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Generalized linear models

In the cases considered above, the posterior class distributions p(Cj|x) are sigmoidal or softmax with argument
, p k g 8
given by a linear combination of features in x, i.e., they are a instances of gcncralizcd linear models

A generalized linear model (GLM) is a function
y(x) = f(w'x+wo)
where f (usually called the response function) is in general a non linear function.
Each iso-surface of y(x) , such that by definition y(x) = ¢ (for some constant ¢), is such that
f(wa +wp) =c¢

and

/

wix+wo=fN(y) =c
(¢’ constant).
Hence, iso-surfaces of a GLM are hyper-planes, thus implying that boundaries are hyperplanes themselves.
Exponential families and GLM

Let us assume we wish to predict a random variable y as a function of a different set of random variables x. By
definition, a prediction model for this task is a GLM if the following hypotheses hold:

1. the conditional distribution of y given x, p(y|x) belongs to the exponential family: that is, we may write it

as
_1 YY) 2007 w)
Plylx) = <9(06))f () e
for suitable g, 8;
2. for any x, we wish to predict the expected value of (y) given X, that is E[(y)|x]

3. 9(x) (the natural pzu'amctcr) is a linear combination of che features, 9(x) = WTX



GLM and normal distribution

_=n())?
1.y € R and p(y|x) = \/21706 207 is a normal distribution with mean p(x) and constant variance o:

0(x) ( i ) - ( YA )

2. we wish to predict the value of E[(y)|x] as y(x) = E[y|x], then

y(x) = p(x) = 0?01 (x)

it is easy to Verify that

and (y) =y

3. we assume there exists w such that 6; (x) = wrfi

Then, a linear regression results
T
y(x) =wix
GLM and Bernoulli distribution

1.y € {0,1}, and p(y|x) = 7(x)¥(1 — 7(x))}7¥ is a Bernoulli distribution with parameter 7(x): then, the
natural parameter 6(x) is
m(x)

e(x) = iog 1—77T(X)

and (y) =y
2. we wish to predict the value of E[(y)|x] as y(x) = E[y|x] = p(y = 1|x), then

ply = 1x) = 7(x)

3. we assume there exists w such that (x) = w' X

Then, a logistic regression derives

GLM and categorical distribution

Lye{l,...,K} and p(y|x) = H{( mi(x)¥ (where y; = 1if y = i and y = 0 otherwise) is a categorical
distribution with probabilities ™ (x), e TK (X)) (where Zfil T (X) = 1): the nacural parameter is then
0(x) = (61(x), ..., 0x(x))T, with

TFZ‘(X) _ iog TFZ'(X)

0i(x) = log 7K (x) 1- Zi(;il 75 (x)

and (y) = (y1,. .. ,yK)T is the 1-to-K representation of y

2. we wish to predict the expectations y;(x) = E[u;(y)|x] = p(y = i|x) as
p(y = Z‘X) = E[’U,Z(y)’x] = Wi(x) = WK(X)eei(x)

Since 1 = Zfil mi(x) = T (x) Zfil efi (x), it derives
1 efi(®)

7TK(X> = m and 7TZ'(X) = W



3. we assume there exist wi, ..., wg such that 6;(x) = wfi

Then, a softmax regression results, with

yi(x) = —— ifi £ K
Zngl eV
1
yK(X) = K T<

GLM and additional regressions

Other regression types can be defined by considering different models for p(y|x). For example,

1. Assumey € {0,...,}isanon negative integer (for example we are interested to count data), and p(ylx) =
%6_’\(") is a Poisson distribution with parameter )\(x): then, the nacural parameter Q(X) is
0(x) = log A\(x)
and (y) =y

2. we wish to predict the value of]:[(y)|x] asy(x) = E[y|x], then
) = Ax) = !

3. we assume there exists w such that (x) = w' X
Then, a Poisson regression derives
y(x) =e

1. Assume y € [0,00) is a non negative real (for example we are interested to time intervals), and p(y|x) =
)\(x)e_)‘(x)y is an exponential distribution with parameter )\(x): then, the natural parameter H(X) is

0(x) = —A(x)
and (y) =y
2. we wish to predict the value of E[(y)|x] as y(x) = E[y|x], then

Discriminative approach

We could directly assume that p(C’k‘x) is a GLM and derive its coefficients (for example through ML estimation).

Comparison wrt the generative approach:
« Less information derived (we do not know p(x|Ck), thus we are not able to generate new data)
. Simpler method, usua]ly a smaller set of parameters to be derived

« Better predictions, if the assumptions done with respect to p(x|C,) are poor.



Logistic regression

Logistic regression is a GLM deriving from the hypothesis of a Bernoulli distribution of y, which results into

1
p(Cilx) = o(w'x) = [

where base functions could also be applied.

The model is equivalent, for the binary classification case, to linear regression for the regression case.

Degrees of freedom

« In the case of d features, logistic regression requires d + 1 coefficients wy, . .., wq to be derived from a

training set
« A generative approach with gaussian distributions requires:

— 2d coefficients for the means 1, 2,

— for each covariance matrix

d
Zi =d(d+1)/2 coefhicients
i=1

— one prior cla probability p(C)
« Asa total, it results into d(d 4+ 1) + 2d + 1 = d(d + 3) + 1 coefficients (if a unique covariance matrix is
assumed d(d +1)/242d + 1 =d(d+ 5)/2 + 1 coefhicients)

Maximum likelihood estimation

Let us assume that rargets of elements of the training set can be conditiona]ly (with respect to model coefficients)

modeled through a Bernoulli discribution. That is, assume
p(tilxi, w) = pii (1 —pi)' ™"

where p; = p(Cy]x;) = O'(WTXZ‘).
Then, the likelihood of the training set targets t given X is

p(elX, w) = L(w|X, ) = ﬁ (tilxi, w) Hp )it
=1
and the log—likclihood is
l(w|X,t) = 1ogL(w|X, t) = i (t; log pi + (1—1t;) log(l — i)
=1
« It results . .
({)l(:;lvx’t) = ;(ti — pi)%i = ;(ti — o(w'%))%i

To maximize the likelihood, we could apply a gradient ascent algorithm, where at each iteration the following
update of the currently estimated w is performed



. | )
=wi +a (t; — o(W9) )5
=1
=w +ay (i —y(x))
=1

As a possible alternative, at each iteration only one coefhicient in w is updated

o OlwXoo)
wd ™ =) B |

=wi™ 4o Z(ti — o(W)T5)) 2

(J+1)
= J —|— o Z fL‘Zk

Logistic regression and GDA
« Observe that assuming p(x|01) are p(x\Cg) as multivariate normal distributions with same covariance ma-

trix X results into a logistic p(Ch [x).

« The opposite, however, is not true in general: in fact, GDA relies on stronger assumptions than logistic

regression.

« The more the normality hypothesis of class conditional distributions with same covariance is verified, the

more GDA will tend to provide the best models for p(C' |x)

« Logistic regression relies on weaker assumptions than GDA: it is then less sensible from a limited correctness

of such assumptions, thus rcsulting in a more robust tcchnique

» Since p(Cj|x) is logistic under a wide set of hypotheses about p(x|C}), it will usually provide better solutions
(models) in all such cases, while GDA will provide poorer models as far as the normality hypotheses is less

verified.

Softmax I‘Cgl’CSSiOI’l

« In order to extend the logistic regression approach to the case K > 2, let us consider the matrix W =
(wl, c. ,WK) of model coefticients, of size (d + 1) x K, where wj is the d + 1-dimensional vector of
coeflicients for class Cj.

« In this case, the likelihood is defined as

where X is the usual matrix of features and T is the n X K matrix where row % is the 1-to-K Coding of t;.

That is, it x; € Cy, then t;, = 1 and t3 = 0 for r # k.



ML and softmax regression

The log—likelihood is then defined as

And che gradient is defined as

« It is possible to show that

oL(W) _ > (i — yig)xi

ow;
J i=1

« Observe that the gradient has the same structure than in the case of linear regression and logistic regression

ML and softmax regression: gradient ascent method

. Applying a gradicnt method to maximize che 10g—likclihood l(w) requires using the gradicnt — o Cxplorc

Oow

the dK-dimensional space of model coefficient values

« As an alternative, on-line gradient descent: at each iteration the ascent is performed only Wrt to a cyclically

selected coefficient wy, evaluating only the gradient in a space of dimension d

Wik
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