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Machine learning: inductive approach
Lcarning of commonalities through analysis of a set of exarnplcs (tmining sct), which is assumed to be available.

« A training set of 7 items is represented as a set of input vectors X, . . ., Xy, used to derive a model.

o If the purpose is item classification with respect to a collection ofprcdcfined classes, the training set also
includes a target vector t = {t1,. ..,y }, where the class of each training set item is specified.

observations

Figure 1: The learning process

Supervised learning

+ We want to prcdict, given the values of a set (features) of an item x, the unknown value of an additional

feature target of the item
— Target in R: regression. Target in {1, ..., K}: classification.

. General approach: defined (by means Of 1earning from a set Of examples) a I‘llOdCl Of thG relation between

feature and target values.

» 'The training set 7 = (X, t) provides a set of examples of the relation between set of features and target: each

examp]e includes a feature vector x; = {CC“, R ,xim} and the corresponding target t;.



+ The model could be:

1. a function y() which, for any item x, returns a value y(x) as an estimate of ¢

2. a probability distribution which associates to each possible value 7 in the target domain, the corre-
sponding probability p(y = 7|x)
Unsupervised learning

« We wish to extract, from a given collection of items dataset) X = {xl, . ,xn}, with no target associated,
some synthetic information, such as:

— subsets of similar items clustering)
— the discribution of items in their domain (dcnsit_\' estimation)
— the projection, as informative as possiblc, of items on lower dimensional subspaces, that is, their char-

acterization by means of a smaller set of features feature selection, feature excraction)
« A suitable model, ofjust the data features, is usually defined and applicd also in the case ofunsupcrviscd
leaming.
Reinforcement learning

« We want to identify, in a given framework, a sequence of actions to be performed in order to maximize a

certain proﬁt

« As in supervised learning, no examples are given, but an environment is available which returns a profit in
correspondance to the execution of any action
Machine 1earning framework
A task is defined over a pair of domains:

Domain set X: The set of objects we may wish to label. Each object is usually modeled as an array of featuress.
The number of features is the dinmnsi(mzl]ity of the problem.

Label set V: Set of possible label values associated to objects in X. If' Y is continuous, we are dealing with a
regression task. If it is discrete, a classification task is defined. Assume for the moment that | Y |: 2, this

is case of‘binzu'y classification

The learner (an algorithm A) has access to a training set T, a collection of object-label pairs: T = {(x1,%1), ..., (xn, tn) }.
We shall usually denote as X the matrix ofobjects (feature mzltrix), that is

X —
and as t the vector of labels (target vector), chat is
ty
t =
ty

The learner is requested to return, for a given training set 7, a prediction rule (classifier, regressor) A(T) =

h: X—Y

#Actually, in advanced cases objects could have more complex structures, such as for example sequences or graphs.



- A prcdictor algorithm A must be derived from T, which returns a prcdiction y for any itemx € X
« This can be done according to different approachcs.
« This depends from what is the “prediction” we wish to obtain:

1. the prediction is a target value: in this case, A predicts a value y which is a guess of the target of x. That
is, it computes a function b : X +— Y

2. the prediction is a probability distribution on V: in this case, A returns, for any y € ), an estimate
probability p(y|x) that y is the target value of x

Deriving a functional predictor
First approach: apply a given algorithm A computing a function  : X x (X x V)" — Y

- A prcdicts y from x by computing h(x, X, t)

"
!

x+— A —{y]

Examplc of first approach: k-nearest ncighbors algorirhm for classification

The class predicted for item x is the majority class in the set of k elements of X which are nearest to x according
to a predefined measure
Second approach: derive from 7 an algorithm A7 computing a function A7 : X — ) in a given class

« A is the algorithm in a predefined class which “best” predicts ¢ from x when applied to the set of examples

inT
« this can be done by means of a lcarning aigorithm A which derives A from T

°A7’=h:XI—>y

Y

learning T > A

AT

predicting AT @

Example of second approach: linear regression

The target value prcdictcd for item x is the linear combination of its feature values 21, 22, . . . , 24, each Wcightcd
by a suitable value wq, wa, . . ., wq, plus a bias value wg. That is,

d
Y= Z w;x; + wo
i=1

The d 4 1 values wo, w1, . . ., wgq are learned in dependance of the training set 7.



Third approach: derive from 7T a set of algorithms Ag}), e ,Agfl cach computing a different function h%z;) :

X +— Y inagiven class, and a set of corresponding weights w(l), ... ,w(s).
Compute the predicted value combining the values y(l), R y(s) predicted by the algorithms, weighted by the
weights w®, . w®)

« each Agz;) is a predictor of y from x derived from the set of examples in T

« the estimated quality of the predictions provided by Agi-) is represented by the weight w(®

learning T —

predicting

Example of third approach: ensemble methods

2)

The target value predicted for item x is the linear combination of the values y(ll, y( e y(s), predicted by
predictors AW A®@) o AG) each weighted by the corresponding weight w®, w® o w®)

Each A is a simple predictor derived from T

An important variant of this approach is rcprcscntcd by fully baycsizm prcdiction, where the set of different
predictors is a continuous one, each corresponding to a different value of a set of parameters (w1, ..., wq) € RY,
In this case, clcarly, the sum is substituted by a (usually multidimensional) intcgral

The three approaches differ since:

« in the first case, a prcdcﬁncd algorithm is applicd to input data comprising both the item x and the whole
training set X, t

« in the second case, an algorithm to be applicd to any item X is derived in depcndancc from the training set
X, t

« in the third case, no single algorithm is applied to x; the prediction is instead computed from the predictions
returned by a set of predictors

Modeling assumptions

Training objects generation model: We assume that the objects observed in the training set are sampled from X’
according to some (unknown) probability discribution on P1- That is, for any x € X, p1 (x) is the probability
that x is the next object sampled in the training set

Training targets generation model: In the general case, we assume the labels associated to the items in the training
set are generated according to a probability distribution pa conditional on X. That is, for any ¢ € Y, pa(t|x)
is the probability that the observed label of object x in the training set is ¢. For the moment, we shall assume
that the relation between object and label is deterministic, that is there exists an unknown function f such

thatt = f(x)



Let us restrict ourselves, in the following, to the second approach described above. Then, some concepts are
relevant.

The quality of a predictor h, such as the one returned by the learner, is evaluated in terms of risk.

Given any element x € X, the error of b when applied to x derives from the comparison of its prediction h(x)
and the correct target label y.

The comparison is performed by applying a predefined loss function L : Y x Y +— R.

The error of a prediction § = h(x) is then defined in terms of prediction risk as given by applying the loss

In the more gcncral case when only a probabilistic relation py (y|x) (instead of a function f) is assumed between
an item and the corresponding label, this corresponds to the expectation of the loss function with respect to such
distribution
) A

R(,x) = Ep, [L(9,y)] = /yL(:&;y%pz(yX)d:t/

or, in the case of classification

a

R(§%) = Epy [L(5,9)] = D L(G,y) - p2(ylx)

yey

Bayes estimator
In this framework, the optimal prcdiction is the one which minimizes the risk,

y*(x) 2 argmin R(7,x) = argmin L(y, f(x))
Y ]

In [hC gCﬂCl’ﬂl case, [hiS COI’I‘CSPOHC[S to

y*(x) = argmin Ey, [L(§,y)] = argmin / L(g,y) - p2(ylx)dy
g g SV
The predictor y* is denoted as Bayes estimator.
However, observe that this approach cannot be applied since the function f (and the distribution pa(y|x)) are
assumed unknown.
The error of a prcdictor h is defined in terms ofcxpcctcd loss on all objccts inX

[1>2

R(h) = Ep, [L(h(x), f(x))] = / L(h(x), f(x)) - pp; (x)dx

JX

Iﬂ l'h(‘ g(’ﬂ(‘l'il] case,
R(h) = Epy p,[L(h(x),y)] = / / L(h(x),y) - p1(x) - p2(y|x)dxdy
X JYy

Since p1 and f (or p2) are not known, the risk can only be estimated from the data available (the training set
7). 'This leads to the definition of empirical risk Ry (h), which provides an estimate the expectation of the loss
function as the average loss on the training set.

— 1
Ry(h) = 7 (I%TL(h(x),t)



The fundamental approach in machine learning is then deriving a predictor h which (at least approximately)
minimizes the cmpirical risk Computcd on the available training set.

In this way, a learning problem is reduced to a minimization problem in some functional space H, the set of all
possible predictors h.

hy = argmin R (h)
heH

Here, H is the set of hypotheses or inductive bias

Issues related to the inductive bias

The choice of the set of hypotheses is an important issue in ML. In particular, we may ask
« what is the effect of the structure and size of H?
« how to define H in such a way to make it feasible to compute hy?

For what concerns the choice of the hypotheses class H, it can be viewed as reflecting some prior knowledge that
the learner has about the task, in terms of a belief that one of the members of the class H is a low-error predictor
for the task.

A trivial way ofpursuing the goal ofderiving predictors with minimal risk would be to define a very rich class,
that is assuming that many possible functions belong to H: as a limit, # could be defined just as the set of all
functions f : X — ).

This approach, however, can be easily seen to induce problems.

Assume, in fact, a binary classification problem with training sec 7 = (X, t), with 0/1 loss

L.ty ={" =t
1 otherwise
that is, the loss is 1 if the item is misclassified, 0 otherwise. As a consequence, the risk is the expected number of
classification errors, while the empirica] risk is the fraction of items in the training set which are misclassified.
Assume also that p(t = 1|x) = 3 for x € X, that is, the two classes have same size in the population.
If we consider the classification function defined as:

1 ifx=x; €X,t; =1

0 otherwise

that is, a predictor that assigns to class 1 all items labeled as 1 in the training set, while all other items are classified
as 0.

Clearly, the empirical risk here is 0 by definition, but the risk is ~ % When applied to a dataset randomly
sampled from the population, the quality of h7 is the same of a function which randomly assigns items to classes.

This is called overfitting: the classification method behaves well on the training set, but poorly on other items
from the population.

However, if H is very small, it may happcn that no prcdictor from this set is able to providc an acccptab]y small
risk.

Rcassuming, the following gcncral considerations can be done for what concerns the size of H.

« If H is too 1arge (complex), m'crf‘itting may occur: a function which behaves very well on the training set
may be available which however performs poorly on new data



« If H is too small (simplc), undcrf‘ltting may occur: no function bchaving ina satisfactory way, both on the
training set and on new sets of data, is available in H

This is related to the so-called bias variance tradeoff
Statistical learning theory studies from the theoretical point of view the effect of the chosen set of hypotheses
and of the training set size on the quality (in terms of risk) of the predictor derived from learning.

Bias vs variance

The risk associated to the ¥, the predictor which minimizes the empirical risk, can be decomposed in two parts:
R(h*) =€+ ey
where:

« €p is the minimum risk achievable by any h € H: this is only determined by the inductive bias, and in-
dependent from the training set. It is a property of the class of hypotheses considered with respect to the
prediction task. This is called bias

« ey is the difference between the above minimum risk in A and the risk associated to the best prcdictor in
H with respect to the training set: it is related to the fact that empirical risk minimization only provides
an estimate of the best predictor achievable for the given inductive bias. It is a measure of how well the
predictor computed from a particular training set approximates the best possible one. Its expectation with
respect to all possible training sets is a measure of how much a predictor derived from a random training set
may result in poorer performances with respect to the best possible one. This is called variance

The choice of H is Subjcct to a bias-variance tradeoff: highcr bias tend to induce lower variance, and vice versa.

. High bias and low variance imp]ies thatall predictors which can be obtained from different training sets tend
to behave simi]arly, with a similar risk (low variance). However, all of them then to behave poor]y (high bias),
since H is too poor to include a satisfactory predictor for the task considered. This results into underfitting

« Low bias and high variance implies that lot of predictors are available in H, and among them a good one is
usua]ly avaliable (low bias). However, quite different prcdictors can be obtained from different training sets,
which implies that it may easily happen that, while a very good performance can be obtained on the training
set, the rcsulting prcdictor can behave quite diffcrcntly and more poorly that the best possiblc one, which
implies overfitting
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Figure 2: Graphical representation of bias and variance
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Figure 3: Bias and variance vs model complexity



