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DISCRETE RANDOM VARIABLES

A discrete random variable X can take values from some finite or countably infinite set X. A
probability mass function (pmf) associates to each event X = x a probability p(X = x).

Properties

e 0<pkx)<1iforallxeXx

p>

XeEXp(x)=1

Note: we shall denote as x the event X = x
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DISCRETE RANDOM VARIABLES

Joint and conditional probabilities

Given two events x, y, it is possible to define:
e the probability p(x,y) = p(x A y) of their joint occurrence
¢ the conditional probability p(x]y) of x under the hypothesis that y has occurred

Union of events

Given two events x, y, the probability of x or y is defined as

p(xVy) =px)+py) —px,y)

in particular,
p(xVy) = px)+p(y)

The same definitions hold for probability distributions.
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DISCRETE RANDOM VARIABLES

Product rule
The product rule relates joint and conditional probabilities
p(x,y) = p(xly)p(y) = p(yIx)p(x)

where p(x) is the marginal probability.
In general,

P(X1,...,Xn) = p(X2, ..., Xn[X1)P(X1)
=Pp(Xs, ..., Xn|X1, X2)p(X2|X1)p(X1)

P(XnlX1, ..., Xn—1)P(Xn—1|X1 ... Xn—2) - - - P(X2|X1)p(X1)
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DISCRETE RANDOM VARIABLES

Sum rule and marginalization

The sum rule relates the joint probability of two events x, y and the probability of one such events
p(y) (or p(y))
PX) = _px,y)=>_ pXyp®y)

yey yey

Applying the sum rule to derive a marginal probability from a joint probability is usually called
marginalization
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DISCRETE RANDOM VARIABLES

Since
p(x,y) = pxly)p(y)
p(x,y) = p(ylx)p(x)
p(y) =D _px.y) =D pyx)pX)
it results
S = PYX)PX) _  pYIX)P(X)

p(y) > xex PYX)P(X)
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DISCRETE RANDOM VARIABLES

° p( ): Prior probability of x (before knowing that y occurred)
p(xly): Posterior of x (if y has occurred)
p(y|x): Likelihood of y given x
p(y): Evidence of y
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INDEPENDENCE

Definition

Two random variables X, Y are independent (X _LL Y) if their joint probability is equal to the
product of their marginals
p(x.y) = p(x)p(y)

or, equivalently,
p(xly) = p(x) P(yIx) = p(y)

The condition p(x|y) = p(x), in particular, states that, if two variables are independent, knowing
the value of one does not add any knowledge about the other one.
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INDEPENDENCE

Conditional independence

Two random variables X, Y are conditionally independent w.r.t. a third rv. Z (X 1L Y | 2) if

p(x,ylz) = p(x|2)p(y|z)

Conditional independence does not imply (absolute) independence, and vice versa.
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CONTINUOUS RANDOM VARIABLES

A continuous random variable X can take values from a continuous infinite set X. Its probability
is defined as cumulative distribution function (cdf) F(x) = p(X < x).
The probability that X is in an interval (a, b] is then p(a < X < b) = F(b) — F(a).

Probability density function

The probability density function (pdf) is defined as f(x) = % As a consequence,

p(a<X<b)= /bf(x)dx

and
p(x < X < x4+ dx) ~ f(x)dx

for a sufficiently small dx.
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SUM RULE AND CONTINUOUS RANDOM VARIABLES

In the case of continuous random variables, their probability density functions relate as follows.

/fxydy PPy

Prof. Giorgio Gambosi Probability recall



EXPECTATION

Definition

Let x be a discrete random variable with distribution p(x), and let g : R — IR be any function: the
expectation of g(x) w.r.t. p(x) is

Ep[g(®)] = > g(x)p(x)

XxeVx

If x is a continuous r.v., with probability density f(x), then

Efg(x)] = /  g00f(x)dx

Mean value

Particular case: g(x) = x

Elx] = " xp(x) £ = [ s

XeVx
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ELEMENTARY PROPERTIES OF EXPECTATION

® Ela)=aforeacha e R
® E[af(x)] = aE[f(x)] foreacha € R

® E[f(x) +g(x)] = E[f(x)] + E[g(x)]
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VARIANCE

Definition

Var(X] = E[(x — E[x])’]
We may easily derive:

E[(x—E[X])’] = EX* —2E[x]x + E[x]?]
= E[x’] — 2E[X]E[x] + E[x]*
E[x*] — E[x)*

Some elementary properties:
® Var[a] = 0foreacha e R
e Var|[af(x)] = a*Var[f(x)] for each a € R

Prof. Giorgio Gambosi Probability recall Slide 15/ 78



PROBABILITY DISTRIBUTIONS
Probability distribution

Given a discrete random variable X € Vy, the corresponding probability distribution is a function
p(x) = P(X = x) such that

*0<px)<1

* > p=

X€eVy

OZp P(x € A), with A C Vx

XEA
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SOME DEFINITIONS

Cumulative distribution

Given a continuous random variable X € IR, the corresponding cumulative probability
distribution is a function F(x) = P(X < x) such that:

°* 0<Fx)<1
e AEI =0

lim F(x) =1

X— 00

* x<y = F(x) <F(y)

-

x
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SOME DEFINITIONS

Probability density

Given a continuous random variable X € R with derivable cumulative distribution F(x), the
probability density is defined as

_ dFx)

f0 = <2

By definition of derivative, for a sufficiently small Ax,

Pr(x <X < x+ Ax) = f(x)Ax

The following properties hold:
*fx)=0
* [T fx)dx =1 Sl
° fxeAf(x)dx =P(XeA) /

y —
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BERNOULLI DISTRIBUTION

Definition

Let x € {0,1}, then x ~ Bernoulli(p), with 0 < p < 1, if
p sex=1
p(x)_{l—p sex=0

or, equivalently,
p(x) =p*(1—p)'~™

Probability that, given a coin with head (H) probability p (and tail probability (T) 1 — p), a coin toss
result into x € {H, T}.

Mean and variance

EX = p Var{x| = p(1 - p)
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EXTENSION TO MULTIPLE OUTCOMES

Assume k possible outcomes (for example a die toss).
In this case, a generalization of the Bernoulli distribution is considered, usualy named categorical
distribution.

where (p1, ..., pr) are the probabilites of the different outcomes (Z;;l p; = 1) and x; = 1 iff the
R-th outcome occurs.
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BINOMIAL DISTRIBUTION

Let x € IN, then x ~ Binomial(n, p), with0 < p < 1, if

p(x) = (Z) (1 p)" = X!(n”—ix)!p*u _pynx

Probability that, given a coin with head (H) probability p, a sequence of n independent coin
tosses result into x heads.

Mean and variance

E[x] = np =
Var[x = np(1 — p)

A l,
| | I | | | |I
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POISSON DISTRIBUTION

Let x; € IN, then x ~ Poisson(\), with A > 0, if

PN
p(x)=e AE

Probability that an event with average frequency X occurs x times in the next time unit.

Mean and variance

E[x] = A E
Var[x] = A
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NORMAL (GAUSSIAN) DISTRIBUTION

Definition

Let x € IR, then x ~ Normal(u, o?), with 4,0 € R, o > 0, if

fix) =

Mean and variance

Elx] = p

varx] = o”

Prof. Giorgio Gambosi
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BETA DISTRIBUTION

Definition

Let x € [0, 1], then x ~ Beta(«, 3), with a, 3 > 0, if

- -

where

F(x):/ v tedu
0

is a generalization of the factorial to the real field R: in particolar, I'(n) = (n — 1)!ifn € N

Mean and variance

af
(a+pB)P(a+B+1)

Var[x] =
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BETA DISTRIBUTION

a=1, f=1 =0.7, 4=0.7

xr xr
a=2, f=2 a=2, f=4

x T
a=6, f=4 a=10, /=10
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MULTIVARIATE DISTRIBUTIONS

Definition for k = 2 discrete variables

Given two discrete r.v. X, Y, their joint distribution is
px,y) =PX=x,Y=y)

The following properties hold:
1L 0<pxy <1

2' ZXGVX Eyevyp(x7 y) =1
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MULTIVARIATE DISTRIBUTIONS

Definition for k = 2 variables

Given two continuous r.v. X, Y, their cumulative joint distribution is defined as
Fix,y) = PX <X, Y <y)
The following properties hold:

1. 0<F(x,y) <1
2. lim F(x,y)=1
X,y— oo

3. lim F(x,y)=0

X,y——o0
If F(x,y) is derivable everywhere w.r.t. both x and y, joint probability density is

foey) = aod)

The following property derives

[ foxydady =p(cv) € )
(y) €A
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COVARIANCE

Definition

Cov[X; Y] = E[(X — E[X])(Y — E[Y])]

As for the variance, we may derive

CovX,Y] = E[(X—E[X])(Y - E[V])]
= E[XY — XE[Y] — YE[X] + E[X]E[Y]]
= E[XY] — E[X|E]Y] — E[V]E[X] + E[EX]E[Y]]
= EXY] — EXEY]

Moreover, the following properties hold:
1. Var[X + Y] = Var[X] + Var[Y] 4 2Cov[X, Y]
2. If X LL Ythen Cov[X,Y] =0
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RANDOM VECTORS

Let X1, X2, ..., X, be a set of r.v.: we may then define a random vector as

X1
X = Xn
X2
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EXPECTATION AND RANDOM VECTORS

Definition

Letg: IR" — IR™ be any function. It may be considered as a vector of functions
91(x))
9(x) = : gm(x)
g2(x))

where x € R".
The expectation of g is the vector of the expectations of all functions g;,

Elg1(x)]
Elg(x)] = : Elgm (x)]
Elg2(x)]
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COVARIANCE MATRIX

Definition

Let x € IR" be a random vector: its covariance matrix X is a matrix n x n such that, for each
1 <i,j < n, 5 = Cov[X;, Xj] = E[(X; — wi)(X; — 7)), where p; = E[X], 1 = E[X].

Hence,
[ Cov[Xi,X1] Cov[Xi,X2] --- Cov[X1,Xn]
COV[X27X1] COV[XQ,XQ} o COV[X27Xn]
z = . . 5
L COV[Xn,Xl] COV[Xn7X2] COV[Xn,Xn}
Var[Xi] <o Cov[Xi, Xn]
| Cov[Xn,X1] --- Var[Xs]
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COVARIANCE MATRIX

By definition of covariance,

EX3] — E[X1)? <o E[X1Xn] — E[X1]E[Xn]
Y = : :
EXoXa] — EXGJEDG] - EDG] — X2 JEX0)
= EXX'] - pp'
where p = (u1, ..., un)" is the vector of expectations of the random variables Xi, ..., X.

Properties

The covariance matrix is necessarily:
¢ semidefinite positive: that is, z'%z > 0 for any z € IR"
e symmetric: Cov[X;, Xj] = Cov[X;,Xj] for 1 <i,j <n
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CORRELATION

For any pair of r.v. X, Y, the Pearson correlation coefficient is defined as
Cov[X,Y]
PXY = —Ff—/—/————
v/ Var[X|Var[Y]
Note that, if Y = aX + b for some pair a, b, then
Cov[X, Y] = E[(X — p)(aX + b — au — b)] = E[a(X — p)?] = aVar[X]

and, since
var[Y] = (aX — ap)® = a*Var[X]
it results pxy = 1. As a corollary, pxx = 1.
Observe that if X and Y are independent, p(X, Y) = p(X)p(Y): as a consequence, Cov[X,Y] = 0 and
px,y = 0. That is, independent variables have null covariance and correlation.

The contrary is not true: null correlation does not imply indepedence: see for example X uniform
in[-1,1]and Y = X2
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CORRELATION MATRIX

The correlation matrix of (X, ...

Prof. Giorgio Gambosi

,Xn)" is defined as

PX1. X1 PX1.Xo

L PXnX1  PXnXo

1 PX1 X2

L PXn X1 PXn X2

Probability recall

PX1 ,Xn

PXn Xn

PX1 ,Xn
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MULTINOMIAL DISTRIBUTION

Definition

Letx; € Nfori=1,...,R then (x1,...,X¢) ~ Mult(n,p1,...,pr) with 0 < p < 1, if

R R
n! Xj _
p(xl,,,.,xk):mnpi con in_n
i=1 =il
Generalization of the binomial distribution to k > 2 possible toss results ti, . .., t; with

probabilities p1, ..., pr (3F, pi = 1).
Probability that in a sequence of n independent tosses p1, ..., pk, exactly x; tosses have result t;
(i=1,...,k).

Mean and variance

Elxi] = np; Var(xj] = npi(1 - p;) i=1,...,k
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DIRICHLET DISTRIBUTION

Definition

Letx; € [0,1] fori=1,...,k, then (x1,...,Xz) ~ Dirichlet(a1, az, ..., ap) if

k

F(Zk— Oé,') a;—1 1 i ai—1
foxr, oy = D) e 1 T
HLl (o) E ! Ao, ... ap) E i

with S8 x; = 1.

Generalization of the Beta distribution to the multinomial case R > 2.

A random variable ¢ = (¢4, ..., ¢«) with Dirichlet distribution takes values on the K — 1
dimensional simplex (set of points x € R" such thatx; > 0 fori=1,...,Kand >, x; = 1)

Mean and variance

1o i 1 _ ailao — )
Elxi] = ” Var(xj] = (a0 F 1)

with Qo = Zle Q;
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DIRICHLET DISTRIBUTION

Examples of Dirichlet distributions with k = 3
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DIRICHLET DISTRIBUTION

Symmetric Dirichlet distribution

Particular case, where o; = afori=1,...,K

K K
P(61,---+éxla, K) = Dir(dlaK) = e [ o = 5o [T o5

Mean and variance

In this case,
1
Epxi] =+ Varix]
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GAUSSIAN DISTRIBUTION

® Properties
® Analytically tractable
® Completely specified by the first two moments
® A number of processes are asintotically gaussian (theorem of the Central Limit)
® |inear transformation of gaussians result in a gaussian
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UNIVARIATE GAUSSIAN

Forx € IR:
p(x) = N(u,0?)
1 _ x=w)?
= e 202
V2ro
with

Prof. Giorgio Gambosi Probability recall



UNIVARIATE GAUSSIAN

8
—
S~

i i
pn—30 pn—20 pn—c i p+o 20 n+30

A univariate gaussian distribution has about 95% of its probability in the interval |x — u| > 20.

Slide 42 /78
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MULTIVARIATE GAUSSIAN

Forx € R":
p(x) = N(p, %)
_ 1 o~ Sx—w) =T x—p)
- (27r)d/2|2\1/2
where
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MULTIVARIATE GAUSSIAN

® 1i: expectation (vector of size d)
e 3: matrix d x d of covariance. ojj = E[(X; — 11i)(Xj — 1})]

(z)f

Slide 44 /78
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MULTIVARIATE GAUSSIAN

Mahalanobis distance

e Probability is a function of x through the quadratic form

A= (x-—p)= 7 (x—p)

e A isthe Mahalanobis distance from p to x: it reduces to the euclidean distance if X = 1.
e Constant probability on the curves (ellipsis) at constant A.
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MULTIVARIATE GAUSSIAN

In general,
x'Ax = (x'Ax)" =x"A'x
this implies that
Tho _ Lo7 Irr._1(1 1,7
xAx_2xAx+2xAx_x (2A—|—2A>x

e A+ AT is necessarily symmetric, as a consequence, 3 is symmetric
® asa consequence, its inverse X! does exist.
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DIAGONAL COVARIANCE MATRIX

Assume a diagonal covariance matrix:

o 0 0
0 o3 0
Y= . .
0 0 o2
then, |X| = 002 ...02 and
L0 0
91
0 % 0
271 _ 92
0 0 =

Slide 47 /78
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DIAGONAL COVARIANCE MATRIX
Easy to verify that

(s e =3 B

and

ek Hra, o (254

The multivariate distribution turns out to be the product of d univariate gaussians, one for each
coordinate x;.

T
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IDENTITY COVARIANCE MATRIX

The distribution is the product of d “copies” of the same univariate gaussian, one copy for each
coordinate x;.
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SPECTRAL PROPERTIES OF Y.

Y is real and symmetric: then,
1. all its eigenvalues \; are in R

2. there exists a corresponding set of orthonormal eigenvectors u; (i.e. such that (u/uy; = 1 if
i =jand 0 otherwise)

Let us define the d x d matrix U whose columns correspond to the orthonormal eigenvectors

| |
U—(ul u2 Ug
| |

and the diagonal d x d matrix A with eigenvalues on the diagonal

A1

A2 0

A= As

0

Ad
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MULTIVARIATE GAUSSIAN

Decomposition of

By the definition of U and A, and since Xu; = u;\; foralli=1,...,d, we may write
YU =UA

Since the eigenvectors u; are orthonormal, U~ = U” by the properties of orthonormal matrices:
as a consequence

d
S =UAU' =UAU =) \uu/

i=1

Then, its inverse matrix is a diagonal matrix itself

1
¥l = Z xiu;uiT
i=1
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MULTIVARIATE GAUSSIAN

Density as a function of eigenvalues and eigenvectors

As shown before,

d d
A% = (x— )57 =) = (x— ) 3wl (= p) = 30 3 (x = )] (x = o)
d TX*
DT EINEDS ul Y 2

and
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MULTIVARIATE GAUSSIAN

y; is the scalar product of x — p and the i-th eigenvector u;, that is the length of the projection of
x — p along the direction of the eigenvector. Since eigenvectors are orthonormal, they are the
basis of a new space, and for each vector x = (x4, ..., Xq), the values (yi,...,yq) are the
coordinates of x in the eigenvector space.

T2
'

x|

Eigenvectors of 3 correspond to the axes of the distribution; each eigenvalue is a scale factor
along the axis of the corresponding eigenvector.
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LINEAR TRANSFORMATIONS

Let x € RY, A € RY**, y = ATx € R*: then, if x is normally distributed, so is y.
In particular, if the distribution of x has mean p and covariance matrix X, the distribution of y has
mean A"y and covariance matrix ATSA.

x~N(p,S) =y~ N(ATp,A'SA)
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MARGINAL AND CONDITIONAL OF A JOINT GAUSSIAN

Letx; € R", x» € R* be such that {%} ~ N (u,%) and let
2

° = {%} with 1 € R", po € RF
2

by X .
* 3= 1 12 with X414 € ]RhXh, Yo € Rth, Y1 € IRth, Yoo € Rka
o1 | o2

then
¢ the marginal distribution of x; is x; ~ N (p1,211)
e the conditional distribution of x; given x is x1|x2 ~ A (p1)2, £1)2) with

Bz = p1 — S1255) (X2 — p12)
Yz = X111 — $10Y5y Yo
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BAYES’' FORMULA AND GAUSSIANS

Let x,y be such that
x~N(p, 1) and ylx ~ N(Ax + b, 35)

That is, the marginal distribution of x (the prior) is a gaussian and the conditional distribution of
y w.r.t. x (the likelihood) is also a gaussian with (conditional) mean given by a linear combination
on x. Then, both the the conditional distribution of x w.r.t. y (the posterior) and the marginal
distribution of y (the evidence) are gaussian.

y~N(Ap+b, S + A AT
X[y ~ N (2, %)
where
fo= (ST +ATSTA) THATE (y - b) + 21 )
S=(2r +ATS AT
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BAYESIAN STATISTICS

Classical ( ) statistics

¢ |nterpretation of probability as frequence of an event over a sufficiently long sequence of
reproducible experiments.

e Parameters seen as constants to determine

e Interpretation of probability as degree of belief that an event may occur.
e Parameters seen as random variables
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BAYES’ RULE

Cornerstone of bayesian statistics is Bayes’ rule

P(© = 0X = x)p(X = X)

P(© =90)
Given two random variables X, ©, it relates the conditional probabilities p(X = x|© = ) and
p(© = 0|X = x).

pX=x/©=0)=
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BAYESIAN INFERENCE

Given an observed dataset X and a family of probability distributions p(x|©) with parameter © (a
probabilistic model), we wish to find the parameter value which best allows to describe X
through the model.

In the bayesian framework, we deal with the distribution probability p(©) of the parameter ©
considered here as a random variable. Bayes’ rule states that

pX[©)p(©)

pe) = P
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BAYESIAN INFERENCE

Interpretation

e p(O©) stands as the knowledge available about © before X is observed (a.k.a. prior
distribution)

® p(O|X) stands as the knowledge available about © after X is observed (a.k.a. posterior
distribution)

® p(X|©) measures how much the observed data are coherent to the model, assuming a
certain value © of the parameter (a.k.a. likelihood)

* p(X) => o P(X|O)p(O’) is the probability that X is observed, considered as a mean w.r.t.
all possible values of © (a.k.a. evidence)
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CONJUGATE DISTRIBUTIONS

Definition

Given a likelihood function p(y|x), a (prior) distribution p(x) is conjugate to p(y|x) if the posterior
distribution p(x|y) is of the same type as p(x).

Consequence

If we look at p(x) as our knowledge of the random variable x before knowing y and with p(x|y) our
knowledge once y is known, the new knowledge can be expressed as the old one.
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EXAMPLES OF CONJUGATE DISTRIBUTIONS: BETA-BERNOULLI

The Beta distribution is conjugate to the Bernoulli distribution. In fact, given x € [0, 1] and
y€{0,1},if

p(6la, ) = Beta(g|a, §) = %w*u gy

p(x|¢) = ¢"(1—¢)' >
then
p(d)\x): 1 =) (1 —¢) = Beta(X|a+x— 1,8 —X)
where Z is the normalization coefficient

D(a+pB+1)
MNa+x)I'(B—x+1)

-1
Z:/ 9(\+X l(l )f Xd(?—
J0
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EXAMPLES OF CONJUGATE DISTRIBUTIONS: BETA-BINOMIAL

The Beta distribution is also conjugate to the Binomial distribution. In fact, given x € [0, 1] and
y € {0, 1}, if

T'(a+p)

a—1 o B—1
Farp? 179

p(¢la, B) = Beta(¢la, B) =

p(k|¢,N) = (’;’) o"(1—)" " = (,\,_L,L),k!aﬁ”u — )"

then
p(d|k, N, o, )= éo“*‘ (1—o) 1ol — )" " =Beta(gla+kR—1,8+N—k—1)

with the normalization coefficient

1
_ Jath—1(1  \B+N—k—1 4, I'(a+ B+ N)
Z—'A 10) (1—9) doiF(a-}-k’)F(ﬂ—FN—k)
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MULTIVARIATE DISTRIBUTIONS

Multinomial

Generalization of the binomial

p(ny,...,nk|¢1,... bk, n) = H¢"’ Zn,:n,Z¢,~:1

11’:1 i=1 i=1

the case n = 1 is a generalization of the Bernoulli distribution

K K K
p(X1, ... Xx|P1, ..., Px) = H(ﬁf" Vi:x € {0,1},Zx,- = 1,Z¢,- =1l
i=1 i=1 i=1

Likelihood of a multinomial

=
=
=

P(Xlon,....d0 < [[ [T 67" =] &
j:l

i=1j=1
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CONJUGATE OF THE MULTINOMIAL

Dirichlet distribution

The conjugate of the multinomial is the Dirichlet distribution, generalization of the Beta to the
case K > 2

al

p(d1, ..., dxlan, ..., o) = Dir(¢la) = === ¢afl
]._L 1 ' i=1

1 K
aj—1
:qusi
i=1
with o; > 0fori=1,...,K

Random variables and Dirichlet distribution

A random variable ¢ = (¢1, ..., ¢«) with Dirichlet distribution takes values on the K — 1
dimensional simplex (set of points x € R" such thatx; > 0 fori=1,...,Kand >, x; = 1)
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EXAMPLES OF CONJUGATE DISTRIBUTIONS: DIRICHLET-MULTINOMIAL

Assume ¢ ~ Dir(¢|a) and z ~ Mult(z|¢). Then,

o L K ail
p(¢|z,a)_%ﬁzg 1l

ZH¢°“ i+~ — Dir(g|a’)

where o' = (0(1 +Zl,...,OcK+ZK)
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TEXT MODELING

Unigram model

Collection W of N term occurrences: N observations of a same random variable, with multinomial
distribution over a dictionary V of size V.

P(Wg) = L(¢|W) = H¢ D=Ly Ni=N

Parameter model

Use of a Dirichlet distribution, conjugate to the multinomial

p(¢|a) = Dir(¢|c)
P(¢|W, a) = Dir(¢|a + N)
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INFORMATION THEORY

Let X be a discrete random variable:
¢ define a measure h(x) of the information (surprise) of observing X = x

® requirements:

e likely events provide low surprise, while rare events provide high surprise: h(x) is inversely
proportional to p(x)

® X,Yindependent: the event X = x, Y = y has probability p(x)p(y). Its surprise is the sum of the
surprise for X = x and for Y = y, that is, h(x,y) = h(x) + h(y) (information is additive)

this results into h(x) = —logx (usually base 2)
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ENTROPY
A sender transmits the value of X to a receiver: the expected amount of information transmitted

(w.r.t. p(x)) is the entropy of X

Prof. Giorgio Gambosi

probabilities

05

0.25

H=177

Zp ) log, p(x

e lower entropy results from more sharply peaked distributions
e the uniform distribution provides the highest entropy
Entropy is a measure of disorder.

Probability recall

probabilities

0.5

025

H =3.09
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ENTROPY, SOME PROPERTIES

® p(x) € [0,1] implies p(x) log, p(x) < 0and H(X) >0
® H(X) = 0 if there exists x such that p(x) = 1

Maximum entropy

Given a fixed number k of outcomes, the distribution p1, ..., pr with maximum entropy is derived
by maximizing H(X) under the constraint Zf‘:l p; = 1. By using Lagrange multipliers, this amounts

to maximizing
R R
~ 3 prlogapi+ A (zp,-—1>
i=1 i=1
Setting the derivative of each p; to 0,
0 = —log, pj — log, € + A

results into p; = 2* — e for each i, that is into the uniform distribution p; = % and H(X) = log, k
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ENTROPY, SOME PROPERTIES

H(X) is a lower bound on the expected number of bits needed to encode the values of X
e trivial approach: code of length log, k (assuming uniform distribution of values for X)

e for non-uniform distributions, better coding schemes by associating shorter codes to likely
values of X
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CONDITIONAL ENTROPY

Let X, Y be discrete r.v. : for a pair of values x, y the additional information needed to specify y if x
is known is —In p(y|x).

The expected additional information needed to specify the value of Y if we assume the value of X
is known is the conditional entropy of Y given X

H(Y|X) = ZZPXV In p(y]x)

Clearly, since In p(y|x) = Inp(x,y) — In p(x)
H(X,Y) = H(Y|X) + H(X)

that is, the information needed to describe (on the average) the values of X and Y is the sum of
the information needed to describe the value of X plus that needed to describe the value of Yis X
is known.
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KL DIVERGENCE

Assume the distribution p(x) of X is unknown, and we have modeled is as an approximation g(x).
If we use g(x) to encode values of X we need an average length — 3", p(x) Inq(x), while the

minimum (known p(x)) is — >, p(x) In p(x).
The additional amount of information needed, due to the approximation of p(x) through g(x) is
the Kullback-Leibler divergence

KL(pllq) = E:p )Inq(x) + > p(x)Inp(x
q(x)
=— X)In —=
gh()pU)
KL(p||q) measures the difference between the distributions p and q.
* KL(pllp) =0

(
® KL(p||q) # KL(q||p): the function is not symmetric, it is not a distance (it would be
d(x,y) = d(y,x))
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CONVEXITY

A function is convex (in an interval [a, b]) if, for all 0 < X < 1, the following inequality holds

f(Aa + (1= \)b) < Af(@) + (1 — Nfi(b)

® \a+ (1—MA)bisapointx € [a,b] and f(Aa + (1 — \)b) is the corresponding value of the
function

® )M(a) + (1 — Nf(b) = f(x) is the value at Aa + (1 — )b of the chord from (a, f(a)) to (b, f(b)).

f(=)

chord \

P R ——
T

Tx
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JENSEN'S INEQUALITY AND KL DIVERGENCE
e If f(x) is a convex function, the Jensen’s inequality holds for any set of points x1,...,Xu

f <Z )\ixi> < Z Aif(xi))

i=1
where \; > 0 foralliand 31| A = 1.
e In particular, if \; = p(x;),
f(E[X]) < E[f(x)]

e if x is a continuous variable, this results into

f(/xp(x)dx) < /f(x)p(x)dx

e applying the inequality to KL(p||q), since the logarithm is convex,

KL(p||q) = /p lq dx>—ln/q

thus proving the KL is always non-negative.
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APPLYING KL DIVERGENCE

® x = (X1,...,Xn), dataset generated by a unknown distribution p(x)
® we want to infer the parameters of a probabilistic model g4 (x|0)
e approach: minimize

\_/

KL(pl|qe) = Zp )
~ Ly, 9Gil0)
~ n§1 p(x)

- % Z (Inp(x;) — Inq(x;|0))

First term is independent of 6, while the second one is the negative log-likelihood of x. The
value of 6 which minimizes KL(p||qs) also maximizes the log-likelihood.
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MUTUAL INFORMATION

e Measure of the independence between X and Y

10X, Y) = KL(p(X, V)P (X Zzp xy)1 (’p§{>

additional encoding length if independence is assumed
® We have:

=33 pix.y) lnp(x +Zprylnp><|y H(X) — H(X|Y)
Xy

e Similarly, it derives I(X,Y) = H(Y) — H(Y|X)
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