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Classification

« value t to predict are from a discrete domain, where each value denotes a class
+ most common case: disjoint classes, each input has to assigned to exactly one class
« input space is partitioned into decision regions

« in linear classification models decision boundaries are linear functions of input x (D — 1-dimensional hy-

perpianes in the D-dimensional feature space)

« datasets such as classes correspond to regions which may be separated by linear decision boundaries are said
linearly separable

Regression vs classification

« Regression: the target variable t is a vector of reals
« Classification: several ways to represent classes (target variable values)
« Binary classification: a single variable ¢ € {0, 1}, where ¢ = 0 denotes class Cp and t = 1 denotes class C}

« K > 2classes: “1 of K” coding. tis a vector of K bits, such that for each class C; all bits are 0 except the
j-th one (which is 1)

Three genera] approaches to classification

L find f : X — {1,..., K} (discriminant function) which maps each input x to some class Cj, such that
i = f(x)

2. discriminative zlpproach: determine the conditional probabi]ities p(Cj|x) (inference phzlsc); use these dis-

tributions to assign an input to a class (decision phase)

3. generative approach: determine the class conditional distributions p(x|Cj), and the class prior probabilities
p(C}); apply Bayes’ formula to derive the class posterior probabilities p(Cj|x) ; use these distributions to
assign an input to a class

Approaches 1 and 2 are discriminative: they tackle the classification problem by deriving from the training set

conditions (such as decision boundaries) that , when applied to a point, discriminate each class from the others.

The boundaries between regions are speciﬁed by discrimination functions



In linear regression, a model predicts the target value; the prcdiction is made through a linear function y(x) =
wl'x 4+ wp (linear basis functions could be applied). In classification, a model predicts probabilities of classes, that
is values in [0, 1]; the prediction is made through a generalized linear model y(x) = f(WTx + wp), where fis a
non linear activation function with codomain [0, 1]

Boundaries correspond to solution of y(x) = ¢ for some constant ¢; this results into wl'x+ wo = f_1 (¢), that
is a linear boundary. The inverse function f~1 is said link function.

Approach 3 is generative: it works hy deﬁning, from the training set, a model of items for each class

The model is a probability distribution (of features conditioned by the class) and could be used for random
generation of new items in the class. By comparing an item to all models, it is possible to verify the one that best

fics

Discriminant functions
Linear discriminant functions in binary classification
« Decision boundary: D — 1-dimensional hyperplane of all points s.t. y(x) = wlx 4 wo =0
« Given xp, x2 on the hyperplane, y(x1) = y(x2) = 0. Hence,
WTX1 + woy — WTXQ —wy = WT(X1 —x2)=0
that is, vectors x; — x and w are orthogonal

+ For any x, the dot product w-x = w!xis the length of the projection of x in the direction of w (orthogonal

to the hyperplane wl'x 4+ wg = 0), in multiples of ||w/],

« By normalizing wrt to ||w||y = y/>_; w?, we get the length of the projection of x in the direction orthogonal

to the hypcrplane, assuming ||Wl |2 =1

« For any x, y(x) = wlx + wq returns the distance (in multiples of | |w| |) of x from the hyperplane

« The sign of the returned value discriminates in which of the regions separated by the hyperplane the point
lies

x
w, .
¢ uix)
S TwT
x1
T Ty
—wy
TwT
Linear discriminant functions in mulciclass classification
« Define K linear functions
yi(x):w;fpx—l—wio 1<i<K

Item x is assigned to class Cy, iff yp(x) > y;(x) for all j # k: that is,

k = argmax y;(x)
J



« Decision boundary between C; and Cj: all points x s.t. y;(x) = y;(x), a D — 1-dimensional hyperplane
(wi = wj) x4 (wio — wjo) =0

The resulting decision regions are connected and convex

XA 0— 2

« The definition can be extended to include terms relative to products of pairs of feature values (Quadraric

discriminant functions)

D D i
y(x) = wo + Z w;x; + Z Z Wi T2
=1

i=1 j=1
d(d+1)
2

additional parameters wrt the d 4 1 original ones: decision boundaries can be more complex

« In general, generalized discriminant functions through set of functions ¢;, ..., o,
M
y(x) =wo+ Y wigi(x)
=1

Least squares and classification

« Assume classification with K classes

« Classes are rcprcscntcd through al-offt K Coding scheme: set of variables Z1y.-3 2K, class Cz' coded by values
Z = 1,Zk ZOfbrk#i

« K discriminant functions y; are derived as linear regression functions with variables z; as targets
» To each variable z; a discriminant function y;(x) = W,LTX + wjp is associated: x is assigned to the class Cy, s.t.

k = argmax y;(x)

« Then, z(x) = 1 and z;(x) = 0 (j # k) if k = argmax y;(x)

« Group all parameters together as

wip w11 WiD 1

w20 W21 -+ W2D X
y(x) = Wik =

WKo WK1 -'° WKD Tp



« In general, a regression function provides an estimation of the target given the input £ [t|x]
« ¥i(x) can be seen as an estimate of the conditional expectation E[z;|x] of binary variable z; given x

« If we assume 2; is distributed according to a Bernoulli distribution, the expectation corresponds to the pos-

terior probability

i) = Elzil]
= P(Zi = 1|x) . 1+P(Zi :0|X) -0
— P(z = 1]x)
_ PG

+ However, y; (x) is not a probability itself (we may not assume it takes value only in the interval [O, 1])

Learning functions y;

Given a training set X, t, a regression function can be derived by least squares
« Anitem in the traini R A e RD and t 0. 11K
An item in the training set is a pair (x;, t;), x; € and t; € {0,

« X € R™X(D+1) 45 the matrix of feature values for all items in the training set

1 r11 -+ T1D
_ 1w -+ xop
X =

1 Tnl -+ TnD

. ~ . * ~ . D
« Then, for matrix Y = XW, of size n X K, we have Y5 = wjo + >3 Tikwjr = yj(x;) hence

yi(r1) y2(w1) - yr(z1)
5 yi(z2) yo(z2) -+ yr(x2)
Y1 (ZL)’H/) ’,1/2(51)”) e ?/[((:I7r1/)

where, as observed before, y;(x;) is the estimate of p(Cj|x;)

All targets, coded in 1-of-K format, can be represented as a n x K matrix T, where Ti; = t45.

t1n ti2 - Uk

toy tog -+ tog
T= _

tnl th e tni\’

As usual, y;(x;) is then compared to t;5, providing the residue

D
rij = yi(xi) —tig = Y wapwk + wjo — ti; = (XW = T)y;
k=1
yi(x1) =t ye(x1) —tiz -+ ykx(x1) —tix i1 T2 e T
R yi(x2) —ta1  ya(x2) —taa -+ yr(x2) —tok | Tt 22 e T2
Y1 (Xn) —tn1 Y2 (Xﬂ,) —tlp2 - yK(Xn> —lnk 1 Tn2 - TnkK



« If we consider the K x K matrix RTR we have that

. n 2 n JO. n I
11 rer - Tnl r11 riz2 o T1K Zy‘,:l Ti1 Z;:1 Ti1Ti2 o Zi:l TilTiK
. . . . . . n S noo2 n S
. T2 T22 ot Tn2 21 T22 o T2K D iey Ti2lil D iy T cee Do TiaTiK
R'R = . . . . . . . . = : :
. . - - . . n ) - n - - n "2
T'in T'n2 v 'K 'n1 T'n2 v 'K Zy‘,*l TiKTi1 2771 TiKTi2 o Zi,*l TiK

. Summing all elements on the di;\gonu] of RTR pro\*ides the overall sum, on all items in the training set, of

[hC squzn‘cd diH‘crcnccs bC[\\"CCH ObSCI‘\'Cd \"JlUCS zmd \"dlUCS C()l’l]pU[Cd b} [hC modcl, \\'i[h pﬂl’ZlI]’lC[Cl’S W, [1'121[
is
K n
2
§ § (yj(xi) — tij)
j=1 i=1

. 'This corresponds to the trace of RTR. Hence, we have to minimize:

E(W) = %tl‘(RTR)

« If we apply the standard approach of trying to solve

OE(Y) _
ow
it is possib]e to show that
OE (W 7 _
OEN) _ $rgew - X71

oW
« which is equal to 0 if

W=X'X)X'T
The resulting set of discriminant functions is then

y(x) = Wiz = T7X(X'X) "'z

Fisher linear discriminant

The idea of Linear Discriminant Analysis (LDA) is to find a linear projection of the training set into a suitable subspace
where classes are as 1inear1y separated as possib]e.

A common approach is provided by Fisher linear discriminant, where all items in the training set (points ina
D-dimensional space) are projected to one dimension, by means of a linear transformation of the type

y=w-x=w x
where w is the D-dimensional vector corresponding to the direction of projection (in the following, we will consider
the one with unit norm).
If K = 2, given a threshold §, item x is assigned to Oy iff its projection iy = w? x is such that y > §; otherwise,
x is assigned to Cs.




Different line directions, that is different parameters w, may induce quite different separability properties.
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Deriving w in the binary case
Let nq be the number of items in the training set belonging to class C1 and ng the number of items in class Cs.

The mean points Ofboth ClaSSCS arc
1 1
m = — g X my = — E X
n n
Lea 2 eCo

A simple measure of the separation of classes, when the training set is projected onto a line, is the difference between

the projections of their mean points
T
mgy —mq =w (mg —my)

where m; = wl'm; is the projection of m; onto the line.
« We wish to find a line direction w such that m9o — mq is maximum

. WT(mQ — ml) can be made arbitrarily ]arge by multiplying w by a suitable constant, at the same time

maintaining the direction unchanged. To avoid this drawback, we consider unit vectors, introducing the

constraint [|wl|, = wlw =1

« This results into the constrained optimization problem
max wT(mQ — m1)
w

where wlw = 1

This can be transformed into an equivalent unconstrained optimization problem by means of lagrangian

multipliers
max WT(m2 —mp) + A(1— WTW)

Setting the gradicnt of the function wre w to 0

0

G—(WT(mg —my) + A1 — WTW)) =mg —my + 2w =0
W



results into

~ omg —my
VT T
Setting the derivative wrt A to 0
a T T T
a(w (my—mp)+AM1l-w'w)=1—-ww=0
results into
y_ V(mg —m)T(my —my) _ [m — mly
2 2

Combining with the result for the gradient, we get

m2 — mj
W — e
[[mg — my[
The best direction w of the line, wrt the measure considered, is the one from my to mo.

However, this may result in a poor separation of classes.
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Projections of classes are dispersed (high variance) along the direction of mq — ma. This may result in a large
overlap.
Refinement:

« Choose directions s.t. classes projections show as little dispersion as possible

« Possible in the case that the amount of class dispersion changes wrt different directions, that is if the distri-
bution of points in the class is elongated

« We wish then to maximize a function which:

— is growing wrt the separation between the projected classes (for example, their mean points)

— is decreasing wrt the dispersion of the projections of points of each class

+ The within-class variance of the projection of class C; (1 = 1,2) is defined as

57 = Z (whx —my)?

xeC;
The total within-class variance is defined as S% + s%

« Given a direction w, the Fisher criterion is the ratio between the (squared) class separation and the overall
within-class variance, along that direction



« Indeed, J(w) grows wrt class separation and decreases wrt within-class variance

Let S1, So be the within-class covariance matrices, defined as
T
S; = E (x —m;)(x — m;)
xe€C;
Then,
822 = E (WTX — 7ni)2 = WTSZ'W
x€C;

Let also Sy = S1 + Sg be the total within-class covariance martrix and

Sp = (mg —my)(mg — my)”

be the between-class covariance matrix.

Then

)

(mg — m1)2 WTSBW
J(W) - 2+ s2 - wl's
1 2 ww

As usual, J(w) is maximized wrt w by setting its gradient to 0

0 WTSBW

Ow wl'Syyw -
which results into
T T Q o
(W' Spw)Sww — (W Syyw)Spw =0

that is
(wl Spw)Sww = (WISU/W)S];W
Observe that:
« w' Spw is a scalar, say cp
. ?UTSMX\N is a scalar, say ey
+ (mg —my )TW is a scalar, say ¢y,
Then, the condition (WTSBW)SWW = (WTSWW)SBW can be written as
CB SW'W = (‘,W*(mg — mj )Cm

which results into P
WECem —
W = bw} ( mo — 1111)
CB

Since we are interested into the direction of w, that is in any vector proportional to w, we may consider the solution

W= Sa,l(mg —mp) =(S1+ Sg)_l(mg —my)

Choosing a threshold.
Possible approach:



« model p(y|C;) as a gaussian: derive mean and variance by maximum likelihood

1 T 1 T
mi:;wa o2 = Z(w x —m;)?

n; — 1
¢ xeC; v xeC;

where n; is the number of items in training set belonging to class C;
« derive the class probabilities

_ (y=my)?

p(Cily) o p(y|Ci)p(Cy) = p(y|Ci) ——— x nje %

n1 + no

« the threshold § can be derived as the minimum y such that

p(Caly) _ n2p(lCe) _

p(Cily)  n1p(y|C)

Perceptron

« Introduced in the 60s, at the basis of the neural network approach
« Simple model of a single neuron
« Hard to evaluate in terms of probability

. \X/Oka 01'11_)’ in the case that ClaSSGS are 1inear1y separable

It corresponds to a binary classification model where an item x is classified on the basis of the sign of the value

of the linear combination w’ x. That is,

fQ) is essentially the sign function

] —1 ifi<O
ﬂ”_{1 ifi >0

The resulting model is a particular generalized linear model. A special case is the one when ¢ is the identity, that is

y(x) = f(whx).
By the defimition of the model, y(x) can only be £1: we denote y(x) = Lasx € Cj and y(x) = —lasx € Cs.

To each element x; in the training set, a target value is then associated t; € {—1,1}.

A natural definition of the cost function would be the number of misclassified elements in the training set. This
would result into a piecewise constant function and gradient optimization could not be applied (we would have
zero gradient almost everywhere).

A better choice is using a piecewise linear function as cost function

We would like to find a vector of parameters w such that, for any x;, wlx; > 0ifx; € Cp and wl'x; < 0if
x; € Cy: in short, wlx;t; > 0.

Each element x; provides a contribution to the cost function as follows
1. 0ifx; is classified correctly by the model

2. —wl'x;t; > 0if x; is misclassified



Let M be the set of misclassified elements. Then the cost is
E,(w)=— E tinTW
x;EM
The contribution of x; to the cost is 0 if x; € M and it is a linear function of w otherwise

The minimum of E)(w) can be found through gradient descent

oF (W)
(k+1) _ (k) _ TP\
W -V " ow bm

the gradient of the cost function wrt to w is
OFE,(w
p(W) _ Z it
ow
x; EM
Then gradient descent can be expressed as
wlk+D) — k) 4 n Z xit;
x; EM

where M, denotes the set of points misclassified by the model with parameter wik)

Online (or stochastic gradient descent): at each step, on]y the gradient WIt a single item is considered
w1 — k) nx;t;

where x; € My, and the scale factor 1 > 0 controls the impact of a badly classified item on the cost function

The method works by Circularly iterating on all elements and applying the above formula.
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In black, decision boundary and corresponding parameter vector w; in red misclassified item vector x;, added

by the algorithm to the parameter vector as 7x;
At cach step, if x; is well classified then wik)

follows
—x;'rw(k""l)ti = —x;rw(k)ti — n(xiti)Txiti
= —x wt; —n||xi||?

< —szW(k) t;

10

is unchanged; else, its contribution to the cost is modified as



This contribution is decreasing, however this does not guarantee the convergence of the method, since the cost
function could increase due to some other element becoming misclassified if wk+1) is used

It is possible to prove that, in the case the classes are linearly separable, the algorithm converges to the correct
solution in a finite number of steps.

Let w be a solution (that is, it discriminates C and C9): if xg41 is the element considered at iteration (k + 1)

and it is misclassified, then

W(k+1) —aw = (W(k) — a\/’i’) + 77Xk+1tk+1

where o > 0 is a suitable constant
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