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LINEAR MODELS

e Linear combination of input features
Y(X, W) = Wo + W1X1 + WaXo + . .. + WgXg

with x = (X1,...,Xq)
e Linear function of parameters w
e Linear function of features x
More compactly,
y(x,w) =wX

wherex = (1,X1,...,Xq)
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BASE FUNCTIONS

e Extension to linear combination of base functions ¢, ..., ¢m defined on R?

y(x,w) =D wigj(x)
=1

e Each vector x in RY is mapped to a new vector in R™, ¢(x) = (¢1(x), ..., ¢m(x))
¢ the problem is mapped from a d-dimensional to an m-dimensional space (usually with
m > d)
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BASE FUNCTIONS

e Many types:
® Polynomial (global functions)

pj(x) =X
® Gaussian (local)
(x — y)?
#j(X) = exp <_ 2521 >

e Sigmoid (local)

400 =0 (Xf”") -

s X

1+e s

® Hyperbolic tangent (local)

.51 ! 025 / AAANNAA N . Iy ]
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BASE FUNCTIONS

Observe that a set of items (extended by 1 values)

- % - 1 X1 X1d
- 1 Xo1 Xaod
X = : — ]
- X 1 Xm Xnd
is transformed into
d1(x1)  P2(x1) bm(x1)
® P1(x2)  P2(x2) bm(x2)
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EXAMPLE

Problem

® Aset of n observations of two variables x,t € R: (x1,t1),..., (Xa, tn)) is available. We wish to

exploit these observations to predict, for any value x of x, the corresponding unknown value
of the target variable t

e The training set is a pair of vectors x = (x1,...,X,)" and t = (t1,...,t,)", related through an
unknown rule (function)

Example of a training set.
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EXAMPLE

Training set

In this case, we assume that the (unknown) relation between x and t in the training set is
provided by the function t = sin(2xx), with an additional gaussian noise with mean 0 and given
variance o°. Hence, t; = sin(27x;) + ¢, with &; ~ N(0, 02).

Guessing, or approximating as well as possible, the deterministic relation t = sin(27x), on the
basis of the analysis of data in the training set.
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EXAMPLE: POLYNOMIAL REGRESSION

Approach

Let us approximate the unknown function through a suitable polynomial of given degree m > 0

m
Y(X, W) = Wo + WiX + WoX* + ... + WX = »_ WX
=0

whose coefficients w = (wo, w1, ..., wn)" are to be computed.

Base functions

This corresponds to applying a set of m + 1 base functions ¢;(x) = X,j=0,...,mtothe unique
feature x

yxw) = > wij(x)
j=0
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REGRESSION LOSS

Base functions and linear models

When base functions are applied, y(x, w) is a nonlinear function of x, but it is still a linear
function (model) of w.

Parameter estimation

The values assigned to coefficients should minimize the empirical risk computed wrt some error
function (a.k.a. cost function)
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REGRESSION LOSS

Least squares

A most widely adopted error
function is the quadratic loss
(vi — t;)?, which results into the
least quares approach, i.e.
minimizing the sum, for all
items in the training set, of the
(squared) difference between
the value returned by the
model and the target value.

t tn

Giorgio Gambosi Linear regression Slide 10 / 56



REGRESSION LOSS

Error minimization

® To minimize E(w), set its derivative w.r.t. w to 0

e the quadratic loss is a convex function, which implies that only one (global) minimum is

defined

E(w) =330 (v(xi,w) — t;)? is convex itself, being the sum of n convex functions

(v (Xk, W) — t)?)

e in particular, E(w) quadratic implies that its derivative is linear, hence that it is zero in one
point w*

The resulting function is y(x, w*)
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REGRESSION LOSS

Derivative with respect to

The derivative w.r.t. w is indeed a collection of derivatives. A linear system is obtained:

n n m

OE(w) _ Z (y(xi,w) —t;) = Z w;di(X;) — ti | or(Xi)

ow,
£ i=1 i=1 \ j=

Each of the m + 1 equations is linear w.r.t. each coefficient in w. A linear system results, with
m + 1 equations and m + 1 unknowns wo, . .., Wn, Which, in general and with the exceptions of
degenerate cases, has precisely one solution.

Closed form solution

In this case, the solution is defined in closed form by the normal equations for least squares

w'=(®'®) et
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GRADIENT DESCENT

® The minimum of E(w) can be computed numerically, by means of gradient descent methods

e Initial assignment w® = (w{” wl”, ... w{’), with a corresponding error value

=

W) = 237 (8- ) x)) = WY — (e - wC D () (x)

i=1

Iteratively, the current value w'~) is modified in the direction of steepest descent of E(w),
that is the one corresponding to the negative of the gradient evaluated at w'—%

(i-1)

e Atstep i, w; is updated as follows:

0 ._ -1 OE(w)
Wl = w; ”ij

w(i—1)
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GRADIENT DESCENT

® |n matrix notation: PE(w)
) - w
wli= Wl -y ow w1
® By definition of E(w): . ‘ _
w = wY — gt — WV g(x)) B(xi)
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EXAMPLE: FITTING OF POLYNOMIALS

Polynomial degree

e Example of model selection: assigning a value to M determines the model to be used, the
choice of M implies the number of coefficients to be estimated

e increasing M allows to better approximate the training set items, decreasing the error

e if M + 1 = n the model allows to obtain a null error (overfitting)

Giorgio Gambosi
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EXAMPLE: POLYNOMIAL REGRESSION

e The function y(x, w) is derived from items in the training set, but should provide good
predictions for other items.

e |t should provide a suitable generalization to all items in the whole domain.

e If y(x,w) is derived as a too much accurate depiction of the training set, it results into an
unsuitable generalization to items not in the training set

Giorgio Gambosi
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EXAMPLE: POLYNOMIAL REGRESSION

Evaluation of the generalization

o Test set Xtest 0f 100 new items, generated by uniformly sampling x in [0, 1,] and & from
N(0,0?%), and computing t = sin 27X + ¢
® For each M:

® derives w* from the training set Xyqin
® compute the error E(w*, Xtest) On the test set, or the square root of its mean

E(W*vxtest) _ \J 1

D Wxw) —t)?

Erms(w™, Xtest) =
’ [Xtest| 2| Xtest| =

® a lower value of Egus(w™, Xtest) denotes a good generalization
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EXAMPLE: POLYNOMIAL REGRESSION
Plot of Erus W.r.t. M, on the training set and on the test set.

1
—©6— Training
—— Test
2]
=
=z 05
S
0 S
0 3 6 9

e As M increases, the error on the training set tends to 0.

® On the test set, the error initially decreases, since the higher complexity of the model allows
to better represent the characteristics of the data set. Next, the error increases, since the

model becomes too dependent from the training set: the noise componentin t is too
represented.

Giorgio Gambosi
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EXAMPLE: POLYNOMIAL REGRESSION

For a given model complexity (such as the degree in our example), overfitting decreases as the
dimension of the dataset increases.

0 1 0 1

The larger the dataset, the higher the acceptable complexity of the model.
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HOW TO LIMIT THE COMPLEXITY OF THE MODEL?

e Regularization term in the cost function
ED(W) + )\Ew(w)

Ep(w) dependent from the dataset (and the parameters), Ew(w) dependent from the
parameters alone.

® The regularization coefficient controls the relative importance of the two terms.
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REGULARIZED LEAST SQUARES

e Simple form

1 1 &
LT 2
Ew(w) = VW= §§W,
e Sum-of squares cost function: ridge regression
—2 Z - wo(x))? + %WTW = é(@w —y)(®dw —y) + ngw

with solution
w=\+&®)  '®'t
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REGULARIZATION

® A more general form

thwqul Z|W)|q

[\3\»—!

e The case g = 1 is denoted as lasso: sparse models are favored
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EXAMPLE: POLYNOMIAL REGRESSION

Use of regularization to limit complexity and overfitting.
e inclusion of a penalty term in the error function
e purpose: limiting the possible values of coefficients
e usually: limiting the absolute value of the coefficients

=
Il
<}
Il
—
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EXAMPLE: POLYNOMIAL REGRESSION

Plot of the error w.r.t ), ridge regression.

1
Training
Test
j2]
Z 05
& /
0
-35 =30 1\ 25 -20

e Small \: overfitting. Small error on the training set, large error on the test set.
e Large \: the effect of data values decreases. Large error on both test and training sets.

e Intermediate ). Intermediate error on training set, small error on test set.

Linear regression
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EXAMPLE: POLYNOMIAL REGRESSION

e Consider the case of function y = sin 2wx and assume L = 100 training sets 7;,...,7[ are
available, each of size n = 25.
® Given m = 24 gaussian basis functions ¢1(x), . .., ¢m(x), from each training set 7; a prediction

function y;(x) is derived by minimizing the regularized cost function

E(w) = %(i’w —)T(@w—t) + %wTw

Giorgio Gambosi Linear regression Slide 25 /56



EXAMPLE: POLYNOMIAL REGRESSION

1
In\=26

-1

-1

1

0 o 1 0 o

Left, a possible plot of prediction functions y;(x) (i = 1,..., 100), as derived, respectively, by
training sets 7;,i = 1, ..., 100 setting In A\ = 2.6. Right, their expectation, with the unknown

function y = sin 27x.

The prediction functions y;(x) do not differ much between them (small variance), but their
expectation is a bad approximation of the unknown function (large bias).
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EXAMPLE: POLYNOMIAL REGRESSION

Plot of the prediction functions obtained with In A = —0.31.

Giorgio Gambosi

InA=-0.31

0

Linear regression

0
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EXAMPLE: POLYNOMIAL REGRESSION

0 1 0 1

x xT

Plot of the prediction functions obtained with In A\ = —2.4. As \ decreases, the variance increases
(prediction functions y;(x) are more different each other), while bias decreases (their expectation
is a better approximation of y = sin 27x).
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EXAMPLE: POLYNOMIAL REGRESSION

0.15

0.12

0.09

0.06

0.03

(bias)?

variance

(‘uias)2 + variance
test error

InA

® Plot of(bias)z, variance and their sum as functions of \: las ) increases, bias increases and

Giorgio Gambosi
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varinace decreases. Their sum has a minimum in correspondance to the optimal value of \.
® The term Ex[aflx] shows an inherent limit to the approximability of y = sin 27x.
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PROBABILISTIC MODEL FOR REGRESSION

Assume that, given an item x, the corresponding unknown target t is normally distributed around
the value returned by the model w'x, with a given variance 0% = g1

p(t|X, w, fB) = N(t‘y(X, W)vﬁil)

y(zo, W)
p(t|zo, w, B)

v

Giorgio Gambosi Linear regression Slide 30 / 56



PROBABILISTIC MODEL FOR REGRESSION

An estimate of both Sy, and the coefficients wu, can be performed on the basis of the likelihood
w.r.t. the assumed normal distribution:

L(t|X,W, 6) = p(t|X7w7 /B) = HN('C,’W(X,‘,W),B_l)

i=1

Parameters w and 3 can be estimated as the values which maximize the data likelihood, or its
logarithm

(61X, w, 8) = log p(t|X, w, B) = 3 log N'(tily(x;, w), B~
i=1
which results into
[(t]X,w,3) = _8 z”: (ti — y(xi,w))* + "o B+ cost
) ) 2 1 1y 2 g

i=1
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PROBABILISTIC MODEL FOR REGRESSION

The maximization w.r.t. w is performed by determining a maximum w.r.t. w of the function

n

ISy w)?

i=1

this is equivalent to minimizing the least squares sum.
The maximization w.r.t. the precision 3 is done by setting to 0 the corresponding derivative

X, w,8) I~ o N
— 5~ 3 (ti — y(xi, w)) + 25

which results into
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PROBABILISTIC MODEL FOR REGRESSION

As a side result, the parameter estimate provides a predictive distribution of t given x, that is the
(gaussian) distribution of the target value for a given item x.

p(tlx;w, ) = N(t|y(x, w),ﬁ_l) _ \/%e—%(t—y(x,wm)p
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PROBABILISTIC MODEL FOR REGRESSION

¢ |In the maximum likelihood framework parameters are considered as (unknown) values to
determine with the best possible precision (frequentist approach).

e Applying maximum likelihood to determine the values of model parameters is prone to
overfitting: need of a regularization term &(w).

¢ |n order control model complexity, a bayesian approach assumes a prior distribution of
parameter values.

e The bayesian framework looks at parameters as random variables, whose probability
distribution has to be derived.
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PROBABILISTIC MODEL FOR REGRESSION

Prior distribution of parameters: gaussian with mean 0 and diagonal covariance matrix with
variance equal to the inverse of hyperparameter a

m+1

p(wla) = N(w|0,a'T) = (%) T mgvlw
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WHY A GAUSSIAN PRIOR?

Posterior proportional to prior times likelihood: likelihood is gaussian (gaussian noise).

n
p(t|®,w, 3) = HN W' p(xi), 1) = [[ e o0

i=1
Given the prior p(w|a), the posterior distribution for w derives from Bayes’ rule

p(t|®, w,0)p(w|a)

p(W|t,¢,a,0’) = p(t|<I>7a,U)

p(t|®, w,o)p(w|e)
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WHY A GAUSSIAN PRIOR?

In general, conjugate of gaussian is gaussian: choosing a gaussian prior distribution of w
p(w) = N (w|mo, Zo)
results into a gaussian posterior distribution
p(wlt, &) = N (w|mp, Xp)
where
Sp= (% +507®)""
mp, = Xp(Z; 'mg + Bt)

Giorgio Gambosi
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WHY A GAUSSIAN PRIOR?

Here, we have
p(w) = N(w[0,a'T) p(t|w, ®) = N (t|w'®,37'1)
and the posterior distribution is gaussian
p(wlt, ®, a1, 0) = N (wlmp, 5p)
with

Yp = (al+ po'®)"" m, = 35,®"t
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WHY A GAUSSIAN PRIOR?

Note that as & — 0 the prior tends to have infinite variance, and we have minimum information
on w before the training set is considered. In this case,

m, — (®'®)" ' ("t)

that is wu,, the ML estimation of w.

Giorgio Gambosi Linear regression Slide 39 /56



MAXIMUM A POSTERIORI

® Given the posterior distribution p(w|®, t, «, 3), we may derive the value of wuap which makes
it maximum (the mode of the distribution)

e This is equivalent to maximizing its logarithm
logp(w|®,t, o, B) = log p(t|w, @, B) + log p(w|c) — log p(t|®, B)
and, since p(t|®, 8) is a constant wrt w

wisp = argmax log p(w|®, t, o, 8) = argmax (log p(t}w, P, ) + log p(w|a))

that is,
waap = argmin (— log p(t|®, w, 5) — log p(w|a)
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MAXIMUM A POSTERIORI
In this case

p(WIX, t; . B) o p(t|X, w; 5)p(wlar)
= ﬁ ﬂefg(ti*y(ximﬂ)2 (g) nt e,%wTw
i=1 V2 27

The maximization of the posterior distribution (MAP) is equivalent to the maximization of the
corresponding logarithm

n o m-+1 «
Z y(xj,w 5 log B — EWTW + 3 log o + cost

The value wuap which maximize the probability (mode of the distribution) also minimizes
52 y(xi, w)? + Sw'w = 3 1Zn:(t'—y(x w))? +*|IWH
Ia 2 2 iil I l7

The ratio  corresponds to a regularization hyperparameter.
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MAXIMUM A POSTERIORI

The same considerations of ML appy here for what concerns deriving the predictive distribution
of t given x, which results now

B
p(tlx; W, Buap) = N (tly(x, W), Buap) = \/%e‘%(t—y(mww))z

where, as it is easy to see, Buap = BmL
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SEQUENTIAL LEARNING

e The posterior after observing T; can be used as a prior for the next training set acquired.
® |n general, for a sequence Ty, ..., T, of training sets,

p(w|T1,...Ta) o< p(Ta|lW)p(W|T1,...Tao1)
[:)(W|T17 . Tnfl) X p(Tn71|W)p(W|T1, . Tnfg)

p(w|Ty) o< p(Ti|w)p(w)
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EXAMPLE

e Input variable x, target variable t, linear regression y(x, wo, w1) = Wy + wiX.

¢ Dataset generated by applying function y = ag + a.x (with ap = —0.3, a; = 0.5) to values
uniformly sampled in [—1, 1], with added gaussian noise (. = 0, ¢ = 0.2).

® Assume the prior distribution p(wo, w,) is a bivariate gaussian with = 0 and
¥ = 0?1 =0.041

-1
-1 0y 1 -1 0 2 1

Left, prior distribution of wo, wy; right, 6 lines sampled from the distribution.
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EXAMPLE

After observing item (x1,y1) (circle in right figure).

I !

iy Y

0 0

-1 =1
-1 0 iy I -1 0 xr |

Left, posterior distribution p(wo, w1 |x1,y1); right, 6 lines sampled from the distribution.

Giorgio Gambosi Linear regression Slide 45/ 56



EXAMPLE

After observing items (x1,y1), (X2, y2) (circles in right figure).

]

|

Ty u

0 0

=] 't
=1 T -1 0 o 1

Left, posterior distribution p(wo, w1 |X1, ¥1, X2, ¥2); right, 6 lines sampled from the distribution.
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EXAMPLE

After observing a set of n items (x1,¥1), ..., (X, yn) (circles in right figure).
1

w b ¥

0

5 | _ |
=1 0 '\’_Uﬂ 1 -1 {l o |

Left, posterior distribution p(wo, w1|x;,y;,i = 1,...,n); right, 6 lines sampled from the distribution.
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EXAMPLE

e Asthe number of observed items increases, the distribution of parameters wy, w; tends to
concentrate (variance decreases to 0) around a mean point aop, a;.

e As a consequence, sampled lines are concentrated around y = ao + a; x.
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APPROACHES TO PREDICTION IN LINEAR REGRESSION

Classical

e Avalue w;s for w is learned through a point estimate, performed by minimizing a quadratic
cost function, or equivalently by maximizing likelihood (ML) under the hypothesis of gaussian
noise; regularization can be applied to modify the cost function to limit overfitting

e Given any x, the obtained value wys is used to predict the corresponding t as y = X' wys,
where " = (1,x)", or, in general, as y = ¢(x) wis
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APPROACHES TO PREDICTION IN LINEAR REGRESSION

Bayesian point estimation

® The posterior distribution p(w|t, ®, «, 3) is derived and a point estimate is performed from it,
computing the mode wuap of the distribution (MAP)

e Equivalent to the classical approach, as wuap corresponds to w;s if A\ = %

* The prediction, for a value x, is a gaussian distribution p(y|¢(x) wmap, 8) for y, with mean
¢(x)"wmap and variance g *

e The distribution is not derived directly from the posterior p(wlt, ®, o, 3): it is built, instead,
as a gaussian with mean depending from the expectation of the posterior, and variance given
by the assumed noise.
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APPROACHES TO PREDICTION IN LINEAR REGRESSION

Fully bayesian

e The real interest is not in estimating w or its distribution p(wlt, @, a, 3), but in deriving the
predictive distribution p(y|x). This can be done through expectation of the probability
p(y|x,w, 3) predicted by a model instance wrt model instance distribution p(wlt, ®, a, 3),
that is

plyx,t,®,a,p3) = /p(y\x,w, B)p(wlt, @, o, B)dw

® p(y|x,w,3) is assumed gaussian, and p(wlt, ®, o, 3) is gaussian by the assumption that the
likelihood p(t|w, ®, 8) and the prior p(w|a) are gaussian themselves and by their being
conjugate

p(yx, w, 8) = N(y|w' p(x), B)
p(wlt, ®, a, 3) = N(w|3Sy®'t, Sn)

where Sy = (ol + f&7®) !
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APPROACHES TO PREDICTION IN LINEAR REGRESSION

Fully bayesian

Under such hypothesis, p(y|x) is gaussian

pyx,t, @, B) = N(yIm(x),0° (x))
with mean
m(x) = Bp(x) Su @t
and variance )
o’(x) = 5+ b (%) Suep(x)

1. . L. .
e _ isa measure of the uncertainty intrinsic to observed data (noise)

B
* $(x)"Snep(x) is the uncertainty wrt the values derived for the parameters w

e asthe noise distribution and the distribution of w are independent gaussians, their
variances add
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EXAMPLE

e predictive distribution for y = sin 27x, applying a model with 9 gaussian base functions and
training sets of 1, 2, 4, 25 items, respectively

e left: items in training sets (sampled uniformly, with added gaussian noise); expectation of
the predictive distribution (red), as function of x; variance of such distribution (pink shade
within 1 standard deviation from mean), as a function of x

e right: items in training sets, 5 possible curves approximating y = sin 2wx, derived through
sampling from the posterior distribution p(wl|t, ®, «, 3)
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EXAMPLE
n=1

=

Giorgio Gambosi
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EXAMPLE
n=4

M 1 M 1
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FULLY BAYESIAN REGRESSION AND HYPERPARAMETER MARGINALIZATION

¢ |n a fully bayesian approach, also the hyper-parameters «, 3 are marginalized
Pt t.®) = [ ptix.w, S)p(wt. #.0, M)p(a. 3t )dwdads

where, as seen before,
® p(tlx, w, 8) = N(tw'¢(x), 8)
® p(wlt,®,a, 8) = N(w|my, Sy), with Sy = (o + f8T®) ! e my = Sy @t

this marginalization wrt w, «, 3 is analytically intractable
e we may consider approximation methods
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