Multilayer perceptrons

Course of Machine Learning
Master Degree in Computer Science
University of Rome “Tor Vergata”
a.a. 2023-2024

Giorgio Gambosi

Multilayer networks

« Up to now, only models with a single level of parameters to be learned were considered.

- The model has a generalized linear model structure such as y = f(w! @(x)): model parameters are directly
applied to input values.

« More general classes of models can be defined by means of sequences of transformations applied on input
data, corresponding to multilayered networks of functions.

Extended linear models

Linear regression

Logistic regression
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Adding a layer
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Multilayer network structure: first layer
For any d-dimensional input vectorx = (21, . .., Zq), the first layer of a neural network derives my > 0 activations
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ag ), e a,(nz through suitable linear combinations of 1, ..., x4
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where M is a given, predefined, parameter and x = (1,21, . .. yxq)T
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Each activation a;’is tranformed by means of a non-linear activation function hq to provide a vector 2V =
1 1
(z§ ), cee zﬁnz )T as output from the layer, as follows
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here hq is some approximate threshold function, such as a sigmoid
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Observe that this corresponds to defining m; units, where unit j implements a GLM on x to derive zj( ).



First layer

Inputs

Multi]ayer network structure: inner 1ayers
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Vector z(P pr0v1des an input to the next layer, where myg hidden units compute a vector 2(2) = (zi ), RN zﬁng)T
by first performing linear combinations of the input values
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and then applying function ho, as follows
22 = hy(wi . 720)

The same structure can be repeated for each inner layer, where layer 7 has m,. units which, from input vector
Z(T_l), derive output vector A through linear combinations
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and non linear transformation
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Multilayer I’ICtWOI‘k structure: output layer

For what concerns the last layer, say layer ¢, an output vector y = 2 s again produced by means of my output
units by first pcrforming linear combinations on z(!=1)
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and then applying function h¢
g =2 = ho(w) - 207Y)
where:
« hy is the identity function in the case of regression
« hy is a sigmoid in the case of binary classification

« h; is a softmax in the case of multiclass classification
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Output layer: binary classification



Output layer: K -class classification

3 ]ayer networks
A sufficiently powerful model is provided in the case of 3 layers (input, hidden, output).

For example, applying this model for K-class classification corresponds to the following overall network func-
tion foreach yg, k=1,..., K
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where the number M of hidden units is a model structure parameter and s is the softmax function.

The resulting network can be seen as a GLM where base functions are not predefined wrt to data, but are instead
parameterized by coefficients in wb),

Inputs Hidden units Output units




Approximating functions with neural networks
Neural networks, despite their simple structure, are sufficient powcrful models to act as universal approximators.

[t is possible to prove that any continuous function can be approximated, at any by means of two-layered neural
networks with sigmoidal activation functions. The approximation can be indefinitely precise, as long as a suitable
number of hidden units is defined.

Iterative methods to minimize E(w)

The error function E(w) is usua]iy quite hard to minimize:
« there exist many local minima
« for each local minimum there exist many cquivaicnt minima

— any permutation of hidden units provides the same result

- changing signs of all input and output links of a sing]c hidden unit providcs the same result

Analytical approaches to minimization cannot be applied: resort to iterative methods (possibly comparing
results from different runs).
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Gradient descent

At each step, two stages:
1. the derivatives of the error functions wrt all Wcights are evaluated at che current point

2. weights are adjusted (resulting into a new point) by using the derivatives

On-line (stochastic) gradient descent

We exp]oit the property that the error function is the sum of a collection of terms, each characterizing the error
corresponding to each observation

the updatc is based on one training set element at a time
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« at cach step the Weight vector is moved in the direction ofgreatcst decrease wrt the error for a spcciﬁc data
element

« only one training set element is used at each step: less expensive at each step (more steps may be necessary)
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« makes it possiblc to escape from local minima

Batch gradient descent

The gradient is computed by considering a subset (batch) B of the training set
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Computing gradients
In order to apply a gradicnt based mcthod7 the set of derivatives
DE(w)
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must be derived for all 4, 7, k in order to be itcrativcly evaluated for different values of w during gradicnt descent.

As we shall see, in order to evaluate
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we may start by evaluating
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that is the derivartives of the cost function wrt each activation value ag ), ey a;d) at the final layer (the d-th, here)
of the network.

Regression
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Here, we have y = 2(¥) = ¢(a(?) and
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Binary classification
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Here, we have y = 2@ = ¢(@ and

E=—(tlogy + (1 —t)log(1 — y)) = —(tlog 2D + (1 — ) log(1 — zD))
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since, by the properties of the logistic function
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K -class classification

Here, we have

and

Since
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Backpropagation
Aigorithm applied to evaluate derivatives of the error wrt all Weights

It can be interpreted in terms of backward propagation of a computation in the network, from the output

towards input units.

[t provides an efficient method to evaluate derivatives wrt weights. It can be applied also to compute derivatives
of output wrt to input variables, to provide evaluations of the Jacobian and the Hessian matrices at a given point.
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submitting the current item to the network, the knowiedge of the derivatives

Let us now show that, for any layer, knowing the current weights w
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makes it possible to compute the derivatives

oF
ow™

ij

0<i<n,1,1<j<n,

to be applied for gradient descent, and
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where ng is the number of units at the s-th layer

Backpropagation at 1ayer T

Here,
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and, as a consequence,
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for regression and binary classification

for multiclass classification
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and, for cach layerr =d, ..., 2
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Backpropagation and activation functions

In che case of a sigmoidal activation function h(aj) = U(:U), it results, in particular,

OF (r-1) (= X OE (o)
oy =olag )L —ola 7)) 7 Wi
(r)a’(.rfl) ]2231 005!) J

?

while if'a RELU activation function is applied, we get
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Backpropagation

[terate the preceding steps on all items in the batch set. In fact, since
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This provides an evaluation of
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at the current point w.
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Computational efficiency of backpropagation
A Single evaluation of error function derivatives requires O(|w|) steps

Alternative approach: finite differences. Perturb each weight W;; in turn and approximate the derivative as
follows
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This requires O(|W|) steps for each Wcight, hence O(|W|2) steps overall.
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