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Partitional clustering
Given a dataset X = (x1,...,Xy), withx; € ]Rd(i =1,...,n).

We wish to derive a set of clusters (i.e. a partition of X into subsets of “near” elements). Clusters are represented
by their prototypes (my, ..., my), withm; € R j=1,...,k.

Representation of a clustering
1. Cluster prototypes (my, ..., mg), withm; € Rd(j =1,...,k)

2. Element assignment to clusters: for each x;, k binary flags 7;; € {0,1}, j = 1,..., k. If x; is assigned the
t-th cluster, then 7y = 1 and r;; = O for j # ¢

Clustering types
» Partitional clustering: Given a set of items (points) X = {xi, ..., xp }, we wish to partition X by assigning
each element to one out of k clusters C1, . . ., Cf in such a way to maximize (or minimize) a given cost J.

The number k of clusters could be given or should have to be computed.

« Hierarchical clustcring: Given a set of items (points) X = {xl, ... ,xn}, we wish to derive a set of nested
partitions of X, from the partition composed by all singletons (one cluster for each node) to the one composed
by a single item (the whole set).

Clustering cost

Sum of squares
Let us define the cost a clustering as follows:

k n kK n
T(R, M) =" mijllxg —mgl[F =D il —mi)T (x5 — my)
i=1j=1 i=1 j=1
where
« R;j = rij, where rjg = Land r;; = 0 for j # s if ; is assigned to cluster Cf

« M;=m;,i=1,...,kis the prototype (centroid) of cluster Cj,

n

1
m; — — TiiX4
7”L§ : I

) ]:1



k-means clustering

Dataset X = (xl, - ,xn), X; € R?: we wish to derive k clusters with prototypes my, ..., mg

Assignment of elements to cluster: for cach x;, k binary flags r;; (j = 1,..., k)

« if x; is assigned to cluster s, then 755 = 1, and r;; = O for j # k

Cost: sum of the distances of cach point from the prototype of the corresponding cluster

n k
J(R,M) =Y " rij [[xi — my[?

i=1 j=1

Objective: finding 75 and m; (i = 1,...,n,j = 1,..., k) to minimize J(R, M)

Algorithm
1. Given a set ofprototypes m;;, minimize wrt 7 (assigning elements to clusters).
L. k 2
For each x;, minimize Zj:l Tij H% — ij .

The minimum is obtained for r;, = 1 (and r;; = 0 for j # k), where |x; — mkH2 is the minimum distance.
That is, each point is assigned to the cluster of the nearest prototype.

2. Given a set of assignments 75, minimize wrt m;; (defining new cluster prototypes)
k 2. . . . . L
For each mg, J = 3711 370 rij [[x; — mj||” is a quadratic function of my. By setting its derivative to

zero, the values of my, providing its minimum are obtained

0.J g
ka = 2;7'%(3(1‘ — mk) =0=my =

Z?:1 TikXq
Z?:l Tik

That iS7 tl’lC new prototypc is EhC mean OfthC clcmcnts assigncd to tl’lC ClU_SICI'

At each step, J does not increase. There is a convergence to a local minimum.

Example of application of k-means
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How to choose K

Cross validation
« Apply cross validation for different values of K, measuring the quality of the clustering obtained
« How to measure the quality of a clustcring?

1. mean distance of elements from the prototypes of their clusters

2. log-likelihood of the elements wrt the resulting mixture model

Note
Measures improves as K increases (ovcrﬁtting). A value such that furcher increases providc limited improve-
ment should be found

Hierarchical clustering
Aim
Derivation of a binary tree. Node: cluster; arc: inclusion.

The tree specifies a set of pairwise merge of clusters.

- Aggregation, starting from n singleton clusters



« Separation, starting from a singlc cluster of size n

Requirements: k-means requires:

« anumber K of clusters

« an initial assignment

« adistance function between elements
Hierarchical clustering requires:

e 2 similarity function between clusters

Algorithm
« define n clusters (singleton)
* repeat

— compute tllC matrix Of distances betwcen ClUStCTS

— merge the pair of clusters which are “nearest”

« until a single cluster has remained
Properties

« Each tree prcfix is a partition of elements

« The algorithm provides a partial order of clusterings

« 'The best clustering has to be found

+ Monotonicity: similarity between paired clusters decreases
Dendrogram

« Tree of cluster pairings

« The height of the nodes is inversely proportional to the similarity of the paired clusters



Sir Ronald Fisher's Iris Data Set
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Cluster similarity

Many measures. Most frequent ones:
« Similarity between nearest nodes (Single linkage)

dsr,(C1,Cy) = x1ecnllixr;€c,2 d(x4,xj)

« Similarity between farthest nodes (Complete linkage)

der(C1,C2) = el d(xi, x;)

+ Mean simi]arity (Group avcragc)

d6a(Cr, Co) = 7 ra ,02, S dlxixg)

x1€C1 x2€C2

Different measures provide different dendrograms



Dendrogram with complete linkage

Sir Ronald Fisher's Iris Data Set
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Mixtures of distributions

Linear combinations of probability distributions
+ Same type of distributions ¢(x|0)

. Differ by parameter ValUCS

where

Mixing coefficients
K
0<m, <1 k=1,....K d me=1
Terms 7, have the properties of probability values

Provide extensive capabilitics to model complcx distributions. For cxamplc, almost all continuous distributions
can be modeled by the linear combination of a suitable number of gaussians.



Mixture parameters estimation

Given a dataset X = (x1, ... ,Xp), the parameters 7, 6 of a mixture can be estimated by maximum likelihood.
n n
L(6,=|X) = p(X|8,7) = [ [ p(xi|0, ) = H T (x|0k)
i=1 i=1k=1

or maximum log-likelihood
n K
16, 7|X) = logp(X|0, ) Zlogp x;|0, ) Zlog <Z qu(xiﬁk))
=1 k=1

.. . . . .. ~ . K
Maximization is however constrained by the conditions 0 < 7; < 1 for all 4 and Zi:l m = 1.

By applying the 1agrangian multiplicrs method, we will maximize
K
L(O, 7)) =1(0,7X) + A1 - m)
=1

Let us first consider the derivatives with respect to the weights 7, which we set to 0

0L(0,m|X)  0l(8,m|X)

— A=0
on;j on;

This is equivalent to

n K n K
J J i J k=1

=1

_z atxil%y) _z%"l: zw
=1

Zk 1 7kq Xz‘ek i=1

where,

7k q(x|0})

LS STy

By setting the derivative wrt A to 0
oL(0,7X) 0 16, %X + A1 i
ax oA £ i)
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we obtain
K

Zﬂ'i:l

=1

Asa consequence, Sil’lCC7 as shown HbOVC7

% > ilx)
i=1

it results

n

K
ZZ%‘(’%) =1
=1 i=1

>/\>—‘

K
7=1
which implies
n n

1%’(&')22% ZZ 73d(il%) Z

i=1 j=1 i=1 j=1 Zk Vmea(xil) S

—1 i=

K
A=
7j=1
and, finally,
1 n
) ; Vi (xi)

For what concerns derivatives (or gradients) wrt distribution parameters 0, it results

n K n K
Mg’e;ﬂx) — E)(Z [Z log <Z WkQ(XiWk))] = ; 889] llog (; ”kQ(Xiwk)ﬂ

=1

_ Z miq(x;|0;)  Ologq(x;|6;)
Zk 17TkQ(xz|0k) 89j

%q XZW ) 0

||M

Log likelihood maximization is intractable analytically: its solution cannot be given in closed form.
« 7 and @ can be derived from 7k (x;)
« Also, ¥k (x;) can be derived from 7 ¢ 6
Iterative techniques
« Given an estimation for 7w ¢ ...
» derive an estimation for Y (x;), from which ...
« derive a new estimation for 7 ¢ @, from which ...

+ derive a new estimarion for 7y (xl)
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Mixtures as generative processes

Graphical model representation of a mixture of distributions. Latent variables
« Terms z; are latent random variable with domain z € {1,..., K}
« While x; is observed, the value of z; cannot be observed
« 2; denotes the component distribution ¢(x|@) responsible for the generation of x;
Generation process

1. Starting from the distribution 71, . .., Tk, the component distribution to apply to sample the value of x; is
sampled: its index is given by z;. Hence 2; is dependent from 7

2. Let z; = k: then, x; is sampled from distribution g(x|6x). That is, x; is dependent from both z; and 0
(through 6%)

Example ofgeneration of dataset from mixture of 3 gaussians
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Distributions with latent variables

p(x|z = k,0,m) = p(x|z = k,0) = q(x|0k)

Marginalizing WIt 2,

K K
p(x|0,7m) = plx,z=kl0,m) =) p(x|z =k, 7 0)p(z = k|, m)
k=1

K K
:Zp(x|z:k 0)p(z = k|m) :Zq x|0k)p(z = k|m)
k=1

Since, by definition,
’0 Tl' Z 7qu leek

it results

T, = p(z = k|m)

Responsibilities

An interpretation for y(x) can be derived as follows
mrq(x|0k)

>y mia(x]6;)

_ pe=Rpblz=h)
s p(z = jp(xlz =)

Mixing coefhicients and responsibilities

Y (x) =

= p(z = klx)

« A mixing coefficient 1, = p(z = k) can be seen as the prior (wrt to the observation of the point) probability
that the next point is gcncrated by samp]ing the k-th component distribution

« A responsibility vx(x) = p(z = k|x) can be seen as the posterior (wrt to the observation of the point)
probability that a point has been generated by sampling the k-th component distribution
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In the case, of mixtures ()fgaussian distribution, we have q(x|0k) = /\/(x|,uk, Ek),

As a consequence,

TN (x| i, B
Yoy N (x g, 55)

Vi (x) =

and the likelihood is maximized for

1 n
= > i)
=1

- 9 log N (xipj, %,
Z’Yj(xi) og N (xi[p; J):O

P 09,
Maximum likelihood
Data set
+ Let X = (x1,...,Xp) be the set of values of observed variables and let Z = (21, ..., 2z5,) be the set of values

of the latent variables. Then (X, Z) is the complete dataset: it includes the values of all variables in the model
« Xis the observed dataset (incomplete). It only includes “real” data, that is observed data.

Indeed, Z is unknown. If values have been assigned to model parameters, the only possible knowledge about Z is
given by the posterior distribution p(Z|X, 0, Tr).

Inferring parameters for gaussian mixtures

« If we assume that the complete dataset (X, Z) is known (that is the observed points together with their
corresponding components) a maximum likelihood estimation of 7r and @ would be easy. In particular,
« For the mixing coefficients 7, it would result, as usual
ng
T = —
n

where ny, is the number of elements of the set Cy, such cthat z = k

« For component parameters 0, = (;Lk, Ek) the usual estimations for gaussians would providc

eCh
S 3 e ) )"
xeCl
Log likelihood of complete dataset
The above results derive from the maximimization, wrt 7, pk, L, (k = 1,. .., K) of the log likelihood

n K
(S, p, X, Z) = logp(X, Z|%, p,m) = log [ | T] w5 N (xil g, S)
i=1k=1

n K
=Y ) Grllogmi + log N (xil s, )

i=1 k=1

where, i, is the k-component of the 1-to-K coding of z;, that is, i = 1iff z; = k, and 0 otherwise
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Dealing with latent variables

Unfortunately, since Z is unknown, the log-likelihood of the complete dataset cannot be defined (the sets Cy; are
not known).

Our approach will be to consider for maximization, instead of the log-likelihood where each z; is specified,

« its expectation wrt to the conditional distribution p(Z]X), that is

n K

Epzio (S, (X, Z)) = > p(zi = klxi) (log . + log N (i, S))
i=1 k=1
K

= ) yk(xi) (log mi + log N (xil ., Tie)
=1 k=1

Observe that this expectation can be derived ifp(Z]X) (that is the set of all values Yk (xl)) is known.

Maximization of expected log—likelihood

The maximization of Epzx)[[(X, , 7®|X, Z)] wrt to 7, g, B, results easily into

1 n
T = ﬁZ%(Xj)
=1
1 n
M = nk;%(xz')xz'

1 n
B = o D7) — ) (i — )"
i=1
this is named M-step (from “Maximization”)

A new expectation

The computed values for the parameters result into new, different values for ~yg (xl) = p(zi = k’xi), and a different
expectation Ep zx)[[(3, p, (X, Z)].

This is named E-step (from “Expectation”)
ML and mixtures of gaussians: iterative approach

1. Assign an initial estimate to pj,3;, 75,7 =1,..., K

2. Repeat

(a) Compute

K
1 :

Vi (i) = ;%‘N(%’Mj, %) with i = mN (i, )
! k=1

(b) Compute

n
M= with nj = Zvj(wi)
i=1
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(c) Compute
1 n
pj=— PIRITERE
I =1
(d) Compute
1 — T
X = n > ) (s — ) (s — )
=1
3. until some convergence property is verified

The convergence test may refer to the the increase of log-likelihood in the last iteration
This algorithm is indeed the application of a general schema named Expectation-Maximization
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