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Generalized linear models

In the cases considered above, the posterior class distributions p(Ck|x) are sigmoidal or softmax with argument
given by a linear combination of features in x, i.e., they are a instances of generalized linear models

A generalized linear model (GLM) is a function

y(x) = f(wT x+ w0)

where f (usually called the response function) is in general a non linear function.

Each iso-surface of y(x) , such that by definition y(x) = c (for some constant c), is such that

f(wT x+ w0) = c

and
wT x+ w0 = f−1(y) = c′

(c′ constant).
Hence, iso-surfaces of a GLM are hyper-planes, thus implying that boundaries are hyperplanes themselves.

Exponential families and GLM

Let us assume we wish to predict a random variable y as a function of a different set of random variables x. By
definition, a prediction model for this task is a GLM if the following hypotheses hold:

1. the conditional distribution of y given x, p(y|x) belongs to the exponential family: that is, we may write it
as

p(y|x) = 1

s
g(θ(x))f

(y
s

)
e

1
s
θ(x)T (y)

for suitable g, θ, ̆

2. for any x, we wish to predict the expected value of (y) given x, that is E[(y)|x]

3. θ(x) (the natural parameter) is a linear combination of the features, θ(x) = wT x
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GLM and normal distribution

1. y ∈ R, and p(y|x) = 1√
2πσ

e−
(y−µ(x))2

2σ2 is a normal distribution with mean µ(x) and constant variance σ2:
it is easy to verify that

θ(x) =
(

θ1(x)
θ2

)
=

(
µ(x)/σ2

−1/2σ2

)
and (y) = y

2. we wish to predict the value of E[(y)|x] as y(x) = E[y|x], then

y(x) = µ(x) = σ2θ1(x)

3. we assume there exists w such that θ1(x) = wT
1 x

Then, a linear regression results
y(x) = wT

1 x

GLM and Bernoulli distribution

1. y ∈ {0, 1}, and p(y|x) = π(x)y(1 − π(x))1−y is a Bernoulli distribution with parameter π(x): then, the
natural parameter θ(x) is

θ(x) = log
π(x)

1− π(x)

and (y) = y

2. we wish to predict the value of E[(y)|x] as y(x) = E[y|x] = p(y = 1|x), then

p(y = 1|x) = π(x) =
1

1 + e−θ(x)

3. we assume there exists w such that θ(x) = wT x

Then, a logistic regression derives

y(x) =
1

1 + e−wT x

GLM and categorical distribution

1. y ∈ {1, . . . ,K}, and p(y|x) =
∏K

1 πi(x)yi (where yi = 1 if y = i and y = 0 otherwise) is a categorical
distribution with probabilities π1(x), . . . , πK(x)) (where

∑K
i=1 πi(x) = 1): the natural parameter is then

θ(x) = (θ1(x), . . . , θK(x))T , with

θi(x) = log
πi(x)
πK(x)

= log
πi(x)

1−
∑K−1

j=1 πj(x)

and (y) = (y1, . . . , yK)T is the 1-to-K representation of y

2. we wish to predict the expectations yi(x) = E[ui(y)|x] = p(y = i|x) as

p(y = i|x) = E[ui(y)|x] = πi(x) = πK(x)eθi(x)

Since 1 =
∑K

i=1 πi(x) = πK(x)
∑K

i=1 e
θi(x), it derives

πK(x) =
1∑K

i=1 e
θi(x)

and πi(x) =
eθi(x)∑K
i=1 e

θi(x)
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3. we assume there exist w1, . . . ,wK such that θi(x) = wT
i x

Then, a softmax regression results, with

yi(x) =
ew

T
i x∑K

j=1 e
wT
j x

if i ̸= K

yK(x) =
1∑K

j=1 e
wT
j x

GLM and additional regressions

Other regression types can be defined by considering different models for p(y|x). For example,

1. Assume y ∈ {0, . . . , } is a non negative integer (for example we are interested to count data), and p(y|x) =
λ(x)y
y! e−λ(x) is a Poisson distribution with parameter λ(x): then, the natural parameter θ(x) is

θ(x) = logλ(x)

and (y) = y

2. we wish to predict the value of E[(y)|x] as y(x) = E[y|x], then

y(x) = λ(x) = eθ(x)

3. we assume there exists w such that θ(x) = wT x

Then, a Poisson regression derives
y(x) = ew

T x

1. Assume y ∈ [0,∞) is a non negative real (for example we are interested to time intervals), and p(y|x) =
λ(x)e−λ(x)y is an exponential distribution with parameter λ(x): then, the natural parameter θ(x) is

θ(x) = −λ(x)

and (y) = y

2. we wish to predict the value of E[(y)|x] as y(x) = E[y|x], then

y(x) =
1

λ(x)
= − 1

θ(x)

3. we assume there exists w such that θ(x) = wT x

Then, an exponential regression derives

y(x) = − 1

wT x

Discriminative approach

We could directly assume that p(Ck|x) is a GLM and derive its coefficients (for example through ML estimation).

Comparison wrt the generative approach:

• Less information derived (we do not know p(x|Ck), thus we are not able to generate new data)

• Simpler method, usually a smaller set of parameters to be derived

• Better predictions, if the assumptions done with respect to p(x|Ck) are poor.
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Logistic regression

Logistic regression is a GLM deriving from the hypothesis of a Bernoulli distribution of y, which results into

p(C1|x) = σ(wT x) =
1

1 + e−wT x

where base functions could also be applied.

The model is equivalent, for the binary classification case, to linear regression for the regression case.

Degrees of freedom

• In the case of d features, logistic regression requires d + 1 coefficients w0, . . . , wd to be derived from a
training set

• A generative approach with gaussian distributions requires:

– 2d coefficients for the means µ1,µ2,

– for each covariance matrix
d∑

i=1

i = d(d+ 1)/2 coefficients

– one prior cla probability p(C1)

• As a total, it results into d(d + 1) + 2d + 1 = d(d + 3) + 1 coefficients (if a unique covariance matrix is
assumed d(d+ 1)/2 + 2d+ 1 = d(d+ 5)/2 + 1 coefficients)

Maximum likelihood estimation

Let us assume that targets of elements of the training set can be conditionally (with respect to model coefficients)
modeled through a Bernoulli distribution. That is, assume

p(ti|xi,w) = ptii (1− pi)
1−ti

where pi = p(C1|xi) = σ(wT xi).
Then, the likelihood of the training set targets t given X is

p(t|X,w) = L(w|X, t) =
n∏

i=1

p(ti|xi,w) =
n∏

i=1

ptii (1− pi)
1−ti

and the log-likelihood is

l(w|X, t) = logL(w|X, t) =
n∑

i=1

(ti log pi + (1− ti) log(1− pi))

• It results
∂l(w|X, t)

∂w
=

n∑
i=1

(ti − pi)xi =
n∑

i=1

(ti − σ(wT xi))xi

To maximize the likelihood, we could apply a gradient ascent algorithm, where at each iteration the following
update of the currently estimated w is performed
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w(j+1) = w(j) + α
∂l(w|X, t)

∂w
|w(j)

= w(j) + α
n∑

i=1

(ti − σ((w(j))T xi))xi

= w(j) + α
n∑

i=1

(ti − y(xi))xi

As a possible alternative, at each iteration only one coefficient in w is updated

w
(j+1)
k = w

(j)
k + α

∂l(w|X, t)
∂wk

∣∣
w(j)

= w
(j+1)
k + α

n∑
i=1

(ti − σ((w(j))T xi))xik

= w
(j+1)
k + α

n∑
i=1

(ti − y(xi))xik

Logistic regression and GDA

• Observe that assuming p(x|C1) are p(x|C2) as multivariate normal distributions with same covariance ma-
trix Σ results into a logistic p(C1|x).

• The opposite, however, is not true in general: in fact, GDA relies on stronger assumptions than logistic
regression.

• The more the normality hypothesis of class conditional distributions with same covariance is verified, the
more GDA will tend to provide the best models for p(C1|x)

• Logistic regression relies on weaker assumptions than GDA: it is then less sensible from a limited correctness
of such assumptions, thus resulting in a more robust technique

• Since p(Ci|x) is logistic under a wide set of hypotheses about p(x|Ci), it will usually provide better solutions
(models) in all such cases, while GDA will provide poorer models as far as the normality hypotheses is less
verified.

Softmax regression

• In order to extend the logistic regression approach to the case K > 2, let us consider the matrix W =
(w1, . . . ,wK) of model coefficients, of size (d + 1) × K , where wj is the d + 1-dimensional vector of
coefficients for class Cj .

• In this case, the likelihood is defined as

p(T|X,W) =

n∏
i=1

K∏
k=1

p(Ck|xi)tik =

n∏
i=1

K∏
k=1

(
ew

T
k xi∑K

r=1 e
wT
r xi

)tik

where X is the usual matrix of features and T is the n × K matrix where row i is the 1-to-K coding of ti.
That is, if xi ∈ Ck then tik = 1 and tir = 0 for r ̸= k.
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ML and softmax regression

The log-likelihood is then defined as

l(W) =

n∑
i=1

K∑
k=1

tik log

(
ew

T
k xi∑K

r=1 e
wT
r xi

)

And the gradient is defined as
∂l(W)

∂W
=

(
∂l(W)

∂w1
, . . . ,

∂l(W)

∂wK

)
• It is possible to show that

∂l(W)

∂wj
=

n∑
i=1

(tij − yij)xi

• Observe that the gradient has the same structure than in the case of linear regression and logistic regression

ML and softmax regression: gradient ascent method

• Applying a gradient method to maximize the log-likelihood l(w) requires using the gradient
∂l

∂w
to explore

the dK-dimensional space of model coefficient values

• As an alternative, on-line gradient descent: at each iteration the ascent is performed only wrt to a cyclically

selected coefficient wk, evaluating only the gradient
∂l

∂wk
in a space of dimension d
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