
MACHINE LEARNING
Loss functions & training

Corso di Laurea Magistrale in Informatica
Università di Roma Tor Vergata

Giorgio Gambosi

a.a. 2022-2023

LOSS FUNCTION

• In general, the loss function L : Y × Y 7→ IR measures, for any two values y, t in target space,
the cost of referring, for any subsequent action, to t instead of the better value y

• In supervised learning, it provides a measure of the quality of the prediction returned by the
prediction function h

R(x, y) = L(h(x), y)

• It is a fundamental component of the empirical risk, which is just the average value of the
loss function applied to all predicted value - target value pairs in the training set T

RT (h) = 1

|T |
∑

(x,t)∈T

L(h(x), t)

• That is, it provides a measure of the quality of the predictions performed by h, at least with
respect to the available data (the training set)

Giorgio Gambosi Loss functions & training Slide 2 / 72

LOSS FUNCTION & TRAINING

• During the training phase, the empirical risk is minimized wrt the prediction function h
applied, and in particular to the set of parameters θ which specifies the parametric function
h = hθ

• This corresponds to minimizing the overall loss

L(θ; T) =

n∑
i=1

Li(θ)

that is the sum of the loss functions Li = L(θ; xi, yi)

Giorgio Gambosi Loss functions & training Slide 3 / 72

LOSS FUNCTION MINIMIZATION

How to deal with loss minimization?
• we would like to compute a global minimum
• methods based on calculus rely on setting all derivatives to 0, that is,

∇θL(θ; T) = 0

that is
∂

∂θi
∇θL(θ; T) = 0 ∀i

and solve the corresponding system of equations

Problems
• the system of equations has multiple solutions (local minima/maxima, saddle points)
• they can be hard (or impossible) to compute analytically

Giorgio Gambosi Loss functions & training Slide 4 / 72

LOSS FUNCTION MINIMIZATION

• A local minimum ofRT (θ) can be computed numerically, by means of iterative methods such
as gradient descent

• Initial assignment θ(0) = (θ
(0)
0 , θ

(0)
1 , . . . , θ

(0)

d), with a corresponding error value

RT (θ(0))

• Iteratively, the current value θ(i−1) is modified in the direction of steepest descent of RT (θ),
that is the one corresponding to the negative of the gradient evaluated at θ(i−1)

• At step i, θ(i−1)

j is updated as follows:

θ
(i)
j := θ

(i−1)

j − η
∂

∂θj
RT (θ)

∣∣∣∣∣
θ(i−1)

= θ
(i−1)

j − η

|T |
∑

(x,t)∈T

∂

∂θj
L(hθ(x), t)

∣∣∣∣∣
θ(i−1)

Giorgio Gambosi Loss functions & training Slide 5 / 72

GRADIENT DESCENT

• In matrix notation:

θ(i) := θ(i−1) − η∇θRT (θ)
∣∣∣
θ(i−1)

= θ
(i−1)

j − η

|T |
∑

(x,t)∈T

∇θRT (θ)

∣∣∣∣∣
θ(i−1)

• clearly this approach makes it possible to find (approximate) a local minimum, depending
from the initial values; some problems

• we are looking for a global (not simply a local) minimum
• how to deal with saddle points?
• how fast does the method converge?

• More on this later

Giorgio Gambosi Loss functions & training Slide 6 / 72

CONVEXITY
A set of points S ⊂ IRd is convex iff for any x1, x2 ∈ S and λ ∈ (0, 1)

λx1 + (1− λ)x2 ∈ S

x2

x1

λx1 + (1 − λ)x2

Giorgio Gambosi Loss functions & training Slide 7 / 72

CONVEXITY
A function f(x) is convex iff the set of points lying above the function is convex, that is, forall x1, x2

and λ ∈ (0, 1),
f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

f(t1)

t1

f(t2)

f(λt1 + (1 − λ)t2)

t2λt1 + (1 − λ)t2

λf(t1) + (1 − λ)f(t2)

f(x)

Giorgio Gambosi Loss functions & training Slide 8 / 72

CONVEXITY

• Assuming L(θ; T) is convex is a relevant simplification: if f(x) is a convex function, then any
local minimum of f is also a global minimum

• Moreover, if f is a strictly convex function, there exists only one local minimum for f (and it is
global), that is, solving

∇θL(θ; T) = 0
provides the global minimum

• Definition: f(x) is strictly convex iff forall x1, x2 and λ ∈ (0, 1),

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2)

• A simple but relevant case: f(x) is quadratic. This is the case for a number of simpler ML
models. Unfortunately this is not true for more complex models such as neural networks

Giorgio Gambosi Loss functions & training Slide 9 / 72

CONVEXITY AND EMPIRICAL RISK

• convex functions properties:
• the sum of (strictly) convex functions is (strictly) convex
• the product of a (strictly) convex function and a constant is (strictly) convex

• since
RT (h) = 1

|T |
∑

(x,t)∈T

L(h(x), t) ∝
∑

(x,t)∈T

L(θ; x, t)

• if L(θ; x, t) is (strictly) convex then the overall cost is also (strictly) convex
• if L(θ; x, t) is convex then any local minimum of the empirical risk is also a global one
• if L(θ; x, t) is strictly convex then there exists only one minimum of the empirical risk

Giorgio Gambosi Loss functions & training Slide 10 / 72

SOME COMMON LOSS FUNCTIONS
Let us first consider the case of regression.
• both y and h(x) are real values
• loss is related to some type of point distance measure
• most common loss function for regression: quadratic loss

L(y, t) = (y− t)2

t

0

y

loss
loss gradient

Giorgio Gambosi Loss functions & training Slide 11 / 72

QUADRATIC LOSS
• Applying quadratic loss results in the empirical risk

RT (h) = 1

|T |
∑

(x,t)∈T

(h(x)− t)2

• in the common case of linear regression, the prediction is performed by means of a linear
function h(x) = wTx + b: this results into an overall loss to be minimized

L(w,b; T) =
∑

(x,t)∈T

(wTx + b− t)2

• since the quadratic function is strictly convex, the overall loss has only one local minimum
(which is global)

• the gradient is linear

∂

∂wi
L(w,b; T) =

∑
(x,t)∈T

(wTx + b− t)wi
∂

∂bL(w,b; T) =
∑

(x,t)∈T

(wTx + b− t)

Giorgio Gambosi Loss functions & training Slide 12 / 72

ADDITIONAL LOSS FUNCTIONS FOR REGRESSION: ABSOLUTE LOSS
• Quadratic loss is easy to deal with mathematically, but not robust to outliers, i.e. pays too
much attention to outliers.

• A different loss function: absolute loss L(t, y) = |t− y|

t
−1

0

1

y

loss
loss gradient

• The gradient is piecewise constant

Giorgio Gambosi Loss functions & training Slide 13 / 72

ADDITIONAL LOSS FUNCTIONS FOR REGRESSION: HUBER LOSS
• Another different loss function: Huber loss

L(t, y) =
{

1
2
(t− y)2 |t− y| ≤ δ

δ(|t− y|)− δ
2

|t− y| > δ

t
−δ

0

δ

y

loss
loss gradient

Giorgio Gambosi Loss functions & training Slide 14 / 72

LOSS FUNCTIONS FOR CLASSIFICATION

• Essentially, two approaches, depending on what we expect the prediction return:
• prediction returns a specific class (prediction function)
• prediction returns a probability distribution on the set of classes (prediction distribution)

• Different definition of error
• first case: coincidence of predicted and real classes
• second case: cumulative difference between predicted probability and 0/1 for all classes

• We consider the binary case, with two classes identified by target values −1 and 1

• Assume a real value is returned as a prediction

Giorgio Gambosi Loss functions & training Slide 15 / 72

0/1 LOSS
• The most “natural” loss function in classification

L(t, y) =
{

1 sgn(t) 6= y
0 sgn(t) = y

where sgn(x) is 1 if x > 0 and −1 otherwise.
• This can be written as:

1[ty < 0]

0

0

1

ty

Giorgio Gambosi Loss functions & training Slide 16 / 72

0/1 LOSS

Problem:
• not convex
• not smooth (first derivative undefined in some points or not continue)
• gradient is 0 almost everywhere (undefined at 0): gradient descent cannot be applied
• if we assume a linear prediction function

RT (h) = 1

|T |
∑

(x,t)∈T

1[(wTx + b)y < 0]

• the problem is finding the values w,b which minimize the overall number of errors: this is an
NP-hard, hence a computationally intractable problem.

Giorgio Gambosi Loss functions & training Slide 17 / 72

CONVEX SURROGATE LOSS FUNCTIONS

• Approximate from above 0/1 loss: real 0/1 error always less than function loss
• Convex: unique local minimum = global minimum
• Smooth: may use derivatives to find minimum
• Main difference: relevance given to erroneous predictions

Giorgio Gambosi Loss functions & training Slide 18 / 72

PERCEPTRON LOSS
• 0/1 loss assigns the same cost 1 to each error
• assume a prediction t is a real value: then, in the case of a misclassified element, the error
can be measured as −ty > 0. That is, L(t, y) = max(0,−yt)

• in the case of correctly classified element, the error is 0, while in the case of a wrong
prediction, the error is equal to |t|

• Main difference: relevance given to erroneous predictions. The perceptron loss penalizes
prediction which are largely wrong (for example a negative value ' −1 while correct class is
1)

• continuous, gradient continuous almost everywhere, convex (but not strictly convex), not
surrogate

0

0

1

ty
Giorgio Gambosi Loss functions & training Slide 19 / 72

HINGE LOSS
• used in support vector machine training
• related to perceptron loss, but surrogate
• assume a prediction

L(t, y) = max(0, 1− yt)

• correct predictions can be penalized if “weak” (small value of t)
• continuous, gradient continuous almost everywhere, convex (but not strictly convex),
surrogate

0 1

0

1

ty

Giorgio Gambosi Loss functions & training Slide 20 / 72

HINGE LOSS

Hinge loss LH(y, t) = max (0, 1− yt) is not differentiable wrt to y at ty = 1. The same holds for
perceptron loss at ty = 0.

For example,

∂

∂yLH =

−t ty < 1

0 ty > 1

undefined ty = 1

This is a problem if gradient descent should be applied. In this case a subgradient can be used.

Giorgio Gambosi Loss functions & training Slide 21 / 72

SUBGRADIENT

Given a convex function (such as hinge loss) f at each differentiable point, the corresponding
gradient ∇(x) provides a function which lower bounds f

f(x′) ≥ f(x) +∇(x)(x− x′)

If x is a singular point, where f is not differentiable and ∇(x) does not exist, a subgradient ∇(x) is
any function which lower bounds f

f(x′) ≥ f(x) +∇(x)(x− x′)

Giorgio Gambosi Loss functions & training Slide 22 / 72

SUBGRADIENT AND HINGE LOSS

In the case of hinge loss, we may observe that any line whose slope in [−t, 0] (if t = 1, in [0,−t] if
t = −1) is a subgradient

0

0

1

ty

We may then choose the horizontal axis as the subgradient to use,

Giorgio Gambosi Loss functions & training Slide 23 / 72

SQUARE LOSS
• adapted to the classification case

L(t, y) = (1− yt)2

• continuous, gradient continuous, convex, not surrogate
• largely wrong predictions can be too penalized
• symmetric around 0: even largely wight predictions are penalized

0

0

1

yt

Giorgio Gambosi Loss functions & training Slide 24 / 72

LOG LOSS (CROSS ENTROPY)
• used in logistic regression

L(t, y) = 1

log 2 log(1 + e−yt)

• a smoothed version of hinge loss
• continuous, gradient continuous, convex, surrogate
• largely wrong predictions can be too penalized
• symmetric around 0: even largely wrong predictions are penalized

0

0

1

yt

Giorgio Gambosi Loss functions & training Slide 25 / 72

WHAT IS THE RELATION WITH CROSS ENTROPY?

• given distributions p,q the cross entropy of q wrt p is defined as

−Ep[logq(x)] = −
∫
p(x) logq(x)dx

• the cross entropy is a measure of how much p and q are different
• it is related to the Kullback-Leibler divergence

KL(p||q) = −
∫
p(x) log q(x)p(x)dx = −

∫
p(x) logq(x)dx+

∫
p(x) logp(x)dx = −Ep[logq(x)]−H(p)

where H(p) = −Ep[logp(x)] is the entropy of p

Giorgio Gambosi Loss functions & training Slide 26 / 72

WHAT IS THE RELATION WITH CROSS ENTROPY?

• the entropy H(p) = −Ep[logp] denotes the expected number of bits per symbol x in a
transmission channel where the distribution of symbols p(x) is known

• the cross entropy −Ep[logq] denotes the additional (with respect to the minimum) expected
number of bits per symbol x in a transmission channel where the distribution of symbols q(x)
is used, instead of p(x)

• the KL divergence KL(p||q) denotes the total expected number of bits per symbol x in a
transmission channel where the distribution of symbols q(x) is used, instead of p(x)

Giorgio Gambosi Loss functions & training Slide 27 / 72

WHAT IS THE RELATION WITH CROSS ENTROPY?
• consider now a classifier which predicts the probability that an element is in class C1 and let

• p be the probability that the element is in class C1: in the training set this is either 0 or 1, that is
equal to the target value t

• y(x) be the predicted probability of the element being in class C1
• the cross entropy CE(T) between real and predicted probability distribution over the set of
elements can be estimated as the average

CE(T) = − 1

|T |
∑

(x,t)∈T

(
t log y(x)+(1−t) log(1−y(x))

)
= − 1

|T |

(∑
(x,t)∈C1

log y(x)+
∑

(x,t)∈C0

log(1−y(x))
)

• assume now the classifier is a logistic regression, that is

y(x) = σ(wTx + b) = 1

1 + e−(wTx+b)

then,
CE(T) =

1

|T |

(∑
(x,t)∈C1

log(1 + e−(wTx+b)) +
∑

(x,t)∈C0

log(1 + ewTx+b)
)

Giorgio Gambosi Loss functions & training Slide 28 / 72

WHAT IS THE RELATION WITH CROSS ENTROPY?

• assuming now that the target encodes classes as t ∈ {−1, 1} (that is class C0 is denoted by
t = −1 and class C1 is denoted by t = 1) we have

CE(T) =
1

|T |
∑

(x,t)∈T

log(1 + e−t(wTx+b))

that, apart from the constant log 2 corresponds to the empirical risk if log loss is applied

RT (h) = 1

|T | log 2
∑

(x,t)∈T

log(1 + e−t(wTx+b))

Giorgio Gambosi Loss functions & training Slide 29 / 72

EXPONENTIAL LOSS
• used in boosting (Adaboost)

L(t, y) = e−yt

• penalizes wrong predictions more than log loss: penalty grows more quickly as errors
become larger

• continuous, gradient continuous, convex, surrogate

t
0

1

yŷ

Giorgio Gambosi Loss functions & training Slide 30 / 72

COMPUTING h∗

• In most cases, Θ = IRd for some d > 0: in this case, the minimization of RT (hθ) is
unconstrained and a (at least local) minimum could be computed setting all partial
derivatives to 0

∂

∂θi
RT (hθ) = 0

that is, setting to zero the gradient of the empirical risk with respect to the vector of
parameters θ

∇θRT (hθ) = 0

• The analytical solution of this set of equations is usually quite hard
• Numerical methods can be applied

Giorgio Gambosi Loss functions & training Slide 31 / 72

GRADIENT DESCENT

• Gradient descent performs minimization of a function J(θ) through iterative updates of the
current value of θ (starting from an initial value θ(0)) in the opposite direction to the one
specified by the current value of the gradient ∇θJ(θ)(k) = ∇θJ(θ)|θ=θ(k)

θ(k+1) = θ(k) − η∇θJ(θ)(k)

that is, for each parameter θi
θ
(k+1)

i = θ
(k)
i − η

∂J(θ)
∂θi

∣∣∣∣
θ(k)

• η is a tunable parameter, which controls the amount of update performed at each step

Giorgio Gambosi Loss functions & training Slide 32 / 72

BATCH GRADIENT DESCENT

If minimization of the Empirical Risk is performed, gradient descent takes the form

θ(k+1) = θ(k) − η

|T |
∑

(x,t)∈T

∇θL(hθ(x), t)(k)

that is,
θ
(k+1)

i = θ
(k)
i − η

|T |
∑

(x,t)∈T

∂

∂θi
L(hθ(x), t)

∣∣∣∣
θ=θ(k)

This is called batch gradient descent: observe that, at each step, all items in the training set must
be considered

Giorgio Gambosi Loss functions & training Slide 33 / 72

GRADIENT DESCENT AND LINEAR REGRESSION
For example, in the case of linear regression

h(x) =
d∑
j=1

θjxj + θ0

where the loss function is usually the squared distance

L(h(x), t) = (h(x)− t)2 =

 d∑
j=1

θjxj + θ0 − t

2

the gradient is

∂

∂θi
L(hθ(x), t) =

 d∑
j=1

θjxj + θ0

 θi i = 1, . . . ,d

∂

∂θ0
L(hθ(x), t) =

 d∑
j=1

θjxj + θ0

Giorgio Gambosi Loss functions & training Slide 34 / 72

GRADIENT DESCENT AND LINEAR REGRESSION

In this case, it results

θ
(k+1)

i = θ
(k)
i − η

|T |
∑

(x,t)∈T

 d∑
j=1

θ
(k)
j xj + θ

(k)
0 − t

 θ
(k)
i i = 1, . . . ,d

θ
(k+1)
0 = θ

(k)
0 − η

|T |
∑

(x,t)∈T

 d∑
j=1

θ
(k)
j xj + θ

(k)
0 − t

Giorgio Gambosi Loss functions & training Slide 35 / 72

GRADIENT DESCENT

Giorgio Gambosi Loss functions & training Slide 36 / 72

GRADIENT DESCENT

Giorgio Gambosi Loss functions & training Slide 37 / 72

GRADIENT DESCENT

As we need to calculate the gradients for the whole dataset to perform just one update, batch
gradient descent can be very slow and is intractable for datasets that do not fit in memory. Batch
gradient descent also does not allow us to update our model online, i.e. with new examples
on-the-fly.

Giorgio Gambosi Loss functions & training Slide 38 / 72

STOCHASTIC GRADIENT DESCENT

Batch gradient descent can be modified by performing the update, at each step, on the basis of
the evaluation at a single item xj, tj of the training set.

θ(k+1) = θ(k) − η∇θL(hθ(xj), tj)(k)

or
θ
(k+1)

i = θ
(k)
i − η

∂

∂θi
L(hθ(xj), tj)

∣∣∣∣
θ=θ(k)

Giorgio Gambosi Loss functions & training Slide 39 / 72

SGD AND LINEAR REGRESSION

In the case of linear regression this results into

θ
(k+1)

i = θ
(k)
i − η

(d∑
r=1

θ
(k)
j xjr + θ

(k)
0 − t

)
θ
(k)
i i = 1, . . . ,d

θ
(k+1)
0 = θ

(k)
0 − η

(d∑
r=1

θ
(k)
j xjr + θ

(k)
0 − t

)

Giorgio Gambosi Loss functions & training Slide 40 / 72

STOCHASTIC GRADIENT DESCENT

Giorgio Gambosi Loss functions & training Slide 41 / 72

STOCHASTIC GRADIENT DESCENT

Giorgio Gambosi Loss functions & training Slide 42 / 72

MINI-BATCH GRADIENT DESCENT

An intermediate case is the one when a subset Br of size m of the items in the training is
considered at each step for gradient evaluation

θ(k+1) = θ(k) − η

m
∑

(x,t)∈Br

∇θL(hθ(x), t)(k)

that is,
θ
(k+1)

i = θ
(k)
i − η

m
∑

(x,t)∈Br

∂

∂θi
L(hθ(x), t)

∣∣∣∣
θ(k)

This is called mini-batch gradient descent.

Giorgio Gambosi Loss functions & training Slide 43 / 72

MINI-BATCH GRADIENT DESCENT

This approach
• reduces the variance of the parameter updates, which can lead to more stable convergence
wrt SGD

• limits the amount of items considered for gradient evaluation before a parameter update is
performed.

Mini-batch gradient descent is typically the algorithm of choice when training neural networks

Observe that the size |Br| of mini-batches is itself a tunable parameter

Giorgio Gambosi Loss functions & training Slide 44 / 72

MINI-BATCH GRADIENT DESCENT

Giorgio Gambosi Loss functions & training Slide 45 / 72

MINI-BATCH GRADIENT DESCENT

Giorgio Gambosi Loss functions & training Slide 46 / 72

OPEN ISSUES

• Choosing a proper value for η can be difficult.
• Apply mechanisms to adjust the learning rate during training by reducing it either according
to a pre-defined schedule or when the loss function decrease between epochs falls below a
threshold. Both schedules and thresholds should be defined in advance.

• The same learning rate applies to updating all parameter.
• Saddle points appears in complex losses, which are usually surrounded by a plateau. Hard for
simple gradient descent methods to escape, as the gradient is almost zero in all dimensions.

Giorgio Gambosi Loss functions & training Slide 47 / 72

MOMENTUM GRADIENT DESCENT

• Based on a physical interpretation of the optimization process: a body of mass m = 1 is
moving on the surface of a cost function J(θ), with potential energy U(θ) = ηJ(θ) and weight
force (or acceleration, since m = 1) F(θ) = −∇U(θ) = −ηJ′(θ), at any point θ

• In gradient descent, the movement of the body is determined by the acceleration at that
point, that is by the gradient J′(θ)

• In momentum gradient descent, the velocity v(θ) of the body is considered: the movement of
the body is determined by the velocity, that is,

θ(k+1) = θ(k) + v(k+1)

with the velocity changing as determined by the acceleration

v(k+1) = v(k) − ηJ′(θ) |θ=θ(k)

Giorgio Gambosi Loss functions & training Slide 48 / 72

MOMENTUM GRADIENT DESCENT

θ(k)

θ̃(k+1)

θ(k+1)

γv(k)
−η∇J(θ)(k)

v(k+1)

Giorgio Gambosi Loss functions & training Slide 49 / 72

MOMENTUM GRADIENT DESCENT

This results into

v(k+1)= v(k) − η
∑

(x,t)∈Br

∇θL(hθ(x), t)(k)= v(k−1) − η
∑

(x,t)∈Br

∇θL(hθ(x), t)(k−1) − η
∑

(x,t)∈Br

∇θL(hθ(x), t)(k) = · · ·

= v(0) − η
k∑
i=0

∑
(x,t)∈Br

∇θL(hθ(x), t)(i)

θ(k+1) = θ(k) + v(k+1) = θ(k)v(0) − η

k∑
i=0

∑
(x,t)∈Br

∇θL(hθ(x), t)(i)

Giorgio Gambosi Loss functions & training Slide 50 / 72

MOMENTUM GRADIENT DESCENT

In momentum gradient descent it is usually introduced a second parameter γ, which affects the
fraction of v(k) that is considered for the computation of v(k+1). In terms of physical model, this
corresponds to introducing an attrition coefficient. Applying the approach to the case of
mini-batches, we get:

v(k+1)= γv(k) − η
∑

(x,t)∈Br

∇θL(hθ(x), t)(k)

θ(k+1) = θ(k) + v(k+1)

Giorgio Gambosi Loss functions & training Slide 51 / 72

MGD AND LINEAR REGRESSION

In the case of linear regression, this results into:

v(k+1)

i =

γv(k)i − η

∑
(x,t)∈Br

 d∑
j=1

θ
(k)
j xj + θ

(k)
0 − t

 θ
(k)
i i = 1, . . . ,d

γv(k)i − η
∑

(x,t)∈Br

 d∑
j=1

θ
(k)
j xj + θ

(k)
0 − t

 i = 0

θ
(k+1)

i = θ
(k)
i + v(k+1)

i

Giorgio Gambosi Loss functions & training Slide 52 / 72

MOMENTUM GRADIENT DESCENT

Giorgio Gambosi Loss functions & training Slide 53 / 72

MOMENTUM GRADIENT DESCENT

Giorgio Gambosi Loss functions & training Slide 54 / 72

NESTEROV GRADIENT DESCENT

In MGD, adding γv(k) to θ(k) provides an approximation

θ̃(k+1) = θ(k) + γv(k)

of the real value θ(k+1)

θ̃(k+1) = θ(k) + γv(k)

v(k+1) = γv(k) − η∇θJ(θ)(k)

θ(k+1) = θ(k) + v(k+1)

Giorgio Gambosi Loss functions & training Slide 55 / 72

NESTEROV GRADIENT DESCENT

• The same approach of momentum gradient descent is applied, with the gradient estimation
performed not at the current point θ(k), but approximately at the next point θ(k+1)

• The approximation derives by considering θ̃(k) = θ(k) + γv(k) instead of θ(k+1)

• The updates of v and θ are considered in advance with respect to momentum GD

θ̃(k+1) = θ(k) + γv(k)

v(k+1) = γv(k) − η∇θJ(θ)|θ=θ̃(k+1)

θ(k+1) = θ(k) + v(k+1)

Giorgio Gambosi Loss functions & training Slide 56 / 72

NESTEROV GRADIENT DESCENT

θ(k)

θ
(k+1)
NGD

θ̃(k+1)

θ
(k+1)
MGD

v(k+1)
NGD

γv(k)

−η∇J(θ)(k+1)

−η∇J(θ)(k)

Giorgio Gambosi Loss functions & training Slide 57 / 72

DYNAMICALLY UPDATING THE LEARNING RATE

Learning rate is a crucial parameter for SGD
• Too large: overshoots local minimum, loss increases
• Too small: makes very slow progress, can get stuck
• Good learning rate: makes steady progress toward local minimum

In practice: gradually decrease of the learning rate
• Step decay: periodically (every few epochs) decay η by a factor 2
• Exponential decay: η(k) = η(0)e−αk

• 1/t decay: η(k) =
η(0)

1 + αk
Extension: update η by monitoring the learning process

Giorgio Gambosi Loss functions & training Slide 58 / 72

ADAGRAD

In gradient descent the update of parameter θj is the following

θ
(k+1)

j = θ
(k)
j − η

∂J(θ)
∂θj

∣∣∣∣
θ(k)

where the learning rate η is equal for all parameters.
We now rewrite this update in terms of the parameter update ∆θj,k, as a sequence of three steps:

gj,k =
∂J(θ)
∂θj

∣∣∣∣
θ(k)

∆j,k = −ηgj,k
θ
(k+1)

j = θ
(k)
j +∆j,k

Giorgio Gambosi Loss functions & training Slide 59 / 72

ADAGRAD

Adagrad modifies this behavior for what regards the computation of ∆j,k by adapting the learning
rate to the parameters, performing larger updates for infrequent and smaller updates for
frequent parameters.

In Adagrad, each parameter update refers to a learning rate η
(k)
j , that is

∆j,k = −η
(k)
j gj,k

where η
(k)
j is dependent on the parameter itself and a common predefined learning rate η

Giorgio Gambosi Loss functions & training Slide 60 / 72

ADAGRAD

In particular,

η
(k)
j =

η√
Gj,k + ε

and

Gj,k =
k∑
i=0

g2j,i

is the sum of the squared derivatives of the loss function wrt to θi computed for all previous
iterations. ε is a small smoothing constant, introduced to avoid null denominators.
This results into

∆j,k = − η√
Gj,k + ε

gj,k

Giorgio Gambosi Loss functions & training Slide 61 / 72

ADAGRAD

• Learning rates decrease at each step, with the ones associated to parameters which had
large gradients in the past decreasing more

• Adagrad’s main weakness is its accumulation of the squared gradients in the denominator:
since every added term is positive, the accumulated sum keeps growing during training. This
in turn, as observed above, causes the learning rate to shrink and eventually become
infinitesimally small, at which point the algorithm is no longer able to acquire additional
knowledge.

Giorgio Gambosi Loss functions & training Slide 62 / 72

RMSPROP

RMSprop seeks to reduce the aggressive, monotonically decreasing learning rate of Adagrad.

The sum over past squared gradients Gj,k is replaced with its decaying version G̃j,k.

This is obtained through a decay, obtained by applying a coefficient 0 < γ < 1

G̃j,k = γG̃j,k−1 + (1− γ)g2j,k
= γ(γG̃j,k−2 + (1− γ)g2j,k−1) + (1− γ)g2j,k = γ2G̃j,k−2 + (1− γ)(γg2j,k−1 + g2j,k)
= · · ·

= (1− γ)
k∑
i=0

γk−ig2j,i

since we assume G̃j,k = 0 if k < 0.

Giorgio Gambosi Loss functions & training Slide 63 / 72

RMSPROP

This results into the following step, at the k+ 1-th iteration

gj,k =
∂J(θ)
∂θj

∣∣∣
θ=θ(k)

G̃j,k = γG̃j,k−1 + (1− γ)g2j,k
∆j,k = − η√

G̃j,k + ε
gj,k

θ
(k+1)

j = θ
(k)
j +∆j,k

Giorgio Gambosi Loss functions & training Slide 64 / 72

ADADELTA

Adadelta is an extension of RMSprop in which no value η has to be arbitrarily defined: it is
instead substituted by the decayed sum of previous squared updates, with the same decay γ
applied for derivatives.

Gj,k = γGj,k−1 + (1− γ)∆2
j,k = (1− γ)

k∑
i=0

γk−i∆2
j,i

Giorgio Gambosi Loss functions & training Slide 65 / 72

ADADELTA

The update rule is then defined as

gj,k =
∂J(θ)
∂θj

∣∣∣
θ(k)

G̃j,k = γG̃j,k−1 + (1− γ)g2j,k

∆j,k = −

√
Gj,k−1 + ε√
G̃j,k + ε

gj,k

Gj,k = γGj,k−1 + (1− γ)∆2
j,k

θ
(k+1)

j = θ
(k)
j +∆j,k

Giorgio Gambosi Loss functions & training Slide 66 / 72

ADAM

In addition to storing the exponentially decaying sum G̃j,k of past squared derivatives g2j,k like
Adadelta and RMSprop (to be used in the same way as in such methods), Adam also keeps an
exponentially decaying sum H̃j,k of past (non squared) derivatives gj,k, as a substitute to the
derivative gj,k in the iteration step.

G̃j,k = γG̃j,k−1 + (1− γ)g2j,k
H̃j,k = βH̃j,k−1 + (1− β)gj,k

Giorgio Gambosi Loss functions & training Slide 67 / 72

ADAM

Since it is assumed that H̃j,k = G̃j,k = 0 if k < 0 and γ, β values are usually both close to 1, the
methods presents a tendency (bias) to return small values of H̃j,k and G̃j,k, especially during the
initial time steps.
This issue is managed by applying a bias correction:

Ĝj,k =
G̃j,k

1− γk

Ĥj,k =
H̃j,k

1− βk

Giorgio Gambosi Loss functions & training Slide 68 / 72

ADAM
Parameters are updated just as we have seen in Adadelta and RMSprop, which yields the Adam
update rule:

gj,k =
∂J(θ)
∂θj

∣∣∣
θ=θ(k)

G̃j,k = γG̃j,k−1 + (1− γ)g2j,k
H̃j,k = βH̃j,k−1 + (1− β)gj,k

Ĝj,k =
G̃j,k

1− γk

Ĥj,k =
H̃j,k

1− βk

∆j,k = − η√
Ĝj,k + ε

Ĥj,k

θ
(k+1)

j = θ
(k)
j +∆j,k

Giorgio Gambosi Loss functions & training Slide 69 / 72

SECOND ORDER METHODS

Maxima (or minima) of J(θ) can be found by searching points where the gradient (all partial
derivatives) is zero.
Any iterative method to compute zeros of a function (such as Newton-Raphson) can then be
applied on the gradient ∇θJ(θ)
The basic idea of Newton’s method is to use both the first-order derivative (gradient) and
second-order derivative (Hessian matrix) to approximate the objective function with a quadratic
function, and then solve the minimum optimization of the quadratic function. This process is
repeated until the updated variable converges.

Giorgio Gambosi Loss functions & training Slide 70 / 72

SECOND ORDER METHODS

θ
(k+1)

j = θ
(k)
j − J′(θ)

J′′(θ)

∣∣∣
θ=θk

More general, the high-dimensional Newton’s iteration formula is

θ(k+1) = θ(k) − H(J(θ))−1∇θJ(θ)
∣∣∣
θ=θk

where H(J(θ)) is a Hessian matrix of J(θ).

Giorgio Gambosi Loss functions & training Slide 71 / 72

SECOND ORDER METHODS

Newton’s method is an iterative algorithm that requires the computation of the inverse Hessian
matrix of the objective function at each step, which makes the storage and computation very
expensive.

To overcome the expensive storage and computation, approximate algorithms were considered
such as quasi-Newton methods. The essential idea of all quasi-Newton methods is to use a
positive definite matrix to approximate the inverse of the Hessian matrix, thus simplifying the
complexity of the operation.

Giorgio Gambosi Loss functions & training Slide 72 / 72

