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Partitional clustering

Given a dataset X = (x1, . . . , xn), with xi ∈ Rd(i = 1, . . . , n).

We wish to derive a set of clusters (i.e. a partition ofX into subsets of “near” elements). Clusters are represented
by their prototypes (m1, . . . ,mk), with mj ∈ Rd, j = 1, . . . , k.

Representation of a clustering

1. Cluster prototypes (m1, . . . ,mk), with mj ∈ Rd(j = 1, . . . , k)

2. Element assignment to clusters: for each xi, k binary flags rij ∈ {0, 1}, j = 1, . . . , k. If xi is assigned the
t-th cluster, then rit = 1 and rij = 0 for j ̸= t

Clustering types

• Partitional clustering: Given a set of items (points) X = {x1, . . . , xn}, we wish to partition X by assigning
each element to one out of k clusters C1, . . . , Ck in such a way to maximize (or minimize) a given cost J .
The number k of clusters could be given or should have to be computed.

• Hierarchical clustering: Given a set of items (points) X = {x1, . . . , xn}, we wish to derive a set of nested
partitions ofX, from the partition composed by all singletons (one cluster for each node) to the one composed
by a single item (the whole set).

Clustering cost

Sum of squares
Let us define the cost a clustering as follows:

J(R,M) =
k∑

i=1

n∑
j=1

rij ||xj −mi||2 =
k∑

i=1

n∑
j=1

rij(xj −mi)
T (xj −mi)

where

• Rij = rij , where ris = 1 and rij = 0 for j ̸= s if xi is assigned to cluster Cs

• Mi = mi, i = 1, . . . , k is the prototype (centroid) of cluster Ci,

mi =
1

ni

n∑
j=1

rijxj
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k-means clustering

Dataset X = (x1, . . . , xn), xi ∈ Rd: we wish to derive k clusters with prototypes m1, . . . ,mk

Assignment of elements to cluster: for each xi, k binary flags rij (j = 1, . . . , k)

• if xi is assigned to cluster s, then ris = 1, and rij = 0 for j ̸= k

Cost: sum of the distances of each point from the prototype of the corresponding cluster

J(R,M) =
n∑

i=1

k∑
j=1

rij ||xi −mj ||2

Objective: finding rij and mj (i = 1, . . . , n, j = 1, . . . , k) to minimize J(R,M)

Algorithm

1. Given a set of prototypes mij , minimize wrt rij (assigning elements to clusters).

For each xi, minimize
∑k

j=1 rij ||xi −mj ||2.

The minimum is obtained for rik = 1 (and rij = 0 for j ̸= k), where ||xi −mk||2 is the minimum distance.
That is, each point is assigned to the cluster of the nearest prototype.

2. Given a set of assignments rij , minimize wrt mij (defining new cluster prototypes)

For each mk, J =
∑n

i=1

∑k
j=1 rij ||xi −mj ||2 is a quadratic function of mk . By setting its derivative to

zero, the values of mk providing its minimum are obtained

∂J

∂mk
= 2

n∑
i=1

rik(xi −mk) = 0 =⇒ mk =

∑n
i=1 rikxi∑n
i=1 rik

That is, the new prototype is the mean of the elements assigned to the cluster

At each step, J does not increase. There is a convergence to a local minimum.

Example of application of k-means
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How to chooseK

Cross validation

• Apply cross validation for different values ofK , measuring the quality of the clustering obtained

• How to measure the quality of a clustering?

1. mean distance of elements from the prototypes of their clusters

2. log-likelihood of the elements wrt the resulting mixture model

Note
Measures improves as K increases (overfitting). A value such that further increases provide limited improve-

ment should be found

#cluster

m
is
ur
a

Hierarchical clustering

Aim
Derivation of a binary tree. Node: cluster; arc: inclusion.

The tree specifies a set of pairwise merge of clusters.

• Aggregation, starting from n singleton clusters
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• Separation, starting from a single cluster of size n

Requirements: k-means requires:

• a numberK of clusters

• an initial assignment

• a distance function between elements

Hierarchical clustering requires:

• a similarity function between clusters

Algorithm

• define n clusters (singleton)

• repeat

– compute the matrix of distances between clusters

– merge the pair of clusters which are “nearest”

• until a single cluster has remained

Properties

• Each tree prefix is a partition of elements

• The algorithm provides a partial order of clusterings

• The best clustering has to be found

• Monotonicity: similarity between paired clusters decreases

Dendrogram

• Tree of cluster pairings

• The height of the nodes is inversely proportional to the similarity of the paired clusters
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Cluster similarity

Many measures. Most frequent ones:

• Similarity between nearest nodes (Single linkage)

dSL(C1, C2) = min
x1∈C1,x2∈C2

d(xi, xj)

• Similarity between farthest nodes (Complete linkage)

dCL(C1, C2) = max
x1∈C1,x2∈C2

d(xi, xj)

• Mean similarity (Group average)

dGA(C1, C2) =
1

|C1| · |C2|
∑
x1∈C1

∑
x2∈C2

d(xi, xj)

Different measures provide different dendrograms
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Dendrogram with complete linkage

Mixtures of distributions

Linear combinations of probability distributions

• Same type of distributions q(x|θ)

• Differ by parameter values

p(x|π,θ) =
K∑
k=1

πkq(x|θk)

where
π = (π1, . . . , πK) θ = (θ1, . . . , θK)

Mixing coefficients

0 ≤ πk ≤ 1 k = 1, . . . ,K
K∑
k=1

πk = 1

Terms πk have the properties of probability values
Provide extensive capabilities tomodel complex distributions. For example, almost all continuous distributions

can be modeled by the linear combination of a suitable number of gaussians.
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Mixture parameters estimation

Given a dataset X = (x1, . . . , xn), the parameters π,θ of a mixture can be estimated by maximum likelihood.

L(θ,π|X) = p(X|θ,π) =
n∏

i=1

p(xi|θ,π) =
n∏

i=1

K∑
k=1

πkq(x|θk)

or maximum log-likelihood

l(θ,π|X) = log p(X|θ,π) =
n∑

i=1

log p(xi|θ,π) =
n∑

i=1

log

(
K∑
k=1

πkq(xi|θk)

)

Maximization is however constrained by the conditions 0 ≤ πi ≤ 1 for all i and
∑K

i=1 πi = 1.

By applying the lagrangian multipliers method, we will maximize

L(θ,π, λ) = l(θ,π|X) + λ(1−
K∑
i=1

πi)

Let us first consider the derivatives with respect to the weights π, which we set to 0

∂L(θ,π|X)
∂πj

=
∂l(θ,π|X)

∂πj
− λ = 0

This is equivalent to

λ =
∂l(θ,π|X)

∂πj
=

∂

∂πj

[
n∑

i=1

log

(
K∑
k=1

πkq(xi|θk)

)]
=

n∑
i=1

∂

∂πj

[
log

(
K∑
k=1

πkq(xi|θk)

)]

=

n∑
i=1

q(xi|θj)∑K
k=1 πkq(xi|θk)

=

n∑
i=1

γj(xi)
πj

=
1

πj

n∑
i=1

γj(xi)

where,

γk(x) =
πkq(x|θk)∑K
j=1 πjq(x|θj)

By setting the derivative wrt λ to 0

∂L(θ,π|X)
∂λ

=
∂

∂λ

(
l(θ,π|X) + λ(1−

K∑
i=1

πi)

)
= 0
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we obtain
K∑
i=1

πi = 1

As a consequence, since, as shown above,

πj =
1

λ

n∑
i=1

γj(xi)

it results

K∑
j=1

πj =
1

λ

K∑
j=1

n∑
i=1

γj(xi) = 1

which implies

λ =

K∑
j=1

n∑
i=1

γj(xi) =
n∑

i=1

K∑
j=1

γj(xi) =
n∑

i=1

K∑
j=1

πjq(xi|θj)∑K
k=1 πkq(xi|θk)

=

n∑
i=1

1 = n

and, finally,

πk =
1

n

n∑
i=1

γk(xi)

For what concerns derivatives (or gradients) wrt distribution parameters θ, it results

∂L(θ,π|X)
∂θj

=
∂

∂θj

[
n∑

i=1

log

(
K∑
k=1

πkq(xi|θk)

)]
=

n∑
i=1

∂

∂θj

[
log

(
K∑
k=1

πkq(xi|θk)

)]

=

n∑
i=1

πjq(xi|θj)∑K
k=1 πkq(xi|θk)

∂ log q(xi|θj)
∂θj

=

n∑
i=1

γj(xi)
∂ log q(xi|θj)

∂θj
= 0

Log likelihood maximization is intractable analytically: its solution cannot be given in closed form.

• π and θ can be derived from γk(xi)

• Also, γk(xi) can be derived from π e θ

Iterative techniques

• Given an estimation for π e θ...

• derive an estimation for γk(xi), from which ...

• derive a new estimation for π e θ, from which ...

• derive a new estimation for γk(xi) ...
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Mixtures as generative processes

Graphical model representation of a mixture of distributions. Latent variables

• Terms zi are latent random variable with domain z ∈ {1, . . . ,K}

• While xi is observed, the value of zi cannot be observed

• zi denotes the component distribution q(x|θ) responsible for the generation of xi

Generation process

1. Starting from the distribution π1, . . . , πK , the component distribution to apply to sample the value of xi is
sampled: its index is given by zi. Hence zi is dependent from π

2. Let zi = k: then, xi is sampled from distribution q(x|θk). That is, xi is dependent from both zi and θ
(through θk)

Example of generation of dataset from mixture of 3 gaussians

(a)
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1

(b)
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1
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(c)
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Distributions with latent variables

p(x|z = k, θ,π) = p(x|z = k, θ) = q(x|θk)

Marginalizing wrt z,

p(x|θ,π) =
K∑
k=1

p(x, z = k|θ,π) =
K∑
k=1

p(x|z = k,π,θ)p(z = k|θ,π)

=
K∑
k=1

p(x|z = k, θ)p(z = k|π) =
K∑
k=1

q(x|θk)p(z = k|π)

Since, by definition,

p(x|θ,π) =
K∑
k=1

πkq(xi|θk)

it results
πk = p(z = k|π)

Responsibilities
An interpretation for γk(x) can be derived as follows

γk(x) =
πkq(x|θk)∑K
j=1 πjq(x|θj)

=
p(z = k)p(x|z = k)∑K
j=1 p(z = j)p(x|z = j)

= p(z = k|x)

Mixing coefficients and responsibilities

• Amixing coefficient πk = p(z = k) can be seen as the prior (wrt to the observation of the point) probability
that the next point is generated by sampling the k-th component distribution

• A responsibility γk(x) = p(z = k|x) can be seen as the posterior (wrt to the observation of the point)
probability that a point has been generated by sampling the k-th component distribution
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In the case, of mixtures of gaussian distribution, we have q(x|θk) = N (x|µk,Σk).
As a consequence,

γk(x) =
πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

and the likelihood is maximized for

πj =
1

n

n∑
i=1

γj(xi)

n∑
i=1

γj(xi)
∂ logN (xi|µj ,Σj)

∂θj
= 0

Maximum likelihood

Data set

• Let X = (x1, . . . , xn) be the set of values of observed variables and letZ = (z1, . . . , zn) be the set of values
of the latent variables. Then (X,Z) is the complete dataset: it includes the values of all variables in the model

• X is the observed dataset (incomplete). It only includes “real” data, that is observed data.

Indeed, Z is unknown. If values have been assigned to model parameters, the only possible knowledge about Z is
given by the posterior distribution p(Z|X,θ,π).

Inferring parameters for gaussian mixtures

• If we assume that the complete dataset (X,Z) is known (that is the observed points together with their
corresponding components) a maximum likelihood estimation of π and θ would be easy. In particular,

• For the mixing coefficients πk it would result, as usual

πk =
nk

n

where nk is the number of elements of the set Ck such that z = k

• For component parameters θk = (µk,Σk) the usual estimations for gaussians would provide

µk =
1

nk

∑
x∈Ck

x

Σk =
1

nk

∑
x∈Ck

(x− µk)(x− µk)
T

Log likelihood of complete dataset

The above results derive from the maximimization, wrt πk, µk,Σk, (k = 1, . . . ,K) of the log likelihood

l(Σ,µ,π|X,Z) = log p(X,Z|Σ,µ,π) = log
n∏

i=1

K∏
k=1

πζik
k N (xi|µk,Σk)

ζik

=
n∑

i=1

K∑
k=1

ζik(logπk + logN (xi|µk,Σk))

where, ζik is the k-component of the 1-to-K coding of zi, that is, ζik = 1 iff zi = k, and 0 otherwise
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Dealing with latent variables

Unfortunately, since Z is unknown, the log-likelihood of the complete dataset cannot be defined (the sets Ck are
not known).

Our approach will be to consider for maximization, instead of the log-likelihood where each zi is specified,

• its expectation wrt to the conditional distribution p(Z|X), that is

Ep(Z|X)[l(Σ,µ,π|X,Z)] =

n∑
i=1

K∑
k=1

p(zi = k|xi)(logπk + logN (xi|µk,Σk))

=
n∑

i=1

K∑
k=1

γk(xi)(logπk + logN (xi|µk,Σk))

Observe that this expectation can be derived if p(Z|X) (that is the set of all values γk(xi)) is known.

Maximization of expected log-likelihood

The maximization of Ep(Z|X)[l(Σ,µ,π|X,Z)] wrt to πk, µk,Σk results easily into

πk =
1

n

n∑
i=1

γk(xj)

µk =
1

nk

n∑
i=1

γk(xi)xi

Σk =
1

nk

n∑
i=1

γj(xi)(xi − µk)(xi − µk)
T

this is namedM-step (from “Maximization”)

A new expectation

The computed values for the parameters result into new, different values for γk(xi) = p(zi = k|xi), and a different
expectation Ep(Z|X)[l(Σ,µ,π|X,Z)].

This is named E-step (from “Expectation”)

ML and mixtures of gaussians: iterative approach

1. Assign an initial estimate to µj ,Σj , πj , j = 1, . . . ,K

2. Repeat

(a) Compute

γj(xi) =
1

γi
πjN (xi|µj ,Σj) with γi =

K∑
k=1

πkN (xi|µj ,Σj)

(b) Compute

πj =
nj

n
with nj =

n∑
i=1

γj(xi)
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(c) Compute

µj =
1

nj

n∑
i=1

γj(xi)xi

(d) Compute

Σj =
1

nj

n∑
i=1

γj(xi)(xi − µj)(xi − µj)
T

3. until some convergence property is verified

The convergence test may refer to the the increase of log-likelihood in the last iteration
This algorithm is indeed the application of a general schema named Expectation-Maximization
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