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FULLY BAYESIAN REGRESSION

We remind that, in fully bayesian regression, no specific model parameters w∗ are identified, to
be applied in prediction as

y = w∗ϕ(x)

Instead the distribution p(y|x) is derived, under the assumption of gaussianity, with

p(y|x, t,Φ, α, β) = N (y|m(x), σ2(x))
and

m(x) = βϕ(x)TSNΦTt
and variance

σ2(x) = 1

β
+ ϕ(x)TSNϕ(x)
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EQUIVALENT KERNEL

• The prediction y(x) can be returned here as the expectation of the predictive distribution

y(x) = βϕ(x)TSNΦTt =
n∑
i=1

βϕ(x)TSNϕ(xi)ti

• The prediction is not computed by referring to a set of parameters derived by optimization of
a loss function. Instead, it can be seen as a linear combination of the target values ti of all
items in the training set, with weights dependent from the item values xi (and from x)

y(x) =
n∑
i=1

κ(x, xi)ti

The weight function κ(x, x′) = βϕ(x)TSNϕ(x′) is said equivalent kernel
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EQUIVALENT KERNEL

Right: plot on the plane (x, xi) of a sample equivalent kernel, in the case of gaussian basis
functions.
Left: plot as a function of xi for three different values of x

In deriving y, the equivalent kernel tends to assign greater relevance to the target values ti
corresponding to items xi near to x.
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EQUIVALENT KERNEL

The same localization property holds also for different base functions.
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Left, κ(0, x′) in the case of polynomial basis functions.
Right, κ(0, x′) in the case of gaussian basis functions.
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EQUIVALENT KERNEL

• The covariance between y(x) and y(x′) is given by

cov(x, x′) = cov(ϕ(x)Tw,wTϕ(x′)) = Φ(x)TSNϕ(x′) =
1

β
κ(x, x′)

predicted values are highly correlated at nearby points.
• Instead of introducing base functions which results into a kernel, we may define a localized
kernel directly and use it to make predictions
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KERNEL REGRESSION
• In kernel regression methods, the target value corresponding to any item x is predicted by
referring to items in the training set, and in particular to the items which are closer to x.

• This is controlled by referring to a kernel function κh(x), which is non zero only in an interval
around 0

• h is the bandwidth of the kernel, which controls the width of κh(x)

A possible, common kernel, is the gaussian (or RBF) kernel

g(x) = e−
∥x∥2
2h2
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KERNEL REGRESSION

In regression, we are interested in estimating the conditional expectation

f(x) = E[t|x] =
∫
p(t|x)tdt =

∫ p(x, t)
p(x) tdt =

∫
p(x, t)tdt

p(x) =

∫
p(x, t)tdt∫
p(x, t)dt

The joint distribution p(x, t) is approximated by means of a kernel function as

p(x, t) ≈ 1

n

n∑
i=1

κh(x − xi)κh(t− ti)
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KERNEL REGRESSION

This results into

f(x) =

∫
1

n

n∑
i=1

κt(x − xi)κh(t− ti)tdt∫
1

n

n∑
i=1

κh(x − xi)κh(t− ti)dt
=

∑n
i=1 κh(x − xi)

∫
κh(t− ti)tdt∑n

i=1 κh(x − xi)
∫

κh(t− ti)dt

If we assume that the kernel κ(x) is a probability distribution with 0 mean, it results∫
κh(t− ti)dt = 1 and

∫
tκh(t− ti)dt = ti, we get

f(x) =
∑n

i=1 κh(x − xi)ti∑n
i=1 κh(x − xi)
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KERNEL REGRESSION

By setting
wi(x) =

κh(x − xi)∑n
j=1 κh(x − xj)

we can write

f(x) =
n∑
i=1

wi(x)ti

that is, the predicted value is computed as a normalized linear combination of all target values,
weighted by kernels (Nadaraya-Watson)
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LOCALLY WEIGHTED REGRESSION

In Nadaraya-Watson model, the prediction is performed by means of a normalized weighted
combination of constant values (target values in the training set).

Locally weighted regression (LOESS) improves that approach by referring to a weighted version of
the sum of squared differences loss function used in regression.

If a value t has to be predicted for an item x, a “local” version of the loss function is considered,
with weight κi(x).

L(x) =
n∑
i=1

κi(x)(wTxi − ti)2 =

n∑
i=1

κh(x − xi)(wTxi − ti)2

Weights κi(x) are dependent from the “distance” between x and xi, as measured by the kernel
function

κi(x) = κh(x − xi)
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LOCALLY WEIGHTED REGRESSION

The minimization of this loss function

ŵ(x) = argmin
w

n∑
i=1

κi(x)(wTxi − ti)2

has solution
ŵ(x) = (XT

Ψ(x)X)−1XT
Ψ(x)t

where Ψ(x) is a diagonal n× n matrix with Ψ(x)ii = κi(x).

The prediction is then performed as usual, as

y = ŵ(x)Tx
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LOCAL LOGISTIC REGRESSION

The same approach applied in the case of local regression can be applied for classification, by
defining a weighted loss function to be minimized, with weights dependent from the item whose
target must be predicted.

In this case, a weighted version of the cross entropy function is considered, which has to be
maximized

L(x) =
n∑
i=1

κh(x − xi)(ti logpi − (1− ti) log(1− pi))

with pi = σ(wTxi), as usual.

The loss function minimization can be performed, for example, by applying a suitable
modification of the IRLS algorithm for logistic regression
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RECAP: SOME PROPERTIES OF GAUSSIAN DISTRIBUTION

In order to introduce Gaussian processes and how they can be exploited for regression, let us first
provide a short reminder on some properties of multivariate gaussian distributions.

Let x = (x1, . . . , xn)T be a random vector with gaussian distribution p(x) = N (µ,Σ) and let
x = (xA, xB) be a partition of the components x such that:
• xA = (x1, . . . , xr)T

• xB = (xr+1, . . . , xn)T

Then, the marginal densities p(xA) and p(xB) are both gaussian with means µA,µB and covariance
matrices ΣA,ΣB which can be derived from µ,Σ by observing that

µ = (µA,µB)
T Σ =

(
ΣA ΣAB
ΣT
AB ΣB

)

Prof. Giorgio Gambosi Nonparametric regression Slide 14 / 44



RECAP: SOME PROPERTIES OF THE GAUSSIAN DISTRIBUTION

In the same situation, the conditional densities p(xA|xB) and p(xB|xA) are also gaussian with
means

µA|B = µA +ΣABΣ
−1
B (xB − µB)

µB|A = µB +ΣBAΣ
−1
A (xA − µA)

and covariance matrices

ΣA|B = ΣA −ΣABΣ
−1
B ΣBA

ΣB|A = ΣB −ΣBAΣ
−1
A ΣAB

Prof. Giorgio Gambosi Nonparametric regression Slide 15 / 44



GAUSSIAN PROCESSES

• Multivariate gaussians on random vectors are useful for modeling finite collections of
real-valued variables. They have nice analytical properties (see previous slides).

• Gaussian processes: extension of multivariate gaussians to infinite-sized collections of
real-valued variables.

• We may think of gaussian processes as distributions not just over random vectors but over
random real functions.
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PROBABILITY DISTRIBUTIONS OVER FUNCTIONS WITH FINITE DOMAINS

Let us first consider the case of functions defined over finite vectors.
• Let X = (x1, . . . , xm) be a vector of m points in IRd, and let H be the set of functions
f : IRd 7→ IR

• any such functions assigns a value f(xi) to each xi ∈ X and can be described by the vector
(f(x1), . . . , f(xm))

• at the same time, any vector y = (y1, . . . , ym) can be seen as the description of a function f ∈ H, the
one with f(xi) = yi

• hence, the setH is in 1-to-1 correspondence with the set of vectors in IRm

• A probability distribution p(y), y ∈ IRm is also a distribution p(f) of functions in H
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GAUSSIAN DISTRIBUTIONS OVER FUNCTIONS WITH FINITE DOMAINS

We assume that p(y) (or, equivalently, p(f)) is a (multivariate, m-dimensional) Gaussian
distribution with mean 0 and diagonal covariance matrix σ2I, that is

p(f|X;σ2) = N (f|X; 0, σ2I) =
m∏
i=1

1√
2πσ

e−
f(xi)

2

2σ2

• This is equivalent to assuming that each function value yi = f(xi) has normal distribution
with mean 0 and variance σ2, and that values are independent

• A dependence between function values at different points could be modeled through a
non-diagonal covariance matrix
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GAUSSIAN DISTRIBUTIONS OVER FUNCTIONS WITH FINITE DOMAINS

In the figure below, a possible situation is given with d = 1, m = 4: three functions in H are
reported.
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GAUSSIAN DISTRIBUTIONS OVER FUNCTIONS WITH FINITE DOMAINS

• Assume now that the targets t = (t1, . . . , tm) corresponding to points in X are available.
• Observe that p(f|X;σ2) is only dependent on the set of items X, and does not take into
account the corresponding targets t. We may than consider it as a prior distribution of
functions, with respect to the observation of the targets t associated to X
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GAUSSIAN DISTRIBUTIONS OVER FUNCTIONS WITH FINITE DOMAINS
• By applying Bayes rule, we may derive the posterior (with respect to t) distribution p(f|X, t)
of functions. To this aim, a likelihood model has to be defined

p(X, t|f) =
m∏
i=1

p(xi, ti|f(xi)) =
m∏
i=1

p(ti|xi, f(xi))p(xi|f(xi)) ∝
m∏
i=1

p(ti|xi, f(xi))

• we refer to the usual gaussian likelihood introduced for probabilistic modeling linear
regression p(t|x, y, β) = N (t|f(x), β), which results into

p(X, t|f, β) ∝
m∏
i=1

N (ti|f(xi), β)

• the posterior distribution is then

p(f|X, t, β, σ2) ∝
m∏
i=1

N (ti|f(xi), β)p(f|σ2)
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GAUSSIAN DISTRIBUTIONS OVER FUNCTIONS WITH FINITE DOMAINS

Both the prior and the posterior distributions of f are gaussian: this implies that the predictive
distribution

p(t|x,X, t, β, σ2) =

∫
p(t|x, f, β)p(f|X, t, β, σ2)df

is itself a gaussian.

That would the case also in the more general case when some dependency between function
points is assumed. In this case, a general covariance matrix Σ is defined for the prior distribution

p(y;Σ) = N (y|0,Σ)

that is,
p(f|X;Σ) = N (y|X; 0,Σ)
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GAUSSIAN DISTRIBUTIONS OVER FUNCTIONS WITH INFINITE DOMAINS

• In the case of an infinite domain χ, we have to deal with an infinite collection of random
variables.

• In this case, the role of multidimensional distributions is covered by stochastic processes.
• A stochastic process is a collection of random variables, {f(x) : x ∈ χ}, indexed by elements from
some set X, known as the index set.

• A Gaussian process is a stochastic process such that for any finite subset X = {x1, . . . , xn} of
χ, the function values f(x1), . . . , f(xn) have joint multivariate Gaussian distribution
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GAUSSIAN DISTRIBUTIONS OVER FUNCTIONS WITH INFINITE DOMAINS

In order to specify the gaussian process, we must introduce two rules which, for any set of points
X = {x1, . . . , xn}, define the distribution p(y) of the corresponding values
y1, . . . , yn = f(x1), . . . , f(xn).
• We already know that, by assumption, p(f) = p(y) is a multivariate normal distribution,
hence characterized by a mean vector µ(X) and covariance matrix Σ(X)

• We assume that µ(X) is indeed a constant independent from X. In particular, µ(X) = 0
• The covariance matrix derives from the application of a predefined covariance function

κ : χ× χ 7→ IR which associates a real value to any pair of points in χ and, in particular, to
any pair in X, hence to all elements of Σ
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KERNELS IN GAUSSIAN PROCESSES
The covariance function κ is assumed to be a positive definite kernel.

• This means that for any set of distinct points x1, . . . , xn it must be
n∑
i=1

n∑
j=1

cicjκ(xi, xj) > 0

for any choice of the constants c1, . . . , cn such that not all ci are equal to 0.
• Equivalently, the square Gram matrix G defined as

G =


κ(x1, x1) κ(x1, x2) · · · κ(x1, xn)
κ(x2, x1) κ(x2, x2) · · · κ(x2, xn)

· · · · · · · · · · · ·
κ(xn, x1) κ(xn, x2) · · · κ(xn, xn)


must have positive eigenvalues.

• A collection of positive definite kernels is known in the literature and can be constructed by
applying suitable rules.
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GAUSSIAN PROCESSES

Given a gaussian process p(f) = GP(m, κ), then for any set of items X = {x1, . . . , xn}, the
distribution of f(x1), . . . , f(xn) is a gaussian

(f(x1), . . . , f(xn)) ∼ N (µ(X)|Σ(X))

where
• µ(X) = (m(x1), . . . ,m(xn))T

• Σ(X) is the Gram matrix wrt x1, . . . , xn of a kernel function κ(x, x′)

As stated before, it is usually assumed that the mean vector is 0: different processes are then
characterized only by their covariance kernel κ.
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SAMPLING FUNCTIONS FROM GAUSSIAN PROCESSES

Given X = {x1, . . . , xn}, a probability distribution on f(x1), . . . , f(xn) is then defined, as

p(f|X) = N (f|0,Σ(X))

where, as stated before

Σ(X)ij = κ(xi, xj)

For any finite subset X = (x1, . . . , xn) of χ it is possible to sample from p(f) the values of
f(x1), . . . , f(xm) by gaussian sampling from N (f|0,Σ(X))
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RBF KERNEL

Clearly, different kernels provide different processes.
• One of the most applied kernel is the RBF kernel

κ(x1, x2) = σ2e−
||x1−x2||2

2τ2

which tends to assign higher covariance between f(x1) and f(x2) if x1 and x2 are nearby
points.

• Functions drawn from a Gaussian process with RBF kernel tend to be smooth, since values
computed for nearby points tend to be similar. Smoothing is larger for larger τ .
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RBF KERNEL

Samples of functions from p(f). RBF kernel, larger τ and smoothing
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RBF KERNEL

Samples of functions from p(f). RBF kernel, smaller τ and smoothing
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GAUSSIAN PROCESS REGRESSION: NO NOISE
• By the gaussian process definition, f is distributed as a multivariate gaussian such that the
mean of any value f(x) is m(x) = 0 and the covariance of any pair f(x), f(x′) is κ(x, x′)

• as a consequence, for any finite set of points X, we have that f(X) is distributed as a
multivariate gaussian with mean µ(X) defined as µ(X)i = m(xi) = 0 and covariance matrix
Σ(X), defined as Σ(X)i,j = κ(xi, xj)
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GAUSSIAN PROCESS REGRESSION: NO NOISE

• Let us now assume that for a set of points X = (x1, . . . , xn)T the corresponding values
t = (t1, . . . , tn)T are known

• that is, we assume that a training set X, t is available, and we assume that the target values
in the training set correspond exactly to the function value ti = f(xi), that is, there is no noise
in the observations

• Note that in the probabilistic model of regression this is not true, since a (gaussian) error is
assumed
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GAUSSIAN PROCESS REGRESSION: NO NOISE

By the model assumptions, if we consider an additional set of points X = (x1, . . . , xm)T, the joint
distribution of f(X) and f(X) is a multivariate gaussian distribution with a certain mean µ(X,X)
and covariance Σ(X,X) that, by the properties of gaussian distributions are

µ(X,X) = (µ(X),µ(X))T

Σ(X,X) =

(
Σ(X) Σ(X,X)

Σ(X,X)T Σ(X)

)
where

Σ(X,X) =


κ(x1, x1) κ(x1, x2) · · · κ(x1, xn)
κ(x2, x1) κ(x2, x2) · · · κ(x2, xn)

...
...

. . .
...

κ(xm, x1) κ(xm, x2) · · · κ(xm, xn)
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GAUSSIAN PROCESS REGRESSION: NO NOISE

The posterior distribution of y = f(X), given X, t can be derived by the gaussian distribution
properties recalled above, and turns out to be a m-dimensional gaussian distribution itself with
mean and covariance defined as
• µp = µ(y|X, t) = µ(X) +Σ(x,X)Σ(X)−1(t − µ(X))

• Σp = Σ(X)−Σ(x,X)Σ(X)−1Σ(x,X)T
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GAUSSIAN PROCESS REGRESSION: NO NOISE

Sample of functions from the posterior distribution
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GAUSSIAN PROCESS REGRESSION: NO NOISE

In particular, for the prediction of a single test point x, the joint distribution of (t, f(x)) is a
multivariate gaussian distribution with mean µ(X, x) and covariance Σ(X, x)

µ(X, x) = (µ(X), µ(x))T

Σ(X, x) =
(

Σ(X) Σ(x,X)
Σ(x,X)T Σ(x, x)

)
where

Σ(x,X) = (κ(x, x1), κ(x, x2), . . . , κ(xn, xn))T

and
Σ(x, x) = κ(x, x)
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GAUSSIAN PROCESS REGRESSION: NO NOISE
As a consequence, the predictive distribution of y = f(x) is

mp(y|X, f) = m(x) +Σ(x,X)Σ(X)−1(t − µ(X))

σ2 = Σp(x, x) = κ(x, x)−Σ(x,X)Σ(X)−1Σ(x,X)T
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GAUSSIAN PROCESS REGRESSION: NO NOISE

In this case, an interpolation of the given values has been performed: f(xi) = ti for all possible
functions, sampled from f(x|X, f).

It results, in fact, for all xi ∈ X,

m(xi|X, f) = ti
σ2 = 0
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GAUSSIAN PROCESS REGRESSION: GAUSSIAN NOISE

Let us now assume, as usual, that p(ti|f, xi) = N (f(xi), σ2
f )

That is, the value ti observed for variable xi differs from the one obtained as f(xi) by a gaussian
and independent noise

ti = f(xi) + ε p(ε) = N (ε|0, σ2
f )

that is, p(t|f) = N (t|f, σ2I)
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GAUSSIAN PROCESS REGRESSION: GAUSSIAN NOISE

• f is now distributed as a multivariate gaussian with known mean µ(X) = (m(xi), . . . ,m(xn))T
and covariance matrix Σ̂(X) = Σ(X) + σ2

f I, defined by κ and σ2
f
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GAUSSIAN PROCESS REGRESSION: GAUSSIAN NOISE

• Let us now assume that a training set X, t is available such that the target values in the
training set correspond approximately to the function value ti = f(xi) + ε.

• In this case, for any new set of points X, the joint distribution of (t, f(X)) is a multivariate
gaussian distribution with mean µ(X,X) and covariance Σ(X,X)

µ(X,X) = (µ(X),µ(X))T

Σ(X,X) =

(
Σ̂(X) Σ(X,X)

Σ(X,X)T Σ(X)

)

where in particular Σ̂(X) =


κ(x1, x1) + σ2

f κ(x1, x2) · · · κ(x1, xn)
κ(x2, x1) κ(x2, x2) + σ2

f · · · κ(x2, xn)
...

...
. . .

...
κ(xn, x1) κ(xn, x2) · · · κ(xn, xn) + σ2

f
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GAUSSIAN PROCESS REGRESSION: GAUSSIAN NOISE
The posterior distribution of y = f(X), given X,X, t can be again derived by the gaussian
distribution properties, and turns out again to be a gaussian distribution with mean and
covariance defined as
• µp = µ(X) +Σ(x,X)Σ̂(X)−1(t − µ(X))

• Σ = Σ(X)−Σ(x,X)Σ̂(X)−1Σ(x,X)T
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GAUSSIAN PROCESS REGRESSION: GAUSSIAN NOISE
In particular, for a single test point x, we have now that the corresponding predictive distribution
is

mp(y|X, f) = m(x) +Σ(x,X)Σ̂(X)−1(t − µ(X))

σ2 = κp(x, x) = κ(x, x)−Σ(x,X)Σ̂(X)−1Σ(x,X)T
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ESTIMATING KERNEL PARAMETERS
The predictive performance of gaussian processes depends exclusively on the suitability of the
chosen kernel.
Let us consider the case of an RBF kernel. Then,

κ(xi, xj) = σ2
f e−

1
2
(xi−xj)

TM(xi−xj) + σ2
y δij

M can be defined in several ways: the simplest one is M = l−2I.
Even in this simple case, varying the values of σf, σy, l returns quite different results.

(figure from K.Murphy “Machine learning: a probabilistic perspective” p. 519, with (l, σf, σy) equal to
(1, 1, 0.1), (0.3, 1.08, 0.00005), (3.0, 1.16, 0.89))
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