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DISCRETE RANDOM VARIABLES

A discrete random variable X can take values from some finite or countably infinite set X . A
probability mass function (pmf) associates to each event X = x a probability p(X = x).

Properties
• 0 ≤ p(x) ≤ 1 for all x ∈ X
•

∑
x∈Xp(x)=1

Note: we shall denote as x the event X = x
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DISCRETE RANDOM VARIABLES

Joint and conditional probabilities

Given two events x, y, it is possible to define:
• the probability p(x, y) = p(x ∧ y) of their joint occurrence
• the conditional probability p(x|y) of x under the hypothesis that y has occurred

Union of events

Given two events x, y, the probability of x or y is defined as

p(x ∨ y) = p(x) + p(y)− p(x, y)

in particular,
p(x ∨ y) = p(x) + p(y)

The same definitions hold for probability distributions.
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DISCRETE RANDOM VARIABLES

Product rule

The product rule relates joint and conditional probabilities

p(x, y) = p(x|y)p(y) = p(y|x)p(x)

where p(x) is the marginal probability.
In general,

p(x1, . . . , xn) = p(x2, . . . , xn|x1)p(x1)
= p(x3, . . . , xn|x1, x2)p(x2|x1)p(x1)
= · · ·
= p(xn|x1, . . . , xn−1)p(xn−1|x1 . . . xn−2) · · ·p(x2|x1)p(x1)
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DISCRETE RANDOM VARIABLES

Sum rule and marginalization

The sum rule relates the joint probability of two events x, y and the probability of one such events
p(y) (or p(y))

p(x) =
∑
y∈Y

p(x, y) =
∑
y∈Y

p(x|y)p(y)

Applying the sum rule to derive a marginal probability from a joint probability is usually called
marginalization
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DISCRETE RANDOM VARIABLES

Bayes rule

Since

p(x, y) = p(x|y)p(y)
p(x, y) = p(y|x)p(x)

p(y) =
∑
x∈X

p(x, y) =
∑
x∈X

p(y|x)p(x)

it results
p(x|y) = p(y|x)p(x)

p(y) =
p(y|x)p(x)∑
x∈X p(y|x)p(x)
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DISCRETE RANDOM VARIABLES

Terminology
• p(x): Prior probability of x (before knowing that y occurred)
• p(x|y): Posterior of x (if y has occurred)
• p(y|x): Likelihood of y given x
• p(y): Evidence of y
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INDEPENDENCE

Definition

Two random variables X, Y are independent (X ⊥⊥ Y) if their joint probability is equal to the
product of their marginals

p(x, y) = p(x)p(y)
or, equivalently,

p(x|y) = p(x) p(y|x) = p(y)

The condition p(x|y) = p(x), in particular, states that, if two variables are independent, knowing
the value of one does not add any knowledge about the other one.
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INDEPENDENCE

Conditional independence

Two random variables X, Y are conditionally independent w.r.t. a third r.v. Z (X ⊥⊥ Y | Z) if

p(x, y|z) = p(x|z)p(y|z)

Conditional independence does not imply (absolute) independence, and vice versa.
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CONTINUOUS RANDOM VARIABLES

A continuous random variable X can take values from a continuous infinite set X . Its probability
is defined as cumulative distribution function (cdf) F(x) = p(X ≤ x).
The probability that X is in an interval (a,b] is then p(a < X ≤ b) = F(b)− F(a).

Probability density function

The probability density function (pdf) is defined as f(x) = dF(x)
dx . As a consequence,

p(a < X ≤ b) =
∫ b

a
f(x)dx

and
p(x < X ≤ x+ dx) ≈ f(x)dx

for a sufficiently small dx.
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SUM RULE AND CONTINUOUS RANDOM VARIABLES

In the case of continuous random variables, their probability density functions relate as follows.

f(x) =
∫
Y
f(x, y)dy =

∫
y∈Y

p(x|y)p(y)dy
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EXPECTATION
Definition

Let x be a discrete random variable with distribution p(x), and let g : IR 7→ IR be any function: the
expectation of g(x) w.r.t. p(x) is

Ep[g(x)] =
∑
x∈Vx

g(x)p(x)

If x is a continuous r.v., with probability density f(x), then

Ef[g(x)] =
∫ ∞

−∞
g(x)f(x)dx

Mean value

Particular case: g(x) = x

Ep[x] =
∑
x∈Vx

xp(x) Ef[x] =
∫ ∞

−∞
xf(x)dx
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ELEMENTARY PROPERTIES OF EXPECTATION

• E[a] = a for each a ∈ IR
• E[af(x)] = aE[f(x)] for each a ∈ IR
• E[f(x) + g(x)] = E[f(x)] + E[g(x)]
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VARIANCE

Definition

Var[X] = E[(x− E[x])2]
We may easily derive:

E[(x− E[x])2] = E[x2 − 2E[x]x+ E[x]2]
= E[x2]− 2E[x]E[x] + E[x]2

= E[x2]− E[x]2

Some elementary properties:
• Var[a] = 0 for each a ∈ IR
• Var[af(x)] = a2Var[f(x)] for each a ∈ IR
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PROBABILITY DISTRIBUTIONS
Probability distribution

Given a discrete random variable X ∈ VX, the corresponding probability distribution is a function
p(x) = P(X = x) such that
• 0 ≤ p(x) ≤ 1

•
∑
x∈VX

p(x) = 1

•
∑
x∈A

p(x) = P(x ∈ A), with A ⊆ VX

x

p(
x

)
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SOME DEFINITIONS
Cumulative distribution

Given a continuous random variable X ∈ IR, the corresponding cumulative probability
distribution is a function F(x) = P(X ≤ x) such that:
• 0 ≤ F(x) ≤ 1

• lim
x→−∞

F(x) = 0

• lim
x→∞

F(x) = 1

• x ≤ y =⇒ F(x) ≤ F(y)

x

F
(x

)
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SOME DEFINITIONS
Probability density

Given a continuous random variable X ∈ IR with derivable cumulative distribution F(x), the
probability density is defined as

f(x) = dF(x)
dx

By definition of derivative, for a sufficiently small ∆x,

Pr(x ≤ X ≤ x+∆x) ≈ f(x)∆x

The following properties hold:
• f(x) ≥ 0

• ∫∞
−∞ f(x)dx = 1

• ∫
x∈A f(x)dx = P(X ∈ A)

x

f
(x

)
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BERNOULLI DISTRIBUTION

Definition

Let x ∈ {0, 1}, then x ∼ Bernoulli(p), with 0 ≤ p ≤ 1, if

p(x) =
{
p se x = 1

1− p se x = 0

or, equivalently,
p(x) = px(1− p)1−x

Probability that, given a coin with head (H) probability p (and tail probability (T) 1− p), a coin toss
result into x ∈ {H, T}.

Mean and variance

E[x] = p Var[x] = p(1− p)
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EXTENSION TO MULTIPLE OUTCOMES

Assume k possible outcomes (for example a die toss).
In this case, a generalization of the Bernoulli distribution is considered, usualy named categorical
distribution.

p(x) =
k∏
j=1

pxjj

where (p1, . . . ,pk) are the probabilites of the different outcomes (
∑k

j=1 pj = 1) and xj = 1 iff the
k-th outcome occurs.
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BINOMIAL DISTRIBUTION
Definition

Let x ∈ IN, then x ∼ Binomial(n,p), with 0 ≤ p ≤ 1, if

p(x) =
(
n
x

)
px(1− p)n−x =

n!
x!(n− x)!p

x(1− p)n−x

Probability that, given a coin with head (H) probability p, a sequence of n independent coin
tosses result into x heads.

Mean and variance

E[x] = np
Var[x] = np(1− p)

x

p(
x

)
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POISSON DISTRIBUTION

Definition

Let xi ∈ IN, then x ∼ Poisson(λ), with λ > 0, if

p(x) = e−λ λ
x

x!
Probability that an event with average frequency λ occurs x times in the next time unit.

Mean and variance

E[x] = λ

Var[x] = λ

x

p(
x

)
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NORMAL (GAUSSIAN) DISTRIBUTION

Definition

Let x ∈ IR, then x ∼ Normal(µ, σ2), with µ, σ ∈ IR, σ ≥ 0, if

f(x) = 1√
2πσ

e
(x−µ)2

2σ2

Mean and variance

E[x] = µ

Var[x] = σ2

x

f
(x

)
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BETA DISTRIBUTION
Definition

Let x ∈ [0, 1], then x ∼ Beta(α, β), with α, β > 0, if

f(x) = Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

where
Γ(x) =

∫ ∞

0

ux−1eudu

is a generalization of the factorial to the real field IR: in particolar, Γ(n) = (n− 1)! if n ∈ IN

Mean and variance

E[x] = β

α+ β

Var[x] = αβ

(α+ β)2(α+ β + 1)
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BETA DISTRIBUTION

x

f
(x

)
α=1, β=1

x

f
(x

)

α=0.7, β=0.7

x

f
(x

)

α=2, β=2

x

f
(x

)

α=2, β=4

x

f
(x

)

α=6, β=4

x

f
(x

)

α=10, β=10
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MULTIVARIATE DISTRIBUTIONS

Definition for k = 2 discrete variables

Given two discrete r.v. X, Y, their joint distribution is

p(x, y) = P(X = x, Y = y)

The following properties hold:
1. 0 ≤ p(x, y) ≤ 1

2.
∑

x∈VX
∑

y∈VY p(x, y) = 1
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MULTIVARIATE DISTRIBUTIONS
Definition for k = 2 variables

Given two continuous r.v. X, Y, their cumulative joint distribution is defined as

F(x, y) = P(X ≤ x, Y ≤ y)

The following properties hold:
1. 0 ≤ F(x, y) ≤ 1

2. lim
x,y→∞

F(x, y) = 1

3. lim
x,y→−∞

F(x, y) = 0

If F(x, y) is derivable everywhere w.r.t. both x and y, joint probability density is

f(x, y) = ∂2F(x, y)
∂x∂y

The following property derives ∫ ∫
(x,y)∈A

f(x, y)dxdy = P((X, Y) ∈ A)
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COVARIANCE

Definition

Cov[X, Y] = E[(X− E[X])(Y− E[Y])]
As for the variance, we may derive

Cov[X, Y] = E[(X− E[X])(Y− E[Y])]
= E[XY− XE[Y]− YE[X] + E[X]E[Y]]
= E[XY]− E[X]E[Y]− E[Y]E[X] + E[E[X]E[Y]]
= E[XY]− E[X]E[Y]

Moreover, the following properties hold:
1. Var[X+ Y] = Var[X] + Var[Y] + 2Cov[X, Y]
2. If X ⊥⊥ Y then Cov[X, Y] = 0
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RANDOM VECTORS

Definition

Let X1, X2, . . . , Xn be a set of r.v.: we may then define a random vector as

x =

 X1
...
X2

 Xn
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EXPECTATION AND RANDOM VECTORS

Definition

Let g : IRn 7→ IRm be any function. It may be considered as a vector of functions

g(x) =

 g1(x))
...

g2(x))

gm(x)

where x ∈ IRn.
The expectation of g is the vector of the expectations of all functions gi,

E[g(x)] =

 E[g1(x)]
...

E[g2(x)]

 E[gm(x)]
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COVARIANCE MATRIX

Definition

Let x ∈ IRn be a random vector: its covariance matrix Σ is a matrix n× n such that, for each
1 ≤ i, j ≤ n, Σij = Cov[Xi, Xj] = E[(Xi − µi)(Xj − µj)], where µi = E[Xi], µj = E[Xj].

Hence,

Σ =


Cov[X1, X1] Cov[X1, X2] · · · Cov[X1, Xn]
Cov[X2, X1] Cov[X2, X2] · · · Cov[X2, Xn]

...
...

. . .
...

Cov[Xn, X1] Cov[Xn, X2] · · · Cov[Xn, Xn]



=

 Var[X1] · · · Cov[X1, Xn]
...

. . .
...

Cov[Xn, X1] · · · Var[Xn]
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COVARIANCE MATRIX

By definition of covariance,

Σ =

 E[X21]− E[X1]2 · · · E[X1Xn]− E[X1]E[Xn]
...

. . .
...

E[XnX1]− E[Xn]E[X1] · · · E[X2n]− E[Xn]E[Xn]


= E[XXT]− µµT

where µ = (µ1, . . . , µn)
T is the vector of expectations of the random variables X1, . . . , Xn.

Properties

The covariance matrix is necessarily:
• semidefinite positive: that is, zTΣz ≥ 0 for any z ∈ IRn

• symmetric: Cov[Xi, Xj] = Cov[Xj, Xi] for 1 ≤ i, j ≤ n
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CORRELATION

For any pair of r.v. X, Y, the Pearson correlation coefficient is defined as

ρX,Y =
Cov[X, Y]√
Var[X]Var[Y]

Note that, if Y = aX+ b for some pair a,b, then

Cov[X, Y] = E[(X− µ)(aX+ b− aµ− b)] = E[a(X− µ)2] = aVar[X]

and, since
Var[Y] = (aX− aµ)2 = a2Var[X]

it results ρX,Y = 1. As a corollary, ρX,X = 1.

Observe that if X and Y are independent, p(X, Y) = p(X)p(Y): as a consequence, Cov[X, Y] = 0 and
ρX,Y = 0. That is, independent variables have null covariance and correlation.
The contrary is not true: null correlation does not imply indepedence: see for example X uniform
in [−1, 1] and Y = X2.
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CORRELATION MATRIX

The correlation matrix of (X1, . . . , Xn)T is defined as

Σ =

 ρX1,X1 ρX1,X2 · · · ρX1,Xn
...

. . .
...

ρXn,X1 ρXn,X2 · · · ρXn,Xn



=

 1 ρX1,X2 · · · ρX1,Xn
...

. . .
...

ρXn,X1 ρXn,X2 · · · 1
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MULTINOMIAL DISTRIBUTION

Definition

Let xi ∈ IN for i = 1, . . . , k, then (x1, . . . , xk) ∼ Mult(n,p1, . . . ,pk) with 0 ≤ p ≤ 1, if

p(x1, . . . , xk) =
n!

x1! . . . xk!

k∏
i=1

pxii con
k∑
i=1

xi = n

Generalization of the binomial distribution to k ≥ 2 possible toss results t1, . . . , tk with
probabilities p1, . . . ,pk (

∑k
i=1 pi = 1).

Probability that in a sequence of n independent tosses p1, . . . ,pk, exactly xi tosses have result ti
(i = 1, . . . , k).

Mean and variance

E[xi] = npi Var[xi] = npi(1− pi) i = 1, . . . , k
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DIRICHLET DISTRIBUTION

Definition

Let xi ∈ [0, 1] for i = 1, . . . , k, then (x1, . . . , xk) ∼ Dirichlet(α1, α2, . . . , αk) if

f(x1, . . . , xk) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

k∏
i=1

xαi−1

i =
1

∆(α1, . . . , αk)

k∏
i=1

xαi−1

i

with
∑k

i=1 xi = 1.
Generalization of the Beta distribution to the multinomial case k ≥ 2.
A random variable ϕ = (ϕ1, . . . , ϕK) with Dirichlet distribution takes values on the K− 1
dimensional simplex (set of points x ∈ IRK such that xi ≥ 0 for i = 1, . . . ,K and

∑K
i=1 xi = 1)

Mean and variance

E[xi] =
αi
α0

Var[xi] =
αi(α0 − αi)

α2
0(α0 + 1)

i = 1, . . . , k

with α0 =
∑k

j=1 αj
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DIRICHLET DISTRIBUTION

Examples of Dirichlet distributions with k = 3
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DIRICHLET DISTRIBUTION

Symmetric Dirichlet distribution

Particular case, where αi = α for i = 1, . . . ,K

p(ϕ1, . . . , ϕK|α,K) = Dir(ϕ|α,K) = Γ(Kα)
Γ(α)K

K∏
i=1

ϕα−1
i =

1

∆K(α)

K∏
i=1

ϕα−1
i

Mean and variance

In this case,
E[xi] =

1

K Var[xi] =
K− 1

K2(α+ 1)
i = 1, . . . ,K
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GAUSSIAN DISTRIBUTION

• Properties
• Analytically tractable
• Completely specified by the first two moments
• A number of processes are asintotically gaussian (theorem of the Central Limit)
• Linear transformation of gaussians result in a gaussian
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UNIVARIATE GAUSSIAN

For x ∈ IR:

p(x) = N (µ, σ2)

=
1√
2πσ

e−
(x−µ)2

2σ2

with

µ = E[x] =
∫ ∞

−∞
xp(x)dx

σ2 = E[(x− µ)2] =

∫ ∞

−∞
(x− µ)2p(x)dx
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UNIVARIATE GAUSSIAN

µ−3σ µ−2σ µ−σ µ µ+σ µ+2σ µ+3σ

x

f(
x
)

2.5%2.5%

A univariate gaussian distribution has about 95% of its probability in the interval |x− µ| ≥ 2σ.
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MULTIVARIATE GAUSSIAN

For x ∈ IRd:

p(x) = N (µ,Σ)

=
1

(2π)d/2|Σ|1/2
e−

1
2
(x−µ)TΣ−1(x−µ)

where

µ = E[x] =
∫

xp(x)dx

Σ = E[(x − µ)(x − µ)T] =

∫
(x − µ)(x − µ)Tp(x)dx
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MULTIVARIATE GAUSSIAN
• µ: expectation (vector of size d)
• Σ: matrix d× d of covariance. σij = E[(Xi − µi)(Xj − µj)]
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MULTIVARIATE GAUSSIAN
Mahalanobis distance
• Probability is a function of x through the quadratic form

∆2 = (x − µ)TΣ−1(x − µ)

• ∆ is the Mahalanobis distance from µ to x: it reduces to the euclidean distance if Σ = I.
• Constant probability on the curves (ellipsis) at constant ∆.
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MULTIVARIATE GAUSSIAN

In general,
xTAx = (xTAx)T = xTATx

this implies that
xTAx =

1

2
xTAx +

1

2
xTATx = xT

(
1

2
A +

1

2
AT
)

x

• A + AT is necessarily symmetric, as a consequence, Σ is symmetric
• as a consequence, its inverse Σ−1 does exist.
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DIAGONAL COVARIANCE MATRIX

Assume a diagonal covariance matrix:

Σ =


σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

n


then, |Σ| = σ2

1σ
2
n . . . σ

2
n and

Σ−1 =


1
σ2
1

0 · · · 0

0 1
σ2
2

· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
n
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DIAGONAL COVARIANCE MATRIX
Easy to verify that

(x − µ)TΣ−1(x − µ) =

n∑
i=1

(xi − µi)
2

σ2
i

and

f(x|µ,Σ) =
n∏
i=1

1√
2πσi

exp
(
−1

2

(xi − µi)
2

σ2
i

)
The multivariate distribution turns out to be the product of d univariate gaussians, one for each
coordinate xi.

x

y
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IDENTITY COVARIANCE MATRIX

The distribution is the product of d “copies” of the same univariate gaussian, one copy for each
coordinate xi.

x

y
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SPECTRAL PROPERTIES OF Σ
Σ is real and symmetric: then,
1. all its eigenvalues λi are in IR
2. there exists a corresponding set of orthonormal eigenvectors ui (i.e. such that (uTi uj = 1 if
i = j and 0 otherwise)

Let us define the d× d matrix U whose columns correspond to the orthonormal eigenvectors

U =

 | |
u1 · · · u2

| |

 ud

and the diagonal d× d matrix Λ with eigenvalues on the diagonal

Λ =


λ1

λ2 0
λ3

0
. . .

λd
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MULTIVARIATE GAUSSIAN

Decomposition of Σ

By the definition of U and Λ, and since Σui = uiλi for all i = 1, . . . ,d, we may write

ΣU = UΛ

Since the eigenvectors ui are orthonormal, U−1 = UT by the properties of orthonormal matrices:
as a consequence ,

Σ = UΛU−1 = UΛUT =

d∑
i=1

λiuiuTi

Then, its inverse matrix is a diagonal matrix itself

Σ−1 =
d∑
i=1

1

λi
uiuTi
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MULTIVARIATE GAUSSIAN

Density as a function of eigenvalues and eigenvectors

As shown before,

∆2 = (x − µ)TΣ−1(x − µ) = (x − µ)T
d∑
i=1

1

λi
uiuTi (x − µ) =

d∑
i=1

1

λi
(x − µ)TuiuTi (x − µ)

=
d∑
i=1

1

λi
(uTi (x − µ))TuTi (x − µ) =

d∑
i=1

(
uTi (x − µ)

)2
λi

Let yi = uTi (x − µ): then

(x − µ)TΣ−1(x − µ) =

n∑
i=1

y2i
λi

and

f(x|µ,Σ) =
n∏
i=1

1√
2πλi

exp
(
−1

2

y2i
λi

)
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MULTIVARIATE GAUSSIAN

yi is the scalar product of x − µ and the i-th eigenvector ui, that is the length of the projection of
x − µ along the direction of the eigenvector. Since eigenvectors are orthonormal, they are the
basis of a new space, and for each vector x = (x1, . . . , xd), the values (y1, . . . , yd) are the
coordinates of x in the eigenvector space.

Eigenvectors of Σ correspond to the axes of the distribution; each eigenvalue is a scale factor
along the axis of the corresponding eigenvector.

Prof. Giorgio Gambosi Probability recall Slide 53 / 78



LINEAR TRANSFORMATIONS

Let x ∈ IRd, A ∈ IRd×k, y = ATx ∈ IRk: then, if x is normally distributed, so is y.
In particular, if the distribution of x has mean µ and covariance matrix Σ, the distribution of y has
mean ATµ and covariance matrix ATΣA.

x ∼ N (µ,Σ) =⇒ y ∼ N (ATµ,ATΣA)
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MARGINAL AND CONDITIONAL OF A JOINT GAUSSIAN

Let x1 ∈ IRh, x2 ∈ IRk be such that
[

x1

x2

]
∼ N (µ,Σ) and let

• µ =

[
µ1

µ2

]
with µ1 ∈ IRh,µ2 ∈ IRk

• Σ =

[
Σ11 Σ12

Σ21 Σ22

]
with Σ11 ∈ IRh×h, Σ12 ∈ IRh×k, Σ21 ∈ IRk×h, Σ22 ∈ IRk×k

then
• the marginal distribution of x1 is x1 ∼ N (µ1,Σ11)

• the conditional distribution of x1 given x2 is x1|x2 ∼ N (µ1|2,Σ1|2) with

µ1|2 = µ1 − Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21
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BAYES’ FORMULA AND GAUSSIANS

Let x, y be such that

x ∼ N (µ,Σ1) and y|x ∼ N (Ax + b,Σ2)

That is, the marginal distribution of x (the prior) is a gaussian and the conditional distribution of
y w.r.t. x (the likelihood) is also a gaussian with (conditional) mean given by a linear combination
on x. Then, both the the conditional distribution of x w.r.t. y (the posterior) and the marginal
distribution of y (the evidence) are gaussian.

y ∼ N (Aµ+ b,Σ2 + AΣ1AT)

x|y ∼ N (µ̂, Σ̂)

where

µ̂ = (Σ−1
1 + ATΣ−1

2 A)−1(ATΣ−1
2 (y − b) + Σ−1

1 µ)

Σ̂ = (Σ−1
1 + ATΣ−1

2 A)−1
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BAYESIAN STATISTICS

Classical (frequentist) statistics
• Interpretation of probability as frequence of an event over a sufficiently long sequence of
reproducible experiments.

• Parameters seen as constants to determine

Bayesian statistics
• Interpretation of probability as degree of belief that an event may occur.
• Parameters seen as random variables
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BAYES’ RULE

Cornerstone of bayesian statistics is Bayes’ rule

p(X = x|Θ = θ) =
p(Θ = θ|X = x)p(X = x)

p(Θ = θ)

Given two random variables X,Θ, it relates the conditional probabilities p(X = x|Θ = θ) and
p(Θ = θ|X = x).
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BAYESIAN INFERENCE

Given an observed dataset X and a family of probability distributions p(x|Θ) with parameter Θ (a
probabilistic model), we wish to find the parameter value which best allows to describe X
through the model.

In the bayesian framework, we deal with the distribution probability p(Θ) of the parameter Θ
considered here as a random variable. Bayes’ rule states that

p(Θ|X) =
p(X|Θ)p(Θ)

p(X)
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BAYESIAN INFERENCE

Interpretation
• p(Θ) stands as the knowledge available about Θ before X is observed (a.k.a. prior
distribution)

• p(Θ|X) stands as the knowledge available about Θ after X is observed (a.k.a. posterior
distribution)

• p(X|Θ) measures how much the observed data are coherent to the model, assuming a
certain value Θ of the parameter (a.k.a. likelihood)

• p(X) =
∑

Θ′ p(X|Θ′)p(Θ′) is the probability that X is observed, considered as a mean w.r.t.
all possible values of Θ (a.k.a. evidence)
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CONJUGATE DISTRIBUTIONS

Definition

Given a likelihood function p(y|x), a (prior) distribution p(x) is conjugate to p(y|x) if the posterior
distribution p(x|y) is of the same type as p(x).

Consequence

If we look at p(x) as our knowledge of the random variable x before knowing y and with p(x|y) our
knowledge once y is known, the new knowledge can be expressed as the old one.
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EXAMPLES OF CONJUGATE DISTRIBUTIONS: BETA-BERNOULLI

The Beta distribution is conjugate to the Bernoulli distribution. In fact, given x ∈ [0, 1] and
y ∈ {0, 1}, if

p(ϕ|α, β) = Beta(ϕ|α, β) = Γ(α+ β)

Γ(α)Γ(β)
ϕα−1(1− ϕ)β−1

p(x|ϕ) = ϕx(1− ϕ)1−x

then
p(ϕ|x)= 1

Zϕ
α−1(1− ϕ)β−1ϕx(1− ϕ)1−x = Beta(x|α+ x− 1, β − x)

where Z is the normalization coefficient

Z =

∫ 1

0

ϕα+x−1(1− ϕ)β−xdϕ =
Γ(α+ β + 1)

Γ(α+ x)Γ(β − x+ 1)
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EXAMPLES OF CONJUGATE DISTRIBUTIONS: BETA-BINOMIAL

The Beta distribution is also conjugate to the Binomial distribution. In fact, given x ∈ [0, 1] and
y ∈ {0, 1}, if

p(ϕ|α, β) = Beta(ϕ|α, β) = Γ(α+ β)

Γ(α)Γ(β)
ϕα−1(1− ϕ)β−1

p(k|ϕ,N) =
(
N
k

)
ϕk(1− ϕ)N−k =

N!
(N− k)!k!ϕ

N(1− ϕ)N−k

then

p(ϕ|k,N, α, β)= 1

Zϕ
α−1(1− ϕ)β−1ϕk(1− ϕ)N−k = Beta(ϕ|α+ k− 1, β + N− k− 1)

with the normalization coefficient

Z =

∫ 1

0

ϕα+k−1(1− ϕ)β+N−k−1dϕ =
Γ(α+ β + N)

Γ(α+ k)Γ(β + N− k)
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MULTIVARIATE DISTRIBUTIONS
Multinomial

Generalization of the binomial

p(n1, . . . ,nK|ϕ1, . . . , ϕK,n) =
n!∏K
i=1 ni!

K∏
i=1

ϕ
ni
i

k∑
i=1

ni = n,
k∑
i=1

ϕi = 1

the case n = 1 is a generalization of the Bernoulli distribution

p(x1, . . . , xK|ϕ1, . . . , ϕK) =
K∏
i=1

ϕ
xi
i ∀i : xi ∈ {0, 1},

K∑
i=1

xi = 1,
K∑
i=1

ϕi = 1

Likelihood of a multinomial

p(X|ϕ1, . . . , ϕK) ∝
N∏
i=1

K∏
j=1

ϕ
xij
j =

K∏
j=1

ϕ
Nj
j
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CONJUGATE OF THE MULTINOMIAL

Dirichlet distribution

The conjugate of the multinomial is the Dirichlet distribution, generalization of the Beta to the
case K > 2

p(ϕ1, . . . , ϕK|α1, . . . , αK) = Dir(ϕ|α) =
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏
i=1

ϕ
αi−1

i

=
1

Z

K∏
i=1

ϕ
αi−1

i

with αi > 0 for i = 1, . . . ,K

Random variables and Dirichlet distribution

A random variable ϕ = (ϕ1, . . . , ϕK) with Dirichlet distribution takes values on the K− 1
dimensional simplex (set of points x ∈ IRK such that xi ≥ 0 for i = 1, . . . ,K and

∑K
i=1 xi = 1)
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EXAMPLES OF CONJUGATE DISTRIBUTIONS: DIRICHLET-MULTINOMIAL

Assume ϕ ∼ Dir(ϕ|α) and z ∼ Mult(z|ϕ). Then,

p(ϕ|z,α) =
p(z|ϕ)p(ϕ|α)

p(z|α)
=

1

Z

K∏
i=1

ϕ
zi
i

K∏
i=1

ϕ
αi−1

i

=
1

Z

K∏
i=1

ϕ
αi+zi−1

i = Dir(ϕ|α′)

where α′ = (α1 + z1, . . . , αK + zK)
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TEXT MODELING

Unigram model

Collection W of N term occurrences: N observations of a same random variable, with multinomial
distribution over a dictionary V of size V.

p(W|ϕ) = L(ϕ|W) =

V∏
i=1

ϕ
Ni
i

V∑
i=1

ϕi = 1,
V∑
i=1

Ni = N

Parameter model

Use of a Dirichlet distribution, conjugate to the multinomial

p(ϕ|α) = Dir(ϕ|α)

p(ϕ|W,α) = Dir(ϕ|α+ N)
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INFORMATION THEORY

Let X be a discrete random variable:
• define a measure h(x) of the information (surprise) of observing X = x
• requirements:

• likely events provide low surprise, while rare events provide high surprise: h(x) is inversely
proportional to p(x)

• X, Y independent: the event X = x, Y = y has probability p(x)p(y). Its surprise is the sum of the
surprise for X = x and for Y = y, that is, h(x, y) = h(x) + h(y) (information is additive)

this results into h(x) = − log x (usually base 2)
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ENTROPY
A sender transmits the value of X to a receiver: the expected amount of information transmitted
(w.r.t. p(x)) is the entropy of X

H(x) = −
∑
x
p(x) log2 p(x)

• lower entropy results from more sharply peaked distributions
• the uniform distribution provides the highest entropy

Entropy is a measure of disorder.

pr
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ENTROPY, SOME PROPERTIES

• p(x) ∈ [0, 1] implies p(x) log2 p(x) ≤ 0 and H(X) ≥ 0

• H(X) = 0 if there exists x such that p(x) = 1

Maximum entropy

Given a fixed number k of outcomes, the distribution p1, . . . ,pk with maximum entropy is derived
by maximizing H(X) under the constraint

∑k
i=1 pi = 1. By using Lagrange multipliers, this amounts

to maximizing

−
k∑
i=1

pi log2 pi + λ

( k∑
i=1

pi − 1

)

Setting the derivative of each pi to 0,

0 = − log2 pi − log2 e+ λ

results into pi = 2λ − e for each i, that is into the uniform distribution pi =
1

k and H(X) = log2 k
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ENTROPY, SOME PROPERTIES

H(X) is a lower bound on the expected number of bits needed to encode the values of X
• trivial approach: code of length log2 k (assuming uniform distribution of values for X)
• for non-uniform distributions, better coding schemes by associating shorter codes to likely
values of X
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CONDITIONAL ENTROPY

Let X, Y be discrete r.v. : for a pair of values x, y the additional information needed to specify y if x
is known is − lnp(y|x).
The expected additional information needed to specify the value of Y if we assume the value of X
is known is the conditional entropy of Y given X

H(Y|X) = −
∑
x

∑
y
p(x, y) lnp(y|x)

Clearly, since lnp(y|x) = lnp(x, y)− lnp(x)

H(X, Y) = H(Y|X) + H(X)

that is, the information needed to describe (on the average) the values of X and Y is the sum of
the information needed to describe the value of X plus that needed to describe the value of Y is X
is known.

Prof. Giorgio Gambosi Probability recall Slide 73 / 78



KL DIVERGENCE

Assume the distribution p(x) of X is unknown, and we have modeled is as an approximation q(x).
If we use q(x) to encode values of X we need an average length −

∑
x p(x) lnq(x), while the

minimum (known p(x)) is −
∑

x p(x) lnp(x).
The additional amount of information needed, due to the approximation of p(x) through q(x) is
the Kullback-Leibler divergence

KL(p||q) = −
∑
x
p(x) lnq(x) +

∑
p(x) lnp(x)

= −
∑
x
p(x) ln q(x)p(x)

KL(p||q) measures the difference between the distributions p and q.
• KL(p||p) = 0

• KL(p||q) 6= KL(q||p): the function is not symmetric, it is not a distance (it would be
d(x, y) = d(y, x))
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CONVEXITY
A function is convex (in an interval [a,b]) if, for all 0 ≤ λ ≤ 1, the following inequality holds

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b)

• λa+ (1− λ)b is a point x ∈ [a,b] and f(λa+ (1− λ)b) is the corresponding value of the
function

• λf(a) + (1− λ)f(b) = f(x) is the value at λa+ (1− λ)b of the chord from (a, f(a)) to (b, f(b)).

xa bxλ

chord

xλ

f(x)

Prof. Giorgio Gambosi Probability recall Slide 75 / 78



JENSEN’S INEQUALITY AND KL DIVERGENCE
• If f(x) is a convex function, the Jensen’s inequality holds for any set of points x1, . . . , xM

f
( M∑

i=1

λixi

)
≤

M∑
i=1

λif(xi))

where λi ≥ 0 for all i and
∑M

i=1 λi = 1.
• In particular, if λi = p(xi),

f(E[x]) ≤ E[f(x)]

• if x is a continuous variable, this results into

f
(∫

xp(x)dx
)

≤
∫
f(x)p(x)dx

• applying the inequality to KL(p||q), since the logarithm is convex,

KL(p||q) = −
∫
p(x) ln q(x)p(x)dx ≥ − ln

∫
q(x)dx = 0

thus proving the KL is always non-negative.
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APPLYING KL DIVERGENCE

• x = (x1, . . . , xn), dataset generated by a unknown distribution p(x)
• we want to infer the parameters of a probabilistic model qθ(x|θ)
• approach: minimize

KL(p||qθ) = −
∑
x
p(x) ln q(x|θ)p(x)

≈ − 1

n

n∑
i=1

ln q(xi|θ)p(xi)

=
1

n

n∑
i=1

(lnp(xi)− lnq(xi|θ))

First term is independent of θ, while the second one is the negative log-likelihood of x. The
value of θ which minimizes KL(p||qθ) also maximizes the log-likelihood.
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MUTUAL INFORMATION
• Measure of the independence between X and Y

I(X, Y) = KL(p(X, Y)||p(X),p(Y)) = −
∑
x

∑
y
p(x, y) ln p(x)p(y)p(x, y)

additional encoding length if independence is assumed
• We have:

I(X, Y) = −
∑
x

∑
y
p(x, y) ln p(x)p(y)p(x, y)

= −
∑
x

∑
y
p(x, y) ln p(x)p(y)

p(x|y)p(y)

= −
∑
x

∑
y
p(x, y) ln p(x)

p(x|y)

= −
∑
x

∑
y
p(x, y) lnp(x) +

∑
x

∑
y
p(x, y) lnp(x|y) = H(X)− H(X|Y)

• Similarly, it derives I(X, Y) = H(Y)− H(Y|X)
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