & items in the training nearest to it and assign X to the majority class among

them

A metric is necessary to measure simi]arity.

kNN is a simple classifier which can work quite well, provided it is given a good distance metric and has
Cnough labeled training data: it can be shown that it can result within a factor of 2 of the best possiblc
performance as n — 00

subject to the curse of dimensionality: due to the large sparseness of data at high dimensionality, items
considered by kNN can be quite far away from the query point, and thus resulting in poor locality.
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