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Generative models

• Classes are modeled by suitable conditional distributions p(x|Ck) (language models in the previous case): it
is possible to sample from such distributions to generate random documents statistically equivalent to the
documents in the collection used to derive the model.

• Bayes’ rule allows to derive p(Ck|x) given such models (and the prior distributions p(Ck) of classes)

• We may derive the parameters of p(x|Ck) and p(Ck) from the dataset, for example through maximum like-
lihood estimation

• Classification is performed by comparing p(Ck|x) for all classes

Deriving posterior probabilities

• Let us consider the binary classification case and observe that

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
=

1

1 + p(x|C2)p(C2)
p(x|C1)p(C1)

• Let us define

a = log
p(x|C1)p(C1)

p(x|C2)p(C2)
= log

p(C1|x)
p(C2|x)

that is, a is the log of the ratio between the posterior probabilities (log odds)

• We obtain that

p(C1|x) =
1

1 + e−a
= σ(a) p(C2|x) = 1− 1

1 + e−a
=

1

1 + ea

• σ(x) is the logistic function or (sigmoid)
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Useful properties of the sigmoid

• σ(−x) = 1− σ(x)

•
dσ(x)

dx
= σ(x)(1− σ(x))

Deriving posterior probabilities• In the caseK > 2, the general formula holds

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

• Let us define, for each k = 1, . . . ,K

ak(x) = log(p(x|Ck)p(Ck)) = log p(x|Ck) + log p(Ck)

• Then, we may write

p(Ck|x) =
eak∑
j e

aj
= s(ak)

• s(x) is the softmax function (or normalized exponential) and it can be seen as an extension of the sigmoid
to the caseK > 2 and as a smoothed version of the maximum

Gaussian discriminant analysis

In Gaussian discriminant analysis (GDA) all class conditional distributions p(x|Ck) are assumed gaussians. This
implies that the corresponding posterior distributions p(Ck|x) can be easily derived.

Hypothesis
All distributions p(x|Ck) have same covariance matrix Σ, of sizeD ×D. Then,

p(x|Ck) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µk)

TΣ−1(x− µk)

)
IfK = 2,

p(C1|x) = σ(a(x))
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where

a(x) = log
p(x|C1)p(C1)

p(x|C2)p(C2)

=
1

2
(µT

2 Σ
−1µ2 − xTΣ−1µ2 − µT

2 Σ
−1x)− 1

2
(µT

1 Σ
−1µ1 − xTΣ−1µ1 − µT

1 Σ
−1x) + log

p(C1)

p(C2)

Binary case:
Observe that the results of all products involving Σ−1 are scalar, hence, in particular

xTΣ−1µ1 = µT
1 Σ

−1x

xTΣ−1µ2 = µT
2 Σ

−1x

Then,

a(x) =
1

2
(µT

2 Σ
−1µ2 − µT

1 Σ
−1µ1) + (µT

1 Σ
−1 − µT

2 Σ
−1)x+ log

p(C1)

p(C2)
= wT x+ w0

with

w = Σ−1(µ1 − µ2)

w0 =
1

2
(µT

2 Σ
−1µ2 − µT

1 Σ
−1µ1) + log

p(C1)

p(C2)

p(C1|x) = σ(wT x + w0) is computed by applying a non-linear function to a linear combination of the features
(generalized linear model)

Example

Left, the class conditional distributions p(x|C1), p(x|C2), gaussians withD = 2. Right the posterior distribution
of C1, p(C1|x) with sigmoidal slope.

Discriminant function

The discriminant function can be obtained by the condition p(C1|x) = p(C2|x), that is, σ(a(x)) = σ(−a(x)).
This is equivalent to a(x) = −a(x) and to a(x) = 0. As a consequence, it results

wT x+ w0 = 0
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or

Σ−1(µ1 − µ2)x+
1

2
(µT

2 Σ
−1µ2 − µT

1 Σ
−1µ1) + log

p(C2)

p(C1)
= 0

Simple case: Σ = λI (that is, σii = λ for i = 1, . . . , d). In this case, the discriminant function is

2(µ2 − µ1)x+ ||µ1||2 − ||µ2||2 + 2λ log
p(C2)

p(C1)
= 0

Multiple classes
In this case, we refer to the softmax function:

p(Ck|x) = s(ak(x))

where ak(x) = log(p(x|Ck)p(Ck)).
By the above considerations, it easily turns out that

ak(x) =
1

2

(
µT
kΣ

−1x− µT
kΣ

−1µk

)
+ log p(Ck)−

d

2
log(2π)− 1

2
log |Σ| = wT

k x+ w0k

Again, p(Ck|x) = σ(wT x+w0) is computed by applying a non-linear function to a linear combination of the
features (generalized linear model)

Decision boundaries corresponding to the case when there are two classes Cj , Ck such that the corresponding
posterior probabilities are equal, and larger than the probability of any other class. That is,

p(Ck|x) = p(Cj |x) p(Ci|x) < p(Ck|x) i ̸= j, k

hence
eak(x) = eaj(x) eai(x) < ea

k(x) i ̸= j, k

that is,
ak(x) = aj(x) ai(x) < ak(x) i ̸= j, k

As shown, this implies that boundaries are linear.

General covariance matrices, binary case

The class conditional distributions p(x|Ck) are gaussians with different covariance matrices

a(x) = log
p(x|C1)p(C1)

p(x|C2)p(C2)

=
1

2

(
(x− µ2)

TΣ−1
2 (x− µ2)− (x− µ1)

TΣ−1
1 (x− µ1)

)
+

1

2
log

|Σ2|
|Σ1|

+ log
p(C1)

p(C2)

By applying the same considerations, the decision boundary turns out to be

(
(x− µ2)

TΣ−1
2 (x− µ2)− (x− µ1)

TΣ−1
1 (x− µ1)

)
+ log

|Σ2|
|Σ1|

+ 2 log
p(C1)

p(C2)
= 0

Classes are separated by a (at most) quadratic surface.
It can be proved that boundary surfaces are at most quadratic.
Example
Left: 3 classes, modeled by gaussians with different covariance matrices.
Right: posterior distribution of classes, with boundary surfaces.
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GDA and maximum likelihood

The class conditional distributions p(x|Ck) can be derived from the training set bymaximum likelihood estimation.

For the sake of simplicity, assumeK = 2 and both classes share the same Σ.

It is then necessary to estimate µ1,µ2, Σ, and π = p(C1) (clearly, p(C2) = 1− π).
Training set T : includes n elements (xi, ti), with

ti =

{
0 se xi ∈ C2

1 se xi ∈ C1

If x ∈ C1, then p(x, C1) = p(x|C1)p(C1) = π · N (x|µ1,Σ)
If x ∈ C2, p(x, C2) = p(x|C2)p(C2) = (1− π) · N (x|µ2,Σ)

The likelihood of the training set T is

L(π,µ1,µ2,Σ|T ) =
n∏

i=1

(π · N (xi|µ1,Σ))
ti((1− π) · N (xi|µ2,Σ))

1−ti

The corresponding log likelihood is

l(π,µ1,µ2,Σ|T ) =

n∑
i=1

(ti logπ + ti log(N (xi|µ1,Σ)))+

+

n∑
i=1

((1− ti) log(1− π) + (1− ti) log(N (xi|µ2,Σ)))

Its derivative wrt π is

∂l

∂π
=

∂

∂π

n∑
i=1

(ti logπ + (1− ti) log(1− π)) =
n∑

i=1

(
ti
π
− (1− ti)

1− π

)
=

n1

π
− n2

1− π

which is equal to 0 for
π =

n1

n

The maximum wrt µ1 (and µ2) is obtained by computing the gradient

∂l

∂µ1
=

∂

∂µ1

n∑
i=1

ti log(N (xi|µ1,Σ)) = Σ−1
n∑

i=1

ti(xi − µ1)
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As a consequence, we have
∂l

∂µ1
= 0 for

n∑
i=1

tixi =
n∑

i=1

tiµ1

hence, for

µ1 =
1

n1

∑
xi∈C1

xi

Similarly,
∂l

∂µ2
= 0 for

µ2 =
1

n2

∑
xi∈C2

xi

Maximizing the log-likelihood wrt Σ provides

Σ =
n1

n
S1 +

n2

n
S2

where

S1 =
1

n1

∑
xi∈C1

(xi − µ1)(xi − µ1)
T

S2 =
1

n2

∑
xi∈C2

(xi − µ2)(xi − µ2)
T

GDA: discrete features

• In the case of d discrete (for example, binary) features we may apply the Naive Bayes hypothesis (indepen-
dence of features, given the class)

• Then, we may assume that, for any class Ck, the value of the i-th feature is sampled from a Bernoulli distri-
bution of parameter pki; by the conditional independence hypothesis, it results into

p(x|Ck) =

d∏
i=1

pxi
ki(1− pki)

1−xi

where pki = p(xi = 1|Ck) could be estimated by ML, as in the case of language models

• Functions ak(x) can then be defined as:

ak(x) = log(p(x|Ck)p(Ck)) =

D∑
i=1

(xi log pki + (1− xi) log(1− pki)) + log p(Ck)

These are still linear functions on x.

• The same considerations can be done in the case of non binary features, where, for any class Ck, we may
assume the value of the i-th feature is sampled from a distribution on a suitable domain (e.g. Poisson in the
case of count data)
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