
Linear classification

Course of Machine Learning
Master Degree in Computer Science
University of Rome “Tor Vergata”

a.a. 2023-2024

Giorgio Gambosi

Classification

• value t to predict are from a discrete domain, where each value denotes a class

• most common case: disjoint classes, each input has to assigned to exactly one class

• input space is partitioned into decision regions

• in linear classification models decision boundaries are linear functions of input x (D − 1-dimensional hy-
perplanes in theD-dimensional feature space)

• datasets such as classes correspond to regions which may be separated by linear decision boundaries are said
linearly separable

Regression vs classification

• Regression: the target variable t is a vector of reals

• Classification: several ways to represent classes (target variable values)

• Binary classification: a single variable t ∈ {0, 1}, where t = 0 denotes class C0 and t = 1 denotes class C1

• K > 2 classes: “1 of K” coding. t is a vector of K bits, such that for each class Cj all bits are 0 except the
j-th one (which is 1)

Three general approaches to classification

1. find f : X 7→ {1, . . . ,K} (discriminant function) which maps each input x to some class Ci, such that
i = f(x)

2. discriminative approach: determine the conditional probabilities p(Cj |x) (inference phase); use these dis-
tributions to assign an input to a class (decision phase)

3. generative approach: determine the class conditional distributions p(x|Cj), and the class prior probabilities
p(Cj); apply Bayes’ formula to derive the class posterior probabilities p(Cj |x) ; use these distributions to
assign an input to a class

Approaches 1 and 2 are discriminative: they tackle the classification problem by deriving from the training set
conditions (such as decision boundaries) that , when applied to a point, discriminate each class from the others.
The boundaries between regions are specified by discrimination functions

1

In linear regression, a model predicts the target value; the prediction is made through a linear function y(x) =
wT x+w0 (linear basis functions could be applied). In classification, a model predicts probabilities of classes, that
is values in [0, 1]; the prediction is made through a generalized linear model y(x) = f(wT x + w0), where f is a
non linear activation function with codomain [0, 1]

Boundaries correspond to solution of y(x) = c for some constant c; this results intowT x+w0 = f−1(c), that
is a linear boundary. The inverse function f−1 is said link function.

Approach 3 is generative: it works by defining, from the training set, a model of items for each class
The model is a probability distribution (of features conditioned by the class) and could be used for random

generation of new items in the class. By comparing an item to all models, it is possible to verify the one that best
fits

Discriminant functions

Linear discriminant functions in binary classification

• Decision boundary: D − 1-dimensional hyperplane of all points s.t. y(x) = wT x+ w0 = 0

• Given x1, x2 on the hyperplane, y(x1) = y(x2) = 0. Hence,

wT x1 + w0 − wT x2 − w0 = wT (x1 − x2) = 0

that is, vectors x1 − x2 and w are orthogonal

• For any x, the dot product w · x = wT x is the length of the projection of x in the direction of w (orthogonal
to the hyperplane wT x+ w0 = 0), in multiples of ||w||2

• By normalizing wrt to ||w||2 =
√∑

iw
2
i , we get the length of the projection of x in the direction orthogonal

to the hyperplane, assuming ||w||2 = 1

• For any x, y(x) = wT x+ w0 returns the distance (in multiples of ||w||) of x from the hyperplane

• The sign of the returned value discriminates in which of the regions separated by the hyperplane the point
lies

Linear discriminant functions in multiclass classification

• DefineK linear functions
yi(x) = wT

i x+ wi0 1 ≤ i ≤ K

Item x is assigned to class Ck iff yk(x) > yj(x) for all j 6= k: that is,

k = argmax
j

yj(x)

2

• Decision boundary between Ci and Cj : all points x s.t. yi(x) = yj(x), aD − 1-dimensional hyperplane

(wi − wj)
T x+ (wi0 − wj0) = 0

The resulting decision regions are connected and convex

Ri

Rj

Rk

xA

xB

x̂

• The definition can be extended to include terms relative to products of pairs of feature values (Quadratic
discriminant functions)

y(x) = w0 +
D∑
i=1

wixi +
D∑
i=1

i∑
j=1

wijxixj

d(d+ 1)

2
additional parameters wrt the d+ 1 original ones: decision boundaries can be more complex

• In general, generalized discriminant functions through set of functions ϕi, . . . , ϕm

y(x) = w0 +
M∑
i=1

wiϕi(x)

Least squares and classification

• Assume classification withK classes

• Classes are represented through a 1-of-K coding scheme: set of variables z1, . . . , zK , classCi coded by values
zi = 1, zk = 0 for k 6= i

• K discriminant functions yi are derived as linear regression functions with variables zi as targets

• To each variable zi a discriminant function yi(x) = wT
i x+wi0 is associated: x is assigned to the classCk s.t.

k = argmax
i

yi(x)

• Then, zk(x) = 1 and zj(x) = 0 (j 6= k) if k = argmax
i

yi(x)

• Group all parameters together as

y(x) = WT x =


w10 w11 · · · w1D

w20 w21 · · · w2D
...

...
. . .

...
wK0 wK1 · · · wKD




1
x1
...

xD


3

• In general, a regression function provides an estimation of the target given the input E[t|x]

• yi(x) can be seen as an estimate of the conditional expectation E[zi|x] of binary variable zi given x

• If we assume zi is distributed according to a Bernoulli distribution, the expectation corresponds to the pos-
terior probability

yi(x) ' E[zi|x]
= P (zi = 1|x) · 1 + P (zi = 0|x) · 0
= P (zi = 1|x)
= P (Ci|x)

• However, yi(x) is not a probability itself (we may not assume it takes value only in the interval [0, 1])

Learning functions yi

Given a training set X, t, a regression function can be derived by least squares

• An item in the training set is a pair (xi, ti), xi ∈ RD and ti ∈ {0, 1}K

• X ∈ Rn×(D+1) is the matrix of feature values for all items in the training set

X =


1 x11 · · · x1D
1 x21 · · · x2D
...

...
. . .

...
1 xn1 · · · xnD


• Then, for matrix Y = XW, of size n×K , we have Yij = wj0 +

∑D
k=1 xikwjk = yj(xi) hence

Y =


y1(x1) y2(x1) · · · yK(x1)
y1(x2) y2(x2) · · · yK(x2)

...
...

. . .
...

y1(xn) y2(xn) · · · yK(xn)


where, as observed before, yj(xi) is the estimate of p(Cj |xi)

All targets, coded in 1-of-K format, can be represented as a n×K matrix T, where Tij = tij .

T =


t11 t12 · · · t1K
t21 t22 · · · t2K
...

...
. . .

...
tn1 tn2 · · · tnK


As usual, yj(xi) is then compared to tij , providing the residue

rij = yj(xi)− tij =
D∑

k=1

xikwjk + wj0 − tij = (XW− T)ij

R =


y1(x1)− t11 y2(x1)− t12 · · · yK(x1)− t1K
y1(x2)− t21 y2(x2)− t22 · · · yK(x2)− t2K

...
...

. . .
...

y1(xn)− tn1 y2(xn)− tn2 · · · yK(xn)− tnK

 =


r11 r12 · · · r1k
r21 r22 · · · r2k
...

...
. . .

...
rn1 rn2 · · · rnK



4

• If we consider theK ×K matrix RTR, we have that

RTR =


r11 r21 · · · rn1

r12 r22 · · · rn2

...
...

. . .
...

r1n rn2 · · · rnK




r11 r12 · · · r1K
r21 r22 · · · r2K
...

...
. . .

...
rn1 rn2 · · · rnK

 =


∑n

i=1 r
2
i1

∑n
i=1 ri1ri2 · · ·

∑n
i=1 ri1riK∑n

i=1 ri2ri1
∑n

i=1 r
2
i2 · · ·

∑n
i=1 ri2riK

...
...

. . .
...∑n

i=1 riKri1
∑n

i=1 riKri2 · · ·
∑n

i=1 r
2
iK


• Summing all elements on the diagonal of RTR provides the overall sum, on all items in the training set, of
the squared differences between observed values and values computed by the model, with parametersW, that
is

K∑
j=1

n∑
i=1

(yj(xi)− tij)
2

• This corresponds to the trace of RTR. Hence, we have to minimize:

E(W) =
1

2
tr
(
RTR

)
• If we apply the standard approach of trying to solve

∂E(W)

∂W
= 0

it is possible to show that
∂E(W)

∂W
= XTXW− XTT

• which is equal to 0 if
W = (XTX)−1XTT

The resulting set of discriminant functions is then

y(x) = WT x = TTX(XTX)−1x

Fisher linear discriminant

The idea of Linear Discriminant Analysis (LDA) is to find a linear projection of the training set into a suitable subspace
where classes are as linearly separated as possible.

A common approach is provided by Fisher linear discriminant, where all items in the training set (points in a
D-dimensional space) are projected to one dimension, by means of a linear transformation of the type

y = w · x = wT x

wherew is theD-dimensional vector corresponding to the direction of projection (in the following, wewill consider
the one with unit norm).

IfK = 2, given a threshold ỹ, item x is assigned toC1 iff its projection y = wT x is such that y > ỹ; otherwise,
x is assigned to C2.

5

Different line directions, that is different parameters w, may induce quite different separability properties.

Deriving w in the binary case

Let n1 be the number of items in the training set belonging to class C1 and n2 the number of items in class C2.
The mean points of both classes are

m1 =
1

n1

∑
x∈C1

x m2 =
1

n2

∑
x∈C2

x

A simplemeasure of the separation of classes, when the training set is projected onto a line, is the difference between
the projections of their mean points

m2 −m1 = wT (m2 −m1)

wheremi = wTmi is the projection of mi onto the line.

• We wish to find a line direction w such thatm2 −m1 is maximum

• wT (m2 − m1) can be made arbitrarily large by multiplying w by a suitable constant, at the same time
maintaining the direction unchanged. To avoid this drawback, we consider unit vectors, introducing the
constraint ||w||2 = wTw = 1

• This results into the constrained optimization problem

max
w

wT (m2 −m1)

where wTw = 1

• This can be transformed into an equivalent unconstrained optimization problem by means of lagrangian
multipliers

max
w,λ

wT (m2 −m1) + λ(1− wTw)

Setting the gradient of the function wrt w to 0

∂

∂w
(wT (m2 −m1) + λ(1− wTw)) = m2 −m1 + 2λw = 0

6

results into
w =

m2 −m1

2λ

Setting the derivative wrt λ to 0

∂

∂λ
(wT (m2 −m1) + λ(1− wTw)) = 1− wTw = 0

results into

λ =

√
(m2 −m1)T (m2 −m1)

2
=

||m2 −m1||2
2

Combining with the result for the gradient, we get

w =
m2 −m1

||m2 −m1||2
The best direction w of the line, wrt the measure considered, is the one fromm1 to m2.

However, this may result in a poor separation of classes.

Projections of classes are dispersed (high variance) along the direction of m1 − m2. This may result in a large
overlap.

Refinement:

• Choose directions s.t. classes projections show as little dispersion as possible

• Possible in the case that the amount of class dispersion changes wrt different directions, that is if the distri-
bution of points in the class is elongated

• We wish then to maximize a function which:

– is growing wrt the separation between the projected classes (for example, their mean points)

– is decreasing wrt the dispersion of the projections of points of each class

• The within-class variance of the projection of class Ci (i = 1, 2) is defined as

s2i =
∑
x∈Ci

(wT x−mi)
2

The total within-class variance is defined as s21 + s22

• Given a direction w, the Fisher criterion is the ratio between the (squared) class separation and the overall
within-class variance, along that direction

J(w) =
(m2 −m1)

2

s21 + s22

7

• Indeed, J(w) grows wrt class separation and decreases wrt within-class variance

Let S1, S2 be the within-class covariance matrices, defined as

Si =
∑
x∈Ci

(x−mi)(x−mi)
T

Then,

s2i =
∑
x∈Ci

(wT x−mi)
2 = wTSiw

Let also SW = S1 + S2 be the total within-class covariance matrix and

SB = (m2 −m1)(m2 −m1)
T

be the between-class covariance matrix.

Then,

J(w) =
(m2 −m1)

2

s21 + s22
=

wTSBw
wTSWw

As usual, J(w) is maximized wrt w by setting its gradient to 0

∂

∂w
wTSBw
wTSWw

= 0

which results into
(wTSBw)SWw− (wTSWw)SBw = 0

that is
(wTSBw)SWw = (wTSWw)SBw

Observe that:

• wTSBw is a scalar, say cB

• wTSWw is a scalar, say cW

• (m2 −m1)
Tw is a scalar, say cm

Then, the condition (wTSBw)SWw = (wTSWw)SBw can be written as

cBSWw = cW (m2 −m1)cm

which results into
w =

cW cm
cB

S−1
W (m2 −m1)

Since we are interested into the direction ofw, that is in any vector proportional tow, we may consider the solution

ŵ = S−1
W (m2 −m1) = (S1 + S2)−1(m2 −m1)

Choosing a threshold.
Possible approach:

8

• model p(y|Ci) as a gaussian: derive mean and variance by maximum likelihood

mi =
1

ni

∑
x∈Ci

wT x σ2
i =

1

ni − 1

∑
x∈Ci

(wT x−mi)
2

where ni is the number of items in training set belonging to class Ci

• derive the class probabilities

p(Ci|y) ∝ p(y|Ci)p(Ci) = p(y|Ci)
ni

n1 + n2
∝ nie

− (y−mi)
2

2σ2
i

• the threshold ỹ can be derived as the minimum y such that

p(C2|y)
p(C1|y)

=
n2

n1

p(y|C2)

p(y|C1)
> 1

Perceptron

• Introduced in the ’60s, at the basis of the neural network approach

• Simple model of a single neuron

• Hard to evaluate in terms of probability

• Works only in the case that classes are linearly separable

It corresponds to a binary classification model where an item x is classified on the basis of the sign of the value
of the linear combination wT x. That is,

y(x) = f(wT x)

f() is essentially the sign function

f(i) =

{
−1 if i < 0

1 if i ≥ 0

The resulting model is a particular generalized linear model. A special case is the one when ϕ is the identity, that is
y(x) = f(wT x).

By the definition of the model, y(x) can only be±1: we denote y(x) = 1 as x ∈ C1 and y(x) = −1 as x ∈ C2.

To each element xi in the training set, a target value is then associated ti ∈ {−1, 1}.
A natural definition of the cost function would be the number of misclassified elements in the training set. This

would result into a piecewise constant function and gradient optimization could not be applied (we would have
zero gradient almost everywhere).

A better choice is using a piecewise linear function as cost function
We would like to find a vector of parameters w such that, for any xi, wT xi > 0 if xi ∈ C1 and wT xi < 0 if

xi ∈ C2: in short, wT xiti > 0.

Each element xi provides a contribution to the cost function as follows

1. 0 if xi is classified correctly by the model

2. −wT xiti > 0 if xi is misclassified

9

LetM be the set of misclassified elements. Then the cost is

Ep(w) = −
∑
xi∈M

tixTi w

The contribution of xi to the cost is 0 if xi 6∈ M and it is a linear function of w otherwise
The minimum of Ep(w) can be found through gradient descent

w(k+1) = w(k) − η
∂Ep(w)
∂w

∣∣∣
w(k)

the gradient of the cost function wrt to w is

∂Ep(w)
∂w

= −
∑
xi∈M

xiti

Then gradient descent can be expressed as

w(k+1) = w(k) + η
∑

xi∈Mk

xiti

whereMk denotes the set of points misclassified by the model with parameter w(k)

Online (or stochastic gradient descent): at each step, only the gradient wrt a single item is considered

w(k+1) = w(k) + ηxiti

where xi ∈ Mk and the scale factor η > 0 controls the impact of a badly classified item on the cost function
The method works by circularly iterating on all elements and applying the above formula.

In black, decision boundary and corresponding parameter vector w; in red misclassified item vector xi, added
by the algorithm to the parameter vector as ηxi

At each step, if xi is well classified then w(k) is unchanged; else, its contribution to the cost is modified as
follows

−xTi w
(k+1)ti = −xTi w

(k)ti − η(xiti)T xiti

= −xTi w
(k)ti − η||xi||2

< −xTi w
(k)ti

10

This contribution is decreasing, however this does not guarantee the convergence of the method, since the cost
function could increase due to some other element becoming misclassified if w(k+1) is used

It is possible to prove that, in the case the classes are linearly separable, the algorithm converges to the correct
solution in a finite number of steps.

Let ŵ be a solution (that is, it discriminates C1 and C2): if xk+1 is the element considered at iteration (k+1)
and it is misclassified, then

w(k+1) − αŵ = (w(k) − αŵ) + ηxk+1tk+1

where α > 0 is a suitable constant

11

