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FULLY BAYESIAN REGRESSION

We remind that, in fully bayesian regression, no specific model parameters w* are identified, to
be applied in prediction as
y=w¢(x)

Instead the distribution p(y|x) is derived, under the assumption of gaussianity, with

pYIx,t, @, ) = N(yIm(x), o* (x))

and
m(x) = Bo(x) Syt

and variance .

o’ (x) = 5+ #(x)"Snep(x)
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EQUIVALENT KERNEL

® The prediction y(x) can be returned here as the expectation of the predictive distribution

y(x) = Bo(x) Su®@'t = >~ Bb(x) Sup(x,)t;

i=1

e The prediction is not computed by referring to a set of parameters derived by optimization of
a loss function. Instead, it can be seen as a linear combination of the target values t; of all
items in the training set, with weights dependent from the item values x; (and from x)

n

Yo = 3 Kx X))t

i=1

The weight function s(x,x’) = B (x)"Sne(x') is said equivalent kernel
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EQUIVALENT KERNEL

Right: plot on the plane (x, x;) of a sample equivalent kernel, in the case of gaussian basis
functions.
Left: plot as a function of x; for three different values of x
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In deriving y, the equivalent kernel tends to assign greater relevance to the target values t;
corresponding to items x; near to x.
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EQUIVALENT KERNEL

The same localization property holds also for different base functions.

0.04 0.04

0.02 0.02

Left, x(0,x") in the case of polynomial basis functions.
Right, (0, x’) in the case of gaussian basis functions.
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EQUIVALENT KERNEL

e The covariance between y(x) and y(x') is given by

cov(x,x) = cov((x)"w, W (x)) = Bx)Su(x) = Zr(x.x)
predicted values are highly correlated at nearby points.

e Instead of introducing base functions which results into a kernel, we may define a localized
kernel directly and use it to make predictions
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KERNEL REGRESSION

¢ |n kernel regression methods, the target value corresponding to any item x is predicted by
referring to items in the training set, and in particular to the items which are closer to x.

e This is controlled by referring to a kernel function xx(x), which is non zero only in an interval
around 0

® histhe bandwidth of the kernel, which controls the width of xp(x)

A possible, common kernel, is the gaussian (or RBF) kernel
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KERNEL REGRESSION

In regression, we are interested in estimating the conditional expectation

| / p(x, t)tdt / p(x, t)tdt
) :/p(x,t)dt

f(x) = E[t|x] = /p(t|x)tdt . / p;’&? tdt —

The joint distribution p(x, t) is approximated by means of a kernel function as

1 n
plx.t) ~ > kn(x = xi)rn(t — 1)
i=1
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KERNEL REGRESSION

This results into
n l n
/ E ; h/t(X — X[)h’h(t — tl)tdt E?:l H/h(x _ Xi) / :‘ih(t _ t,)tdt

/;Z;Hh(xxi)fa‘h(tt,‘)dt i Hh(x_xi)/ﬁh(t_t")dt

fx)

If we assume that the kernel x(x) is a probability distribution with 0 mean, it results
/ﬁh(t—t;)dt: 1 and /tmh(t—t,-)dt: t, we get

o Fn(x = x)t;

o) = )
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KERNEL REGRESSION

By setting

we can write

flx) = Z wi(x)t;

that is, the predicted value is computed as a normalized linear combination of all target values,
weighted by kernels (Nadaraya-Watson)
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LOCALLY WEIGHTED REGRESSION

In Nadaraya-Watson model, the prediction is performed by means of a normalized weighted
combination of constant values (target values in the training set).

Locally weighted regression (LOESS) improves that approach by referring to a weighted version of
the sum of squared differences loss function used in regression.

If a value t has to be predicted for an item x, a “local” version of the loss function is considered,
with weight x;(x).

n

L(X)ZZK,‘(X)WX,—t Zm, (x —x)(w'x; — t;)?

i=1

Weights x;(x) are dependent from the “distance” between x and x;, as measured by the kernel
function

Ki(x) = kp(x — xj)
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LOCALLY WEIGHTED REGRESSION

The minimization of this loss function
n
w(x) = argmin Z ri(x) (WX — t;)?
w i=1

has solution .

w(x) = (X Ux)X) "X Ut
where ¥(x) is a diagonal n x n matrix with ¥(x); = r;(x).

The prediction is then performed as usual, as

y=w(x)x
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LOCAL LOGISTIC REGRESSION

The same approach applied in the case of local regression can be applied for classification, by
defining a weighted loss function to be minimized, with weights dependent from the item whose
target must be predicted.

In this case, a weighted version of the cross entropy function is considered, which has to be
maximized

Znh )(tilog pi — (1 — ) log(1 — p))
with p; = o(w'%;), as usual.

The loss function minimization can be performed, for example, by applying a suitable
modification of the IRLS algorithm for logistic regression
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RECAP: SOME PROPERTIES OF GAUSSIAN DISTRIBUTION

In order to introduce Gaussian processes and how they can be exploited for regression, let us first
provide a short reminder on some properties of multivariate gaussian distributions.

Letx = (X1,...,X,)" be a random vector with gaussian distribution p(x) = N(u, X) and let
x = (xa, xg) be a partition of the components x such that:

® X\ = (X17...,Xr)T

° X = (Xr+1,. .. 7Xn)T

Then, the marginal densities p(xa) and p(xg) are both gaussian with means pa, s and covariance
matrices 34, X5 which can be derived from u, 3 by observing that

T > 2/.\5)
= (a, s -
t= (pa, ps) <ELB PO
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RECAP: SOME PROPERTIES OF THE GAUSSIAN DISTRIBUTION

In the same situation, the conditional densities p(xa|xs) and p(xs|xa) are also gaussian with
means

Hag = pa + SeXg ' (xp — us)
Meja = MB + SeaX, (x4 — pa)

and covariance matrices

Sap =34 — TaeXp  Tpa
Sea =3 — ZeaX,  Ths
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GAUSSIAN PROCESSES

e Multivariate gaussians on random vectors are useful for modeling finite collections of
real-valued variables. They have nice analytical properties (see previous slides).

e Gaussian processes: extension of multivariate gaussians to infinite-sized collections of
real-valued variables.

e We may think of gaussian processes as distributions not just over random vectors but over
random real functions.
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PROBABILITY DISTRIBUTIONS OVER FUNCTIONS WITH FINITE DOMAINS

Let us first consider the case of functions defined over finite vectors.

® LetX = (x1,...,xm) be a vector of m points in IR% and let # be the set of functions
f:RY— R
® any such functions assigns a value f(x;) to each x; € X and can be described by the vector

(f(x1), ..., f(xm))

® atthe same time, any vectory = (y1,...,Ym) can be seen as the description of a function f € #, the
one with f(x;) = y;

® hence, the set # is in 1-to-1 correspondence with the set of vectors in IR™

e A probability distribution p(y),y € IR™ is also a distribution p(f) of functions in H
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GAUSSIAN DISTRIBUTIONS OVER FUNCTIONS WITH FINITE DOMAINS

We assume that p(y) (or, equivalently, p(f)) is a (multivariate, m-dimensional) Gaussian
distribution with mean 0 and diagonal covariance matrix I, that is

f(x

PUIX; o) = N(AX;0,0°T) = H

2o

® This is equivalent to assuming that each function value y; = f(x;) has normal distribution
with mean 0 and variance ¢2, and that values are independent

e A dependence between function values at different points could be modeled through a
non-diagonal covariance matrix
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GAUSSIAN DISTRIBUTIONS OVER FUNCTIONS WITH FINITE DOMAINS

In the figure below, a possible situation is given with d = 1, m = 4: three functions in H are

reported.
ul
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Prof. Giorgio Gambosi Nonparametric regression Slide 19 / 44



GAUSSIAN DISTRIBUTIONS OVER FUNCTIONS WITH FINITE DOMAINS

e Assume now that the targetst = (t1,...,tm) corresponding to points in X are available.

® Observe that p(f]X; o?) is only dependent on the set of items X, and does not take into
account the corresponding targets t. We may than consider it as a prior distribution of
functions, with respect to the observation of the targets t associated to X
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GAUSSIAN DISTRIBUTIONS OVER FUNCTIONS WITH FINITE DOMAINS

e By applying Bayes rule, we may derive the posterior (with respect to t) distribution p(f]X, t)
of functions. To this aim, a likelihood model has to be defined

p(X,t|f) = HP(XntiU‘(Xi)) = HP(ti\xhf(xi))P(Xi|f(Xi)) o Hp(t,-\x,-,f(x,-))

e we refer to the usual gaussian likelihood introduced for probabilistic modeling linear
regression p(t|x,y, 3) = N(t|f(x), 8), which results into

pX,HIf, B) o< [[ N (tlf(x), B)

i=1

e the posterior distribution is then

m

P(fIX,t,8,0%) oc [ [N (Lilf(x). B)p(flo”)

i=1
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GAUSSIAN DISTRIBUTIONS OVER FUNCTIONS WITH FINITE DOMAINS

Both the prior and the posterior distributions of f are gaussian: this implies that the predictive
distribution

p(tix. X, t, B, 0%) = / p(tix.f, AP (X, b, 5, o) df

is itself a gaussian.

That would the case also in the more general case when some dependency between function
points is assumed. In this case, a general covariance matrix X is defined for the prior distribution

p(y; X) = N(y|0,%)

that is,
P(IX; ) = N(y/X;0,%)
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GAUSSIAN DISTRIBUTIONS OVER FUNCTIONS WITH INFINITE DOMAINS

¢ |n the case of an infinite domain v, we have to deal with an infinite collection of random
variables.
® |n this case, the role of multidimensional distributions is covered by stochastic processes.
® A stochastic process is a collection of random variables, {f(x) : x € x}, indexed by elements from
some set X, known as the index set.
® A Gaussian process is a stochastic process such that for any finite subset X = {xi,...,xn} of
X, the function values f(x1), ..., f(xs) have joint multivariate Gaussian distribution
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GAUSSIAN DISTRIBUTIONS OVER FUNCTIONS WITH INFINITE DOMAINS

In order to specify the gaussian process, we must introduce two rules which, for any set of points
X = {x1,...,xn}, define the distribution p(y) of the corresponding values

Yi,.--,Vn :f(xl)v' . 7f(xn)'
® We already know that, by assumption, p(f) = p(y) is a multivariate normal distribution,
hence characterized by a mean vector pu(X) and covariance matrix 3(X)

e We assume that p(X) is indeed a constant independent from X. In particular, u(X) =0

e The covariance matrix derives from the application of a predefined covariance function
k1 x X x — IR which associates a real value to any pair of points in x and, in particular, to
any pair in X, hence to all elements of
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KERNELS IN GAUSSIAN PROCESSES

The covariance function « is assumed to be a positive definite kernel.
e This means that for any set of distinct points x1, ..., x, it must be

n n
ZZ C,‘C/'K(X,',Xj) >0
i=1 j=1

for any choice of the constants ci, ..., ¢, such that not all ¢; are equal to 0.
e Equivalently, the square Gram matrix G defined as

k(x1,%x1)  K(x1,%x2) -+ K(X1,Xn)
G K(x2,%x1)  kK(x2,%X2) -+ K(X2,Xn)
k(xn,x1)  K(Xn,X2) -+ K(Xn,Xn)

must have positive eigenvalues.

e A collection of positive definite kernels is known in the literature and can be constructed by
applying suitable rules.
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GAUSSIAN PROCESSES

Given a gaussian process p(f) = GP(m, k), then for any set of items X = {x1,...,xn}, the
distribution of f(x1),...,f(xn) is a gaussian

(fx1), -+, f(xn)) ~ N ((X)[Z(X))

where
* u(X)=(m(x1),...,m(xn))"
e 3(X) is the Gram matrix wrt x1, ..., x, of a kernel function x(x, x")

As stated before, it is usually assumed that the mean vector is 0: different processes are then
characterized only by their covariance kernel .
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SAMPLING FUNCTIONS FROM GAUSSIAN PROCESSES

Given X = {x1,...,xn}, a probability distribution on f(x1), ..., f(xs) is then defined, as
p(fIX) = N(fl0, £(X))

where, as stated before

(X)) = w(xi,%j)

For any finite subset X = (x1,...,xn) of x it is possible to sample from p(f) the values of
f(x1),...,f(xm) by gaussian sampling from N (f]0, 3 (X))
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RBF KERNEL

Clearly, different kernels provide different processes.
e One of the most applied kernel is the RBF kernel

l1x1 —x211?
2 — 7L Tell
k(x1,%x2) = 0"e 272

which tends to assign higher covariance between f(x1) and f(x2) if x; and x, are nearby
points.

e Functions drawn from a Gaussian process with RBF kernel tend to be smooth, since values
computed for nearby points tend to be similar. Smoothing is larger for larger 7.
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RBF KERNEL

Samples of functions from p(f). RBF kernel, larger 7 and smoothing
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RBF KERNEL

Samples of functions from p(f). RBF kernel, smaller = and smoothing
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GAUSSIAN PROCESS REGRESSION: NO NOISE
e By the gaussian process definition, f is distributed as a multivariate gaussian such that the
mean of any value f(x) is m(x) = 0 and the covariance of any pair f(x), f(x') is x(x,x)
® as a consequence, for any finite set of points X, we have that f(X) is distributed as a
multivariate gaussian with mean p(X) defined as p(X); = m(x;) = 0 and covariance matrix
3(X), defined as X(X);; = x(xj,x;)

— fx)
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GAUSSIAN PROCESS REGRESSION: NO NOISE

e et us now assume that for a set of points X = (x1,...,x,)" the corresponding values
t = (t1,...,ts)" are known

e that is, we assume that a training set X, t is available, and we assume that the target values
in the training set correspond exactly to the function value t; = f(x;), that is, there is no noise
in the observations

¢ Note that in the probabilistic model of regression this is not true, since a (gaussian) error is
assumed
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GAUSSIAN PROCESS REGRESSION: NO NOISE

By the model assumptions, if we consider an additional set of points X = (x1,...,%m)’, the joint
distribution of f(X) and f(X) is a multivariate gaussian distribution with a certain mean (X, X)
and covariance (X, X) that, by the properties of gaussian distributions are

where
K(X1,x1)  K(X1,x2) - K(X1,%n)
_ K(X2,x1) k(X2 X2) - K(X2,%n)
»(X,X) =
K(Xm,x1)  K(Xm,X2) - K(Xm,Xn)
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GAUSSIAN PROCESS REGRESSION: NO NOISE

The posterior distribution of y = f(X), given X, t can be derived by the gaussian distribution
properties recalled above, and turns out to be a m-dimensional gaussian distribution itself with
mean and covariance defined as

* fp = ulyX,t) = p(X) + E(x, X)B(X) " (t - p(X))
e 3, =3(X) - 3(x,X)Z(X)"'3(x,X)"
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GAUSSIAN PROCESS REGRESSION: NO NOISE

Sample of functions from the posterior distribution

‘Samples of Posterior Distribution, no noise

— fx)
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GAUSSIAN PROCESS REGRESSION: NO NOISE

In particular, for the prediction of a single test point x, the joint distribution of (t,f(x)) is a
multivariate gaussian distribution with mean (X, x) and covariance 3 (X, x)
(X, x) = (p(X), p(x)"
_( 2X)_ 2E(xX)
2% = (meexr o
where
¥(x,X) = (k(x,x1), K(x,X2), . . ., m(xmxn))T

and
3(x,x) = k(x,x)
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GAUSSIAN PROCESS REGRESSION: NO NOISE
As a consequence, the predictive distribution of y = f(x) is

mp (X, f) = m(x) + S(x, X)Z(X) ' (t - u(X))
0 = 3p(x,x) = k(x,x) — B(x, X)2(X) ' B(x, X)"

Predictive Distribution, no noise
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GAUSSIAN PROCESS REGRESSION: NO NOISE

In this case, an interpolation of the given values has been performed: f(x;) = t; for all possible
functions, sampled from f(x|X, f).

It results, in fact, for all x; € X,

m(X,"X,f) =t

2=0
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GAUSSIAN PROCESS REGRESSION: GAUSSIAN NOISE

Let us now assume, as usual, that p(tj|f,x;) = N (f(x)), o7)
That is, the value t; observed for variable x; differs from the one obtained as f(x;) by a gaussian
and independent noise

ti = f(xi) +¢ p(e) = N(e]0,07)

that is, p(t|f) = N (t|f, o°T)
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GAUSSIAN PROCESS REGRESSION: GAUSSIAN NOISE

® fis now distributed as a multivariate gaussian with known mean p(X) = (m(x;), ..., m(xn))
and covariance matrix 3(X) = X(X) + ¢71, defined by  and o7

‘Samples of Prior Distribution, gaussian noise

— fx)
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GAUSSIAN PROCESS REGRESSION: GAUSSIAN NOISE

e Let us now assume that a training set X, t is available such that the target values in the
training set correspond approximately to the function value t; = f(x;) + &.

* In this case, for any new set of points X, the joint distribution of (t,f(X)) is a multivariate
gaussian distribution with mean p(X, X) and covariance (X, X)

n(X,X) = (u(X), u(X))"

_ X)  =(XX)
N
K(x1,x1) + Uf2 K(x1,X2) K(X1,%n)
) K(x2,%1) K(x2,%2) + a]? K(X2,Xn)
where in particular 3(X) = .
K(Xn, X1) K(Xn, X2) K(Xn,Xn) + U)?
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GAUSSIAN PROCESS REGRESSION: GAUSSIAN NOISE

The posterior distribution of y = f(X), given X, X, t can be again derived by the gaussian
distribution properties, and turns out again to be a gaussian distribution with mean and
covariance defined as

o f, = u(X) + S(x, X)BX) (6 - p(X))

e T =3X)-3xX)EX)'2(xX)"

Samples of Joint Distribution, gaussian noise

‘
x
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GAUSSIAN PROCESS REGRESSION: GAUSSIAN NOISE

In particular, for a single test point x, we have now that the corresponding predictive distribution
is

Mo Y%, 0) = M) + e, X) 0 1 (X))
o? = rp(x,%) = K(x,x) - =(x %)% S(X) 2 (x, X)"

Predictive Distribution, gau:
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ESTIMATING KERNEL PARAMETERS

The predictive performance of gaussian processes depends exclusively on the suitability of the
chosen kernel.

Let us consider the case of an RBF kernel. Then,

K(xXj, X)) = g?e*%(xi*xi)TM(x;ij) i 0‘35,-,-
M can be defined in several ways: the simplest one is M = [~°L

Even in this simple case, varying the values of oy, oy, [ returns quite different results.

e

(figure from K.Murphy “Machine learning: a probabilistic perspective” p. 519, with ((, o, oy) equal to
(1,1,0.1), (0.3,1.08,0.00005), (3.0, 1.16, 0.89))
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