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Generative models

« Classes are modeled by suitable conditional distributions p(x|Cy) (language models in the previous case): it
is possibie to sampie from such distributions to generate random documents statisticaiiy equivalent to the

documents in the collection used to derive the model.
« Bayes’ rule allows to derive p(C|x) given such models (and the prior distributions p(C},) of classes)

« We may derive the parameters of p(x|Cy) and p(C,) from the dataset, for example through maximum like-
lihood estimation

+ Classification is performed by comparing p(Cj|x) for all classes

Deriving posterior probabilities

« Let us consider the binary classification case and observe that

p(Cilx) = p(x|C1)p(Ch) _ 1
N C1)p(C Co)p(Cy) p(x|C2)p(C2)
p(IC)p(C1) +p(xIC2)p(C2) 14 BEEaPEs
« Let us define
o = log px|Cp(C1) _ log p(C1x)
p(x|C2)p(C2) p(Ca|x)
that is, @ is the log of the ratio between the posterior probabilities (log odds)
« We obtain that
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p(Cilx) =
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. J(a?) is the l()gistie function or (sigmoid)



Sigmoid
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Useful properties of the sigmoid
co(—z)=1—-0(x)

do(x)
D o)1 - o)

Deriyipg posteriogprobabilities, . | formula holds

p(x|Ci)p(Cr)

p(Cilx) =

> p(x|C;)p(C;)
. Letus define, foreachk =1,..., K
ag(x) = log(p(x‘ck)p(ck)) = logp(x’Ck) + logp(Ck)

« Then, we may write

ek

p(Cklx) = W = s(ax)
J

+ 5(x) is the softmax function (or normalized exponential) and it can be seen as an extension of the sigmoid
to the case K > 2 and as a smoothed version of the maximum
Gaussian discriminant analysis

In Gaussian discriminant analysis (GDA) all class conditional distributions p(x|Ck) are assumed gaussians. This
implies that the corresponding posterior distributions p(C|x) can be easily derived.
Hypothesis

All diseributions p(x|Cy) have same covariance matrix X, of size D x D. Then,

810 = e (50— "S- )

IfK =2,
p(Cilx) = o(a(x))



where

p(x|C1)p(C1)
p(x|C2)p(C2)
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p(C2)

a(x) = log

Binary case:

Observe that the results of all products involving 31 are scalar, hence, in particular
XYy = u?E_lx
XXy = ugE_lx

Then,

p(C1)

T
= + w
p(Ca) — T

1 _ _ _ _
a(x) = 5(//”52 1“2 - HF{E 1#:1) + (H{E 1 u,2TE 1)x + log
with
w=3""(p1 — p2)

1 _ _ p(C
wy = 5(#32 o — pi B ) + log p( 1

p(C1]x) = o(wh'x + wp) is computed by applying a non-linear function to a linear combination of the features
(gcncralizcd linear model)

Example
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Left, the class conditional distributions p(x|C1), p(x|C2), gaussians with D = 2. Right the posterior distribution
of C1, p(Ch |x) with sigmoidal slope.

Discriminant function

The discriminant function can be obtained by the condition p(C1|x) = p(Cs|x), that is, o (a(x)) = o(—a(x)).

This is equivalent to a(x) = —a(x) and to a(x) = 0. As a consequence, it results

WTx+w0=0



or

p(C2)

_ 1 _ _
S — p)x 4 S (X e — X ) + 1

0 =0
2 S p(Ch)
Simple case: X = Al (that is, 04s = A for i = 1,. .., d). In this case, the discriminant function is
p(Cs)

2pz — p)x + [l = [l 4+ 23 log 222 — 0

p(C1)

Multiple classes )
In this case, we refer to the softrmax function:

p(Ci|x) = s(ax(x))
where ag(x) = log(p(x|Ci)p(Ci))-

By the above considerations, it easily turns out that

—

_ _ d 1
ag(x) = 3 (,u{Z Ix —ul's Ypg) + logp(Cy) — §1Og(2ﬂ) ~3 log |2] = wi x + wog
Again, p(Cy|x) = o(wl'x 4+ wp) is computed by applying a non-linear function to a linear combination of the
features (generalized linear model)
Decision boundaries corresponding to the case when there are two classes C, Cy, such that the corresponding
posterior probabilitics are cqual, and 1argcr than the probability of any other class. That is,

p(Cilx) = p(Cj]x) p(Cilx) <p(Cylx) i #j,k
hcncc
ek (X) — ¢a;(x) eti(®) ~ a0 £ 4.k
that is,
ar(x) = a;(x) ai(x) <a*(x) i ]k

As shown, this implies that boundaries are linear.

General covariance matrices, binary case

The class conditional distributions p(x|C},) are gaussians with different covariance matrices

a(x) = log p(x[C1)p(Ch)
p(x|C2)p(Ca)
1 Ty—1 Ty—1 1 |2 p(C1)
— ((x = p)TS  (x = o) — (x — py)TE " (x — Zlog 221 4 jog
5 ((x=p2) 25 (x = pa) = (x = )" 2 (x = ) + 5 log = )
By applying the same considerations, the decision boundary turns out to be
_ - 2o p(C1)
) T x — o) — (x — )T (x — +1 ‘72+21 =0
(G = pa2) 1385 (x = o) = (= i) "0 x = o) o log gy o 2log s

Classes are separated by a (at most) quadratic surface.

It can be proved that boundary surfaces are at most quadratic.
Example
Left: 3 classes, modeled by gaussians with different covariance matrices.

Right: posterior distribution of classes, with boundary surfaces.



GDA and maximum likelihood

The class conditional distributions p(x|C) can be derived from the training set by maximum likelihood estimation.
For the sake of simplicity, assume K = 2 and both classes share the same 3.
It is then necessary to estimate ft1, p2, X, and 7 = p(C1) (clearly, p(C2) =1 — 7).

Training set 7 includes n elements (x;, t;), with

{0 sex; € Cy
ti =

1 sex; € (4
Ifx € Oy, then p(x, C1) = p(x|C1)p(Cy) = 7 - N(x|p1, X)
Ifx € Cg, p(x,C2) = p(x|C2)p(Ca) = (1 —7) - N(x|p2, X)
The likelihood of the training set T is

n

L(m, pa, po, BIT) = [ [ (- N (xil e, £)5 (1 = ) - N (x| o, £)1 7
=1
The corresponding log likelihood is
U, g, 112, SIT) = 7 (1o + s log(N s, £)) +
=1
£ 3701 = ) logll— ) + (1 — 1) logM (xlaz, )
=1

Its derivative wrt 7 is

g_fr=%Z(tilogw—l—(l—ti)log(l_Tr)):Z(E_ (1—ti)) _m m

< T 1—m T 1—m
i=1 i=1
which is equal to 0 for
ni
T=—
n
The maximum wrt g1 (and p2) is obtained by computing the gradient
O O S oMl 2)) = 573 s — o)
_— = — o X; = (x; —
8”1 8”1 £ 3 108 i1, — i\Xq — K1
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hence, for

As a consequence, we have = 0 for
om
n n
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=1 =1
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M1 = ni Xj
1 x1601
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Similarly, —— = 0 for
opz
1
H2 = . X;
2 x; €Co
Maximizing the log-likelihood wrt ¥ provides
Y = ﬂSl + @82
n n
where
1 T
S1 = o (xi — p1)(x; — p1)
1 x; €C1
1 T
So=— (xi — p2)(xi — p2)
ng
x; ECo

GDA: discrete features

In the case of d discrete (for example, binary) features we may apply the Naive Bayes hypothesis (indepen-
dence of features, given the class)

Then, we may assume that, for any class Cf, the value of the i-th feature is sampled from a Bernoulli distri-
bution of parameter py;; by the conditional independence hypothesis, it results into

d
p(x|C) = [ pii(1 = pra)' ™™

=1
where pr; = p(x; = 1|C) could be estimated by ML, as in the case of language models
Functions ag(x) can then be defined as:
D
ai(x) = log(p(x|Cr)p(Ck)) = Y _ (wilogpri + (1 — a1) log(1 — pis)) + log p(Ck)
=1
These are still linear functions on x.

The same considerations can be done in the case of non binary features, where, for any class C, we may
assume the value of the i-th feature is sampled from a distribution on a suitable domain (e.g. Poisson in the

case of count darta)
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