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Linear models
« Linear combination of input features
y(x,w) = wo + w11 + waka + . .. + wWyky
withx = (21,...,24)
« Linear function of parameters w

« Linear function of features x

More compactly,

y(x,w) = wl
wherex = (1, 21,...,24)

Base functions

« Extension to linear combination of base functions ¢1, . .., ¢y, defined on R?

m

y(x,W) — Z W;Q; (X)
j=1

- Each vector x in R? is mapped to a new vector in R™, ¢p(x) = (¢1(x), . . ., pm(x))

« the problem is mapped from a d-dimensional to an m-dimensional space (usually with m > d)
Many types:

« Polynomial (global functions)

« Gaussian (local)



. Sigmoid (local)

« Hyperbolic tangent (local)
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+ A set of n observations of two variables x,t € R: (z1,t1),...,(xn,t,)) is available. We wish to exploit these
observations to predict, for any value = of x, the corresponding unknown value of the target variable ¢
- The training set is a pair of vectors x = (z1,...,7,)" and t = (t,...,t,)7, related through an unknown rule
(function)

Example of a training set.
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Training set
In this case, we assume that the (unknown) relation between x and ¢ in the training set is provided by the function
t = sin(27z), with an additional gaussian noise with mean 0 and given variance 0. Hence, t; = sin(272;) +&;, with

&; N./\/(070'2).

Purpose: Guessing, or approximating as well as possible, the deterministic relation ¢ = sin(27z), on the basis of
the analysis of data in the training set.

Polynomial regression

Let us approximate the unknown function through a suitable polynomial of given degree m > 0

m

) .

y(x,w) = wo + w1 + wex” + ... + Wy Ty, = g w;a’
=0

whose coefficients w = (wg, w1, ..., w,,)T are to be computed.
This corresponds to applying a set of m + 1 base functions ¢;(z) = 7,7 =0,...,m to the unique feature =

m

y(z,w) =Y wd;(x)

=0

Regression loss

Base functions and linear models

When base functions are applied, y(m, w) is a nonlinear function of x, but it is still a linear function (model)
of w.

Parameter estimation

The values assigned to coeflicients should minimize the empirical risk computed wrt some error function (ak.a.
cost function)

Least squares

A most Widely adopted error function is the quadratic loss (yi — ti)2, which results into the least quares
approach, i.c. minimizing the sum, for all items in the training set, of the (squared) difference between the value
returned by the model and the target value.
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Error minimization
+ To minimize E(w), set its derivative w.r.t. w to 0

o the quadratic loss is a convex ﬁmction, which imp]ics that only one (g]obal) minimum is defined

‘ ( ) 221 1( (xu )

« in particular, E(w) quadratic implies that its derivative is linear, hence that it is zero in one point w

t;)% is convex itself, being the sum of n convex functions (y(zg, w) — t)?

« 'The resulting function is y(x, w*)

Derivative with respect to w

The derivative w.r.t. w is indeed a collection of derivatives. A linear system is obtained:
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()U' = QZ xL W fti) % (y(xy',w) — Z Zu77¢7 xZ — 1 @k,(xi)
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Each of the m + 1 equations is linear w.r.t. each coefficient in w. A linear system resules, with m + 1 equations
and m + 1 unknowns wy, . . .

, Wy, Which, in gcncral and with the exceptions ofdcgcncratc cases, has prcciscly one
solution.

Closed form solution

In this case, the solution is defined in closed form by the normal equations for least squares

= (dTo) 1ol

The minimum of E(w) can be computed numerically, by means of gradient descent methods

« Inirial assignment w0 = (w§ ) wgo), R ,wﬁff)), with a Corresponding error value
R 2
A0y — = — (WONT b (x
B =53 (t = (V)T (x0))



i=1) is modified in the direction of steepest descent ofE(W), that is the one

i—1)

« Iteratively, the current value wi
corresponding to the negative of the gradient evaluated at wi

. Atstep i, w,(:_l) is updated as follows:

D o gD 9EW)

dwy,

=wiY =2 3 (t; — WV (x)) dr(x;)
j=1

w(i—1)

« In matrix notation:

W) W=D naE(W)
ow

w(i=1)

« By defiition of E'(w):
W@ = WD 2 S0~ D))
=1

Fitting of polynomials: polynomial degree

- Example of model selection: assigning a value to M determines the model to be used, the choice of M implies
the number of coefficients to be estimated

- increasing M allows to better approximate the training set items, decreasing the error

« if M 4+ 1 = n the model allows to obtain a null error (overfitting)

Overfitting

+ The function y(z, w) is derived from items in the training set, but should provide good predictions for other
items.



« It should provide a suitable generalization to all items in the whole domain.
« If y(x,w) is derived as a too much accurate depiction of the training set, it results into an unsuitable general-
ization to items not in the training set
Evaluation of the generalization
— Test set Xyesr of 100 new items, generated by uniformly sampling z in [0,1,] and € from N(0,0?), and
computing t = sin2mx + €
— For each M:
% derives w* from the training set X¢yqin
* compute the error E(w*, X¢cst) On the test set, or the square root of its mean

E(W* ) Xtest)

! 2
|Xtest| - \/QXM Z (y(‘LW) - t)

TE€X¢est

Erns(W*, Xiest) =

— a lower value of Egprs(w*, Xiest) denotes a good generalization

Plot of Erars w.r.t. M, on the training set and on the test set.
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« As M increases, the error on the training set tends to 0.

+ On the test set, the error initially decreases, since the higher complexity of the model allows to better represent
the characteristics of the data set. Next, the error increases, since the model becomes too dependent from the
training set: the noise component in t is too represented.

For a given model complexity (such as the degree in our example), overfitting decreases as the dimension of the
dataset increases.

The larger the dataset, the higher the acceptable complexity of the model.



How to limit the complexity of the model?

Regularization term in the cost function

Ep(w) + AEw (w)

Ep(w) dependent from the dataset (and the parameters), Eyy (w) dependent from the parameters alone.
The regularization coefficient controls the relative importance of the two terms.
Regularized least squares
Simple form

1 1
Ew(w) = ~wlw= 5 Z w?
i=1
Sum-of squares cost function: ridge regression
1 n )\ 1 )\
B(w) =5 2t =W ()" + Gwlw = 5 (B =) (Bw —y) + o

1=1

with solution

w= 4+ &T®) 1T

+ A more genera] form
n

1 2 AN
B(w) =3 > (i —we(xi)* + 5 2 jwj|*
J=

i=1

« The case ¢ = 1 is denoted as lasso: sparse models are favored

Example: polynomial regression
Use of regularization to limit complexity and overfitting.

- inclusion of a penalty term in the error function
- purpose: limiting the possible values of coefficients

- usually: limiting the absolute value of the coefficients

~ 1 n ) A M ) 1 n ) A )
E(w) =5 Waiw) —t)"+ 5> jwi=5) (ylziw) —t:)" + Jlwl
=1 k=0 i=1

Dependance from the value of the hyperparameter \.
Plot of the error w.r.t \, ridge regression.
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< Small \: overfitting. Small error on the training set, large error on the test set.
- Large A: the effect of data values decreases. Large error on both test and training sets.
« Intermediate \. Intermediate error on training set, small error on test set.
- Consider the case of function y = sin 2mrx and assume L = 100 training sets 71, ..., Tz, are available, each of
size n = 25.
- Given m = 24 gaussian basis functions ¢ (), ..., ¢ (x), from each training set 7; a prediction function y; ()
is derived by minimizing the regularized cost function
1 n m A m
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Left, a possible plot of prediction functions y;(x) (i = 1,...,100), as derived, respectively, by training sets

Tivi=1,...,100 setting In A\ = 2.6. Right, their expectation, with the unknown function y = sin 27x.

The prediction functions y;(x) do not differ much between them (small variance), but their expectation is a bad
approximation of the unknown function (large bias).

1 1r
t t
0 or
_1 _1.
0 z 1 0 = 1

Plot of the prediction functions obtained with In A\ = —0.31.
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Plot of the prediction functions obtained with In A\ = —2.4. As X decreases, the variance increases (prediction

functions y;(x) are more different each other), while bias decreases (their expectation is a better approximation of
y = sin 27x).
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- Plot of (bias)”, variance and their sum as functions of \: las \ increases, bias increases and varinace decreases.
Their sum has a minimum in correspondance to the optimal value of .

« The term Ex[a;j‘x] shows an inherent limit to the approximability of y = sin 27z,

Probabilistic model for regression

Assume that, given an item x, the corresponding unknown target ¢ is normally distributed around the value returned
by the model w!'X, with a given variance 02 = 871

p(tlx,w, B) = N(tly(z,w), 7)
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An estimate of both Basr, and the coefficients wasr, can be performed on the basis of the likelihood w.r.t. the
assumed normal distribution:

L(¢X,w, B) = p(t|X,w, B) = HN(fi|y(xi,w),6*1)
i=1

Parameters w and /3 can be estimated as the values which maximize the data likelihood, or its logarithm

[(e]X, w, B) = logp(e|X, w, ) = " log N (tily(xi, w), 1)

=1

which results into

n

5] n
1(e|X,w, 8) = —‘5 Z (t; — y(xi, w))2 + % log 8 + cost

1=1

The maximization w.r.t. w is performed by determining a maximum w.r.t. w of the function

1 — :
—5 > (ti —y(xi, )’
=1

this is equivalent to minimizing the least squares sum.

The maximization w.r.t. the precision (3 is done by setting to 0 the corresponding derivative

Al (t|X, w, B) 1 — 9 n
R S S ti _ iy W
03 2 2< y(xiw))" + 55
which results into
- 1« :
531\,11[‘ — Z (ti — y(xi, W))Z

1=1

As a side result, the parameter estimate providcs a prcdictivc distribution of ¢ given X, that is che (gaussian)
distribution of the target value for a given item x.
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p(th;w, B) = N (tly(x,w), /3)_1) =
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« In the maximum likelihood framework parameters are considered as (unknown) values to determine with

the best possible precision (frequentist approach).

. Applying maximum likelihood to determine the values of model parameters is prone to overﬁtting: need of
a regularization term £(w).

« In order control model complexity, a bayesian approach assumes a prior distribution of parameter values.

« 'The bayesian framework looks at parameters as random variables, whose probability distribution has to be

derived.

Prior distribution of parameters: gaussian with mean 0 and diagonal covariance matrix with variance equal to
the inverse of hyperparameter o

m—+1

a) = N(wlo,a7 1) = (2&‘) L
s

p(w

Why a gaussian prior?
Posterior proportional to prior times likelihood: likelihood is gaussian (gaussian noise).

n

Hiw é(x), 71):1—[675@,7“ ‘(x:))?

=1

p(t|®,w, 5) HN

Given the prior p(w|a), the posterior distribution for w derives from Bayes’ rule

PP, w,0)p(W[a) 1, w, o)p(w
p(t‘(I);()[7O—)

p(wle, @, a,0) = @)

In general, conjugate of gaussian is gaussian: choosing a gaussian prior distribution of w
p(w) = N(\V’mo, >0)
results into a gaussian posterior distribution

p(w

)= N(W|mp: Zp)
where

¥, = (S5t + pele)”
m, = 3,(3g 'mg + BPT)

1



Here, we have

plw) = N(w]0,a~ 1) plelw, ®) = A’ ®, 5711
and the posterior distribution is gaussian
p(wle, @, o, 0) = N (w|my, X))
with
%, = (al + o7 ®) ! m, = B%,07 ¢

Maximum a Posteriori

« Given the posterior distribution p(w|®, t, «, 3), we may derive the value of wps 4 p which makes it maximum
(the mode of the distribution)

« This is equivalent to maximizing its logarithm

logp(w|®, ¢, a, B) = logp(tlw, @, B) + log p(w|ar) — log p(¢| P, 5)

and, since p(t\q), ,3) is a constant wrt w

warap = argmax logp(w|®, t, «, B) = argmax (logp(t|w, @, 5) + log p(w|a))

that is,
wirap = argmin (—log p(¢|/®, w, B) — log p(w|a))

W

In chis case

p(wIX, & a, B) o< p(e]X, w; B)p(w|a)
11 (VB By (&
=T ) (52

The maximization of the posterior distribution (MAP) is equivalent to the maximization of the corresponding

M+1
2 _a Ty
6 B) Wow

logarithm
B — n « m—+1 Q
—3 72 1 (t; — y(xi,w))2 + 5 log 8 — E\VTW + /2 log 5

—+ cost

The value wps 4 p which maximize the probability (mode of the distribution) also minimizes

B — « 1 — « .
) Z (ti — y(xi,w))* + §WTW =p (2 Z (t: — y(xi,w))* + 2/3|W|2>

=1 1=1
The ratio % corresponds to a regularization hyperparameter.

The same considerations of ML appy here for what concerns deriving the predictive discribution of ¢ given x,
which results now

TAP _ BMAP (4 (o
s, Batar) = N(lly(x,w), Byiap) = || PH2E e tatssnar)f

where, as it is easy to see, Syrap = BmrL
Sequential learning

12



« The posterior after observing T7 can be used as a prior for the next training set acquired.

« In general, for a sequence 11, ..., T, oftraining sets,

p(w|T1,...T,) < p(Tn|w)p(w|T1, ... Th-1)
p(W|T1, B Tn,]) XX p(Tn,1 ’W)p(W|T1 . .Tn,Q)

p(w|T1) o< p(T1|w)p(w)

- Input variable z, target variable ¢, linear regression y(x, wo, w1) = wo + wy .

- Dataset generated by applying function y = ag + a1x (with ag = —0.3, a; = 0.5) to values uniformly sampled
in [—1, 1], with added gaussian noise (1 = 0, o = 0.2).

- Assume the prior distribution p(wg,w1) is a bivariate gaussian with g = 0 and ¥ = 0?1 = 0.041

1
|
Y
wy
0 0
-1 -1
-1 0wy ! -1 0 r 1

Left, prior distribution of wq, wy; right, 6 lines sampled from the distribution.
After observing item (x1,y1) (circle in right figure).

=1
-1 i JU) I - { b |

Left, posterior distribution p(wg, w1 |x1,y1); right, 6 lines sampled from the distribution.
After observing items (21, 41), (x2,y2) (circles in right figure).
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Left, posterior distribution p(wg, w1|x1,y1,22,y2); right, 6 lines sampled from the distribution.
After observing a set of n items (z1,%1), ..., (Zn,yn) (circles in right figure).
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Left, posterior distribution p(wg, w1 |z, y;,7 = 1,...,n); right, 6 lines sampled from the distribution.

+ As the number of observed items increases, the distribution of parameters wg, w; tends to concentrate (variance
decreases to 0) around a mean point ag, a;.

- As a consequence, sampled lines are concentrated around y = ag + a1 .

Approaches to prediction in linear regression

Classical

« A value wr,g for w is learned through a point estimate, performed by minimizing a quadratic cost function,
or equivalently by maximizing likelihood (ML) under the hypothesis ofgaussian noise; regularization can be
applied to modify the cost function to limit overfitting

« Given any x, the obtained value wr,g is used to predict the corresponding t as y = x'wrg, where X0 =
(1,x)T, or, in general, as y = ¢p(x)Twrs

Bayesian point estimation

« The posterior distribution p(wlt, @, o, ) is derived and a point estimate is performed from it, computing
the mode wys ap of the distribution (MAP)

|2

« Equivalent to the classical approach, as wasap corresponds to wrg if A =

— @

« The prediction, for a value x, is a gaussian distriburion p(y|¢(x)TWMAp, B

for ¢, with mean ¢(X)TWMAP
and variance 71

14



« 'The distribution is not derived directly from the posterior p(wlt, @, c, §): it is built, instead, as a gaussian
with mean depending from the expectation of the posterior, and variance given by the assumed noise.

Fully bayesian

« The real interest is not in estimating w or its distribution p(wl|t, ®, a, 8), but in deriving the predictive
distribution p(y|x). This can be done through expectation of the probability p(y|x, w, 5) predicted by a
model instance wrt model instance distribution p(wlt, @, a, 5), that is

ol @.0,8) = [ plols.w Bp(vle, B, 8)d

« p(y|x, w, B) is assumed gaussian, and p(wle, @, a, ) is gaussian by the assumption that the likelihood p(t|w, ®, 3)
and the prior p(w|a) are gaussian themselves and by their being conjugate

p(ylx,w, B) = N(ylw' ¢(x), 5)
p(w|t7 (I), «, /3) - N(W’BSN'QTt, SN)

where Sy = (al + ST ®)~!
Under such hypothesis, p(y|x) is gaussian
p(y|x, 6, @, , B) = N (ylm(x), 0*(x))

with mean

m(x) = Bp(x)T Sy dT e

and variance
. 1
o?(x) = 5T d(x)"Sn e (x)

1

« — is a measure of the uncertainty intrinsic to observed data (noise)

-+ ¢(x)TSye(x) is the uncertainty wrt the values derived for the parameters w

« as the noise distribution and the distribution of w are independent gaussians, their variances add

- predictive distribution for y = sin 27wz, applying a model with 9 gaussian base functions and training sets of 1,
2, 4, 25 items, respectively

- left: items in training sets (sampled uniformly, with added gaussian noise); expectation of the predictive
distribution (red), as function of x; variance of such distribution (pink shade within 1 standard deviation from
mean), as a function of z

« right: items in training sets, 5 possible curves approximating y = sin 27z, derived through sampling from the
posterior distribution p(wlt, @, «, 5)

n=1
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Fully bayesian regression and hyperparameter marginalization

Ina fully bayesian approach, also the hyper—parameters a, B are marginalized

p(tx, e, @) = /p(tx,w, B)p(wle, @, o, B)p(av, B

¢, ®)dwdadp

where, as seen before,
- pltlx, w, B) = N(tlw" ¢ (x), B)
- p(wle,®, v, B) = N(w|mp, S), with Sy = (ol + BOT®) "L e my = BSyPTc

this marginalization wre w, o, 8 is analytically intractable we may consider approximation methods
« since p(a, Blt, @) o p(t| @, o, B)p(av, B), if we assume that p(a, 5) is relatively flat, then

argmax p(a, S, @) ~ argmax p(¢| P, o, )

a,f o,

and we may consider the maximization of the marginal likelihood (marginal wrt to coefficients w)

p(t|®, o, B) = /p(t]w,fb,ﬁ)p(wa)dw

« if ' we assume that p(®) is constant this is equivalent to maximize the evidence

p(®, tler, B) = p(e|®, o, B)p(P|ey, B) x p(t|P, e, B)

Maximization of marginal likelihood wrt o
It can be shown that the value & which maximizes the marginal likelihood verifies the equality
M

M1 . 1 1
- = e N — — =0
26 2 'NTMWN TG ; N+ &
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where A1, ..., Ay are the eigenvalues of BOT .

That is,
M 1 M A M s
~ T ) R 4 i
§ =M —¢ = 1-— =
o =M =035 =2 (- xva) " Bt
and M
G = S with v = Z Ai

This is an implicit solution for &, since both v and mxy depend on «, and some iterative procedure should be
applied.

Maximization of marginal likelihood wrt 8 Here, it can be proved that the value 8 which maximizes the
marginal likelihood verifies the equality

N 1¢ T Ny
? — 5 - (fL mNd)(xl)) 2/_)) = O
thac is,
1 1 al T 2
5N Z (ti — myo(x:))
i=1

Again, this is an implicit solution since both my and 7 depend on B and an iterative method should be applied
also in this case.
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