Probability recall
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1 Probability

Discrete random variables
A discrete random variable X can take values from some finite or countably infinite set X'. A probability mass
function (pmf) associates to each event X = x a probability p(X = x).

Properties

e 0<p(z)<lforallze X

DS

z€Xp(x)=1

Note: we shall denote as x the event X = x

Discrete random variables

Joint and conditional probabilities

Given two events x,y, it is possible to define:

¢ the probability p(z,y) = p(z A y) of their joint occurrence

« the conditional probability p(x|y) of  under the hypothesis that y has occurred

Union of events
Given two events x,y, the probability of x or y is defined as

p(z Vy) =p(x) +p(y) —p(z,y)

in particular,
p(z Vy) = p(x) + p(y)
The same definitions hold for probability distributions.

Discrete random variables

Product rule



The product rule relates joint and conditional probabilities

p(z,y) = p(z|y)p(y) = p(ylz)p(z)

where p(z) is the marginal probability.
In general,

p(x1,.. . &) =p(x2,. .., Tn|z1)p(T1)

=p(x3,...,Tul21, 2)p(22|T1)P(T1)

=p(@n|21,. .., 2n-1)p(@Fn-1|z1.. . Tn2) - p(w2|r1)p(21)
Discrete random variables

Sum rule and marginalization

The sum rule relates the joint probability of two events z,y and the probability of one such events p(y) (or p(y))

p@) = plx,y) = plaly)p(y)

yey yey

Applying the sum rule to derive a marginal probability from a joint probability is usually called marginalization

Discrete random variables

Bayes rule

Since
p(z,y) = p(zly)p(y)
p(z,y) = p(ylz)p(z)
p(y) = > plz,y) =Y plylx)p(x)
TeEX TEX
Hrets W@ __ ple)@)
ply|x)p(x ply|x)p(x
p(zly) = =
p(y) > zex P(ylz)p(2)
Terminology
e p(x): Prior probability of  (before knowing that y occurred)
o p(z|y): Posterior of z (if y has occurred)

e p(ylz): Likelihood of y given x

(
(
(
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e p(y): Evidence of y



Independence

Definition

Two random variables X,Y are independent (X 1L Y) if their joint probability is equal to the product of their
marginals
p(z,y) = p(x)p(y)

or, equivalently,
p(zly) = p(z) p(ylz) = p(y)

The condition p(z|y) = p(x), in particular, states that, if two variables are independent, knowing the value of one
does not add any knowledge about the other one.

Independence

Conditional independence
Two random variables X, Y are conditionally independent w.r.t. a third r.v. Z (X 1LY | Z) if

p(z,ylz) = p(z|z)p(y|z)

Conditional independence does not imply (absolute) independence, and vice versa.

Continuous random variables
A continuous random variable X can take values from a continuous infinite set X. Its probability is defined as
cumulative distribution function (cdf) F(x) = p(X < z).

The probability that X is in an interval (a, b] is then p(a < X < b) = F(b) — F(a).

Probability density function

dF (z)

The probability density function (pdf) is defined as f(z) = T

. As a consequence,

b
p(a<X§b):/ f(x)dz

and
plz < X <z +dx) = f(r)de

for a sufficiently small dz.

Sum rule and continuous random variables
In the case of continuous random variables, their probability density functions relate as follows.

= ,y)dy = d
f(z) /yf(ﬁj y)dy /yeyp(ﬂy)P(y) Y
Expectation

Definition



Let = be a discrete random variable with distribution p(z), and let g : R — IR be any function: the expectation of
g(z) wr.t. p(x) is

Eplg(z)] = Y g(z)p()

zEVy

If z is a continuous r.v., with probability density f(x), then

Mean value

Particular case: g(z) ==

Bl = 3 ap(a) @m=/mwwm

zEVy

Elementary properties of expectation

e Elal =a for each a € R
e Elaf(z)] = aE[f(z)] for each a € R
* E[f(z) +g(x)] = E[f(z)] + Elg(x)]

Variance

Definition
Var(X] = Bl(z - Ela])’]
We may easily derive:
Elz® — 2E[z]z + Elz]?)
= E[¢®] — 2E[z] Ez] + E[z]?
E[z®] — E[z]?

El(z — Bl2])*]

Some elementary properties:

e Varla] =0 for each a € R
o Varlaf(z)] = a® Var[f(x)] for each a € R

Probability distributions

Probability distribution

Given a discrete random variable X € Vx, the corresponding probability distribution is a function p(x) = P(X = )
such that

e 0<p(r)<1



o Zp(m):l

zeVx

. Zp(m) = P(z € A), with A C Vx
z€EA

Some definitions

Cumulative distribution

Given a continuous random variable X € IR, the corresponding cumulative probability distribution is a function
F(z) = P(X < z) such that:

e lim F(z)=0

Tr—r— 00

e lim F(z)=1

T—r00

c e<y = F(2) < F(y)

Some definitions

Probability density

Given a continuous random variable X € IR with derivable cumulative distribution F(z), the probability density is
defined as
dF(x)

f(m)ZW



By definition of derivative, for a sufficiently small Ax,

Prz < X <z+ Az) = f(z)Azx

The following properties hold:

+ f(z) >0
o [ fla)dz =1

o [oo, f(@)de = P(X € A)

Bernoulli distribution

Definition

Let z € {0, 1}, then x ~ Bernoulli(p), with 0 <p < 1, if

p(w)—{p sex =1

1—p sex=0
or, equivalently,
plz) =p"(1—p)' "
Probability that, given a coin with head (H) probability p (and tail probability (T) 1 — p), a coin toss result into
z € {H,T}.
Mean and variance

Elz] =p Varlz] = p(1 — p)

Extension to multiple outcomes
Assume k possible outcomes (for example a die toss).

In this case, a generalization of the Bernoulli distribution is considered, usualy named categorical distribution.

k
p(z) =[] r}’
j=1

where (p1,...,pr) are the probabilites of the different outcomes (Zle p; = 1) and z; = 1 iff the k-th outcome
occurs.

Binomial distribution



Definition

Let z € IN, then x ~ Binomial(n,p), with 0 <p < 1, if

p(z) = (Z)p“(l -p)" " = ﬂ(nniix)!pz(l -p)"

Probability that, given a coin with head (H) probability p, a sequence of n independent coin tosses result into z
heads.

Mean and variance

Elz] =np
Varlz] = np(1 — p)

plz)

Poisson distribution

Definition
Let z; € IN, then z ~ Poisson(X), with A > 0, if

A.’I)
Y
Probability that an event with average frequency A occurs x times in the next time unit.

Mean and variance

Elz] =X
Var|z] = A




Normal (gaussian) distribution

Definition

Let € IR, then & ~ Normal(p, 0?), with u,0 € R, o > 0, if

1 (@—w)?
T) = e 202
f(@) o
Mean and variance
Elz] =p

Var[z] = o

Beta distribution

Definition

Let = € [0, 1], then = ~ Beta(x, 8), with o, 8 > 0, if

a4+ ) o 1
flz) = Ww (1—-a)’

where -
I(z) = / u" et du
0

is a generalization of the factorial to the real field R: in particolar, I'(n) = (n — 1)l if n € N

Mean and variance
B
Elx] =
2] a+p

_ ap
Varle] = o A e B 1)

Beta distribution
a=1, f=1 a=0.7, 5=0.7




=2, =2 a=2, f=4

L S
B B
= =
T z
a=6, =4 a=10, 5=10
: N s
= =
x x

Multivariate distributions

Definition for k = 2 discrete variables
Given two discrete r.v. X,Y, their joint distribution is

The following properties hold:

1. 0<p(z,y) <1

2. Zzevx Zyevy p(x,y) =1

Multivariate distributions

Definition for k = 2 variables

Given two continuous r.v. X, Y, their cumulative joint distribution is defined as
F(z,y)=P(X <2,Y <y)

The following properties hold:

L 0<F(zy) <1

2. lim F(z,y)=1

T,y—>00
3. lim F(z,y)=0
T, y——00
If F(z,y) is derivable everywhere w.r.t. both = and y, joint probability density is

O F(x,y)

flz,y) = 920y

The following property derives

/ / f(&,y)dedy = P(X,Y) € A)
(z,y)EA

Covariance



Definition
Cou[X,Y] = E[(X — E[X])(Y — E[Y])]

As for the variance, we may derive

CovX, Y] E[(X = E[X])(Y — E[Y])]

= E[XY — XE[Y] - YE[X] + E[X]E[Y]]
= E[XY]- E[X]E]Y] — E[Y)E[X] + E[E[X]E[Y]]
= E[XY]- E[X]E]Y]

Moreover, the following properties hold:

1. Var[X +Y] = Var[X] + Var[Y] 4+ 2Cov[X, Y]

2. If X 1l Y then Cov[X,Y]=0

Random vectors

Definition
Let X1, X2,...,X, be a set of r.v.: we may then define a random vector as
X1
X = : Xn
X2

Expectation and random vectors

Definition

Let g : R™ — IR™ be any function. It may be considered as a vector of functions

where x € R".

The expectation of g is the vector of the expectations of all functions g;,

Elg1(x)]
Elg(x)] = : Elgm (x)]
Elg2(x)]

Covariance matrix

Definition

10



Let x € R™ be a random vector: its covariance matrix ¥ is a matrix n X n such that, for each 1 < 4,5 < n,
Lij = Cov[Xi, Xj] = E[(Xi — pa)(X; — py)], where p; = E[Xi], p; = E[X;].

Hence,
[ Cov[X1,X1] Cov[X1,X2] -+ Cov[X1,Xn]
Cov[X2,X1] Cov[X2,X2] -+ Cov[Xs, X,]
Y = . . . .
| Cov[X,,X1] Cov[Xn,Xa] -+ Cov[Xn, X,]
Var[X1] <o Cov[X1, Xn)
| Cov[X,, X1] --- Var[X,]
Covariance matrix
By definition of covariance,
E[X?] - E[X.]? o E[X1Xn] — E[X1]E[Xn]
E[XnX1] — E[XaE[X1] -  E[X2] — E[X,)E[X.]
= EXX"] - pp”
where p = (1, ... ,un)T is the vector of expectations of the random variables X1, ..., X,.

Properties

The covariance matrix is necessarily:

« semidefinite positive: that is, 27 ¥z > 0 for any z € R"

o symmetric: Cov[X;, X;] = Cov[X;, X;] for 1 <i,j<n

Correlation
For any pair of r.v. X,Y, the Pearson correlation coefficient is defined as

Cov[X,Y]
PXY = —F—m————
v/ Var|X] Var[Y]
Note that, if Y = aX + b for some pair a, b, then
Covu[X,Y] = E[(X — p)(aX +b—ap —b)] = Ela(X — p)*] = aVar[X]

and, since
Var[Y] = (aX — ap)® = a® Var[X]

it results px,y = 1. As a corollary, px,x = 1.

Observe that if X and Y are independent, p(X,Y) = p(X)p(Y): as a consequence, Cov[X,Y] =0 and px,y = 0.
That is, independent variables have null covariance and correlation.

The contrary is not true: null correlation does not imply indepedence: see for example X uniform in [—1,1] and
Y = X2

Correlation matrix

11



The correlation matrix of (X1,..., Xy,)7 is defined as

PX1,X1 PX1,X2 T PX1 X
Y o=
L pXp. X1 PXp,Xa 0 PXn,Xn
1 PX1,X2 Tt PX1,Xy
L pxp, X1 PXpXo 1

Multinomial distribution

Definition

Let z; e Nfori=1,...,k, then (z1,...,x5) ~ Mult(n,p1,...,px) with 0 <p < 1, if

k k
n! z; —
p(xl,...,xk):xl!mxk!npi con infn
=1 =1

Generalization of the binomial distribution to k& > 2 possible toss results t1,...,%; with probabilities p1,...,px

k
(icipi =1).

Probability that in a sequence of n independent tosses p1, ..., pk, exactly z; tosses have result ¢; (i = 1,...,k).
Mean and variance

Elz;] = np; Var([z;] = npi(1 — p;) i=1,...,k

Dirichlet distribution

Definition

Let z; € [0,1] for i = 1,...,k, then (x1,...,2x) ~ Dirichlet(a1, az,...,ax) if

I'( 5:1 a;) u a;—1 1 - a;—1
f(xl,...,mk):mgxi —mgmi

with ¢ a; = 1.

Generalization of the Beta distribution to the multinomial case k > 2.

A random variable ¢ = (¢1,...,¢x) with Dirichlet distribution takes values on the K — 1 dimensional simplex
(set of points x € R® such that z; > 0 fori=1,..., K and Zfil x; =1)
Mean and variance

E[wi}:& Var[xi]:w i=1,...,k
ag ad(ao+1)

. k
with ao =37,

12



Dirichlet distribution

Examples of Dirichlet distributions with k = 3

Dirichlet distribution

Symmetric Dirichlet distribution

Particular case, where a; = afori=1,..., K
K K
. F(KOé) a—1 1 a—1
p(¢17~"a¢K|a7K) :DII‘((NCM,K) = ¢z = ¢z

I(a)¥ E Ar(a) Pl
Mean and variance
In this case,

1 K-1
Ei:i Vi i = == .:17...,K
[x] 7 ar(z] Kot D) i

2 The normal distribution

Gaussian distribution

e Properties

13



Analytically tractable

Completely specified by the first two moments

— A number of processes are asintotically gaussian (theorem of the Central Limit)

Linear transformation of gaussians result in a gaussian

Univariate gaussian

For z € R:
p(x) = N(u,0%)
1 _@=w?
= ——¢ 20
V2o
with

u=Ez] = /00 xp(x)dx

—o0

a2zﬂw—mﬂ=/mu—ummwx

Univariate gaussian

2.5%:

pn—30 pn—20 pu—c m pto 1420 n+30

A univariate gaussian distribution has about 95% of its probability in the interval |x — pu| > 20.

Multivariate gaussian

For x € R%:
p(x) = N(p, %)
G )d/ilEll/z’e%(XimTEil(x*“)
T
where

p = E}x] = /xp(x)dx

S = Hx- - = [ w- wTpxds
Multivariate gaussian

14



e w: expectation (vector of size d)
e X: matrix d x d of covariance. o;; = E[(X; — pq) (X5 — p5)]

(ftz)f

Multivariate gaussian

Mahalanobis distance

¢ Probability is a function of x through the quadratic form
A= (x—p)'S7 (x—p)
e A is the Mahalanobis distance from p to x: it reduces to the euclidean distance if ¥ = 1.

« Constant probability on the curves (ellipsis) at constant A.

Multivariate gaussian
In general,
x"Ax = (x"Ax)T =x"A"x
this implies that
T _ 1 T 1 TAT. T 1 1 T
x Ax = 3% Ax+2x A'x=x <2A—|—2A )x

o A+ AT is necessarily symmetric, as a consequence, ¥ is symmetric

« as a consequence, its inverse ¥~ does exist.

15



Diagonal covariance matrix
Assume a diagonal covariance matrix:

01 0 0
0 o5 0

Y= .
0 0 On

then, |Z| = o302 ...02 and
4 0 0
1

0 2 0

E—l _ 93
0 0 &

Diagonal covariance matrix
Easy to verify that

Tw—1 = (wi_ﬂi)z
—uw)'s —p) =S TR
(=) ) = 3
and

L |
) —
i) =] o (50

The multivariate distribution turns out to be the product of d univariate gaussians, one for each coordinate x;.

1 (zi— ﬂi)Q)

Identity covariance matrix

The distribution is the product of d “copies” of the same univariate gaussian, one copy for each coordinate x;.

Spectral properties of X
Y is real and symmetric: then,

16



1. all its eigenvalues \; are in IR

2. there exists a corresponding set of orthonormal eigenvectors u; (i.e. such that (ufu; = 1ifi = j and 0 otherwise)

Let us define the d x d matrix U whose columns correspond to the orthonormal eigenvectors

U= u; 1) ) g

and the diagonal d x d matrix A with eigenvalues on the diagonal

A1

A2 0

A= As

0

Ad

Multivariate gaussian

Decomposition of ¥

By the definition of U and A, and since Yu; = w;\; for all i = 1,...,d, we may write

YU =UA

Since the eigenvectors u; are orthonormal, U~! = U7 by the properties of orthonormal matrices:

d
Y =UAU ! =UAUY = Z Awgu?
=1

Then, its inverse matrix is a diagonal matrix itself

=Y

1=1

| —

T
u;u;
i

>

Multivariate gaussian

Density as a function of eigenvalues and eigenvectors

As shown before,

d 1 d 1
:Z/\T(X*u) uy; (X*M)ZZE(WT(X m) i (x — p)
_ i (uf (x — )

Let y; = u? (x — p): then

17

as a consequence ,



and

1 14?
Fxlp, %) = [[ e==exp (———’)
V2T 2\

Multivariate gaussian
y; is the scalar product of x — p and the i-th eigenvector u;, that is the length of the projection of x — p along the
direction of the eigenvector. Since eigenvectors are orthonormal, they are the basis of a new space, and for each
vector x = (z1,...,%q), the values (y1,...,yq) are the coordinates of x in the eigenvector space.

T
[

T

Eigenvectors of ¥ correspond to the axes of the distribution; each eigenvalue is a scale factor along the axis of the
corresponding eigenvector.

Linear transformations
Let x € RY, A € R™* y = ATx € R": then, if x is normally distributed, so is y.

In particular, if the distribution of x has mean p and covariance matrix ¥, the distribution of y has mean AT
and covariance matrix ATZA.

x~N(p,E) =y~ N(A"p, ATSA)

Marginal and conditional of a joint gaussian

Let x; € R", x2 € R* be such that [%} ~ N (,2) and let
2

[ Zl ] with g, € R", p, € RF

] ,J,:
2
> by
« Y= 1 2| with ¥4, € R 51, € RMF) £5) € RF*) 355 € RFXF
o1 | a2
then

o the marginal distribution of x1 is x1 ~ N (p,, X11)
« the conditional distribution of x; given x2 is x1[x2 ~ N (py)2, X1)2) with

Ky = M1 — E1222721 (x2 — 1)
Y2 =311 — 2122521221

Bayes’ formula and gaussians
Let x,y be such that
x~N(p, 1) and  ylx ~ N(Ax+b,Xs)

18



That is, the marginal distribution of x (the prior) is a gaussian and the conditional distribution of y w.r.t. x (the
Then, both the the

likelihood) is also a gaussian with (conditional) mean given by a linear combination on x.
conditional distribution of x w.r.t. y (the posterior) and the marginal distribution of y (the evidence) are gaussian.

y~NAp+b, 3 + A A7)
X[y ~ N (1, %)

where
o= (ST +ATSTA) AT (v - b) + 20 )
L=t AT A

3 Bayesian statistics
Bayesian statistics

Classical (frequentist) statistics
o Interpretation of probability as frequence of an event over a sufficiently long sequence of reproducible experi-

ments.
o Parameters seen as constants to determine

Bayesian statistics

o Interpretation of probability as degree of belief that an event may occur.
o Parameters seen as random variables

Bayes’ rule
Cornerstone of bayesian statistics is Bayes’ rule
p(© =0|X = 2)p(X = )

p(X =2/© =) = o©=0)

Given two random variables X, O, it relates the conditional probabilities p(X = z|® = @) and p(0© = 0|X = z).
Bayesian inference
Given an observed dataset X and a family of probability distributions p(z|®) with parameter © (a probabilistic
model), we wish to find the parameter value which best allows to describe X through the model.
In the bayesian framework, we deal with the distribution probability p(©) of the parameter © considered here as

a random variable. Bayes’ rule states that

_ pX|©)p(©)

Bayesian inference

Interpretation
19



o p(©) stands as the knowledge available about © before X is observed (a.k.a. prior distribution)
o p(©|X) stands as the knowledge available about © after X is observed (a.k.a. posterior distribution)

¢ p(X|©) measures how much the observed data are coherent to the model, assuming a certain value © of the
parameter (a.k.a. likelihood)

o p(X) =3 o p(X|O0)p(O') is the probability that X is observed, considered as a mean w.r.t. all possible values
of © (a.k.a. evidence)

Conjugate distributions

Definition

Given a likelihood function p(y|z), a (prior) distribution p(x) is conjugate to p(y|x) if the posterior distribution p(z|y)
is of the same type as p(x).

Consequence

If we look at p(x) as our knowledge of the random variable z before knowing y and with p(x|y) our knowledge once
y is known, the new knowledge can be expressed as the old one.

Examples of conjugate distributions: beta-bernoulli
The Beta distribution is conjugate to the Bernoulli distribution. In fact, given x € [0,1] and y € {0, 1}, if
I'(a+ pB)

a—1 _ B—1
Mar@® 79

p(8|ex, B) = Beta(¢la, ) =
p(z]g) = ¢"(1—¢)'~°

then
pldla) = 2677 (1 - ¢)"767(1 — )" = Beta(ela + = — 1,5 — )

where Z is the normalization coefficient

Ma+p+1)
T NCErES)

_ ! atz—1 B—z _
z= [ e a—ey s =

Examples of conjugate distributions: beta-binomial
The Beta distribution is also conjugate to the Binomial distribution. In fact, given z € [0, 1] and y € {0, 1}, if

p(éla, B) = Beta(@la, §) = ﬁ((j)—;(?)w*u — gy

p(Ho. ) = (J,f ) =N = et -9

then
POl Ny, ) = 267 (1= )" 6" (1 - 9)¥ ™" = Beta(dla+ k — 1,8+ N — k= 1)

with the normalization coefficient

I'(a+B+N)
(a+k)T(B+N—k)

2= [ o g s =
0 r

20



Multivariate distributions

Multinomial

Generalization of the binomial

p(nl,...,nx‘(ﬁl,,..,(ﬁ[{, = Hd)nl Zm:n,Z@:

1 i=1 i=1 i=1

the case n =1 is a generalization of the Bernoulli distribution

K K K
p(:E1,...,:L'K|¢1,...,¢K) = H(f)? Vi:x; € {O,l},in = 1,2(}31’ =1
=1 =1 =1

Likelihood of a multinomial

N K K N
p(X|gr,. . ox) o [TTT957 = 114"
j=1

i=1j=1

Conjugate of the multinomial

Dirichlet distribution

The conjugate of the multinomial is the Dirichlet distribution, generalization of the Beta to the case K > 2

p(¢1,...,¢K‘O&1,...,O¢K):Dir(¢|a) 1—[ Z 1(al H¢a171

1K
i—1
= 7 H ¢ia
i=1
with a; >0fori=1,..., K
Random variables and Dirichlet distribution
A random variable ¢ = (¢1,...,¢x) with Dirichlet distribution takes values on the K — 1 dimensional simplex (set

of points x € RX such that z; > 0 for i = 1,..., K and Z LT = 1)

Examples of conjugate distributions: dirichlet-multinomial
Assume ¢ ~ Dir(¢|a) and z ~ Mult(z|¢p). Then,
K K
_ p(zl¢)p(dla) _ lii g ai-1

K
= o [[ 477777 = Dir(g]a)
i=1

where o' = (a1 + 21, ..., 0K + 2K)

21



Text modeling

Unigram model

Collection W of N term occurrences: N observations of a same random variable, with multinomial distribution over
a dictionary V of size V.

p(Wig) = L(6/W) = [ &" D 4i=1) Ni=N

Parameter model

Use of a Dirichlet distribution, conjugate to the multinomial

p(dla) = Dir(¢|c)
P(¢|W, @) = Dir(¢|e + N)

Information theory

Let X be a discrete random variable:
¢ define a measure h(zx) of the information (surprise) of observing X =z
e requirements:

— likely events provide low surprise, while rare events provide high surprise: h(x) is inversely proportional
to p(z)

— X,Y independent: the event X = z,Y = y has probability p(z)p(y). Its surprise is the sum of the surprise
for X =z and for Y = y, that is, h(z,y) = h(z) + h(y) (information is additive)

this results into h(z) = —logz (usually base 2)
Entropy

A sender transmits the value of X to a receiver: the expected amount of information transmitted (w.r.t. p(z)) is the
entropy of X

H(z) = = > p(x)log, p(z)

e lower entropy results from more sharply peaked distributions

e the uniform distribution provides the highest entropy

05

H=177

0.25

probabilities

Entropy is a measure of disorder.
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0.5

H =3.09

0.25

probabilities

Entropy, some properties

e p(x) € [0, 1] implies p(z)log, p(z) < 0 and H(X) >0

e H(X) =0 if there exists = such that p(z) =1

Maximum entropy

Given a fixed number k of outcomes, the distribution pi,...,pr with maximum entropy is derived by maximizing
H(X) under the constraint Zle p; = 1. By using Lagrange multipliers, this amounts to maximizing

k k
— Y pilogypi + A (sz - 1)
i=1 i=1

Setting the derivative of each p; to 0,
0= —log, pi —logy,e+ A

1
results into p; = 2* — e for each i, that is into the uniform distribution p; = T and H(X) =log, k

Entropy, some properties
H(X) is a lower bound on the expected number of bits needed to encode the values of X
o trivial approach: code of length log, k (assuming uniform distribution of values for X)

e for non-uniform distributions, better coding schemes by associating shorter codes to likely values of X

Conditional entropy
Let X,Y be discrete r.v. : for a pair of values x,y the additional information needed to specify y if x is known is

—Inp(y|z).

The expected additional information needed to specify the value of Y if we assume the value of X is known is the
conditional entropy of Y given X

H(Y|X)==>"> plx,y) Inplylz)
Clearly, since Inp(y|z) = Inp(z,y) — Inp(z)
H(X,Y) = H(Y|X) + H(X)

that is, the information needed to describe (on the average) the values of X and Y is the sum of the information
needed to describe the value of X plus that needed to describe the value of Y is X is known.
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KL divergence
Assume the distribution p(z) of X is unknown, and we have modeled is as an approximation g(z).

If we use g(z) to encode values of X we need an average length — 3" p(x)Ing(z), while the minimum (known

p(x)) is — >, p(x) Inp(x).

The additional amount of information needed, due to the approximation of p(z) through ¢(z) is the Kullback-
Leibler divergence

L(pllq) = Zp )Ing(x) + > p(z) Inp(x
a ;p( @)

K L(p||q) measures the difference between the distributions p and q.

« KL(p|lp) =0
o KL(pllg) # KL(q||p): the function is not symmetric, it is not a distance (it would be d(z,y) = d(y, z))

Convexity
A function is convex (in an interval [a, b]) if, for all 0 < X\ < 1, the following inequality holds

fa+ (1 =2)b) < Af(a)+ (1= A)f(b)

e Xa+(1—XA)bisapoint z € [a,b] and f(Aa+ (1 — A)b) is the corresponding value of the function

e Af(a)+ (1= X)f(b) = f(z) is the value at Aa + (1 — A)b of the chord from (a, f(a)) to (b, f(b)).

Jensen’s inequality and KL divergence

o If f(z) is a convex function, the Jensen’s inequality holds for any set of points z1,...,zm

M M

Il
=

where \; > 0 for all 4 and 3. A

o In particular, if \; = p(x;),

f(Elz]) < E[f(x)]

o if x is a continuous variable, this results into

i/ a:p(w)dx) < [ f@p()da
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« applying the inequality to K L(p||q), since the logarithm is convex,

= — T n@m —1In x)dr =
KLlo) = = [ p)n D845 > < [ a(a)de =0

thus proving the KL is always non-negative.
Applying KL divergence
e x=(z1,...,%n), dataset generated by a unknown distribution p(z)

e we want to infer the parameters of a probabilistic model gg(z|6)

e approach: minimize

v

L(pllge) = Zp )
~ L q(z
~ n;ln p(m

= % Z (Inp(x;s) — Ing(xs]0))

First term is independent of 0, while the second one is the negative log-likelihood of x. The value of § which
minimizes K L(pl||go) also maximizes the log-likelihood.

Mutual information

¢ Measure of the independence between X and Y
T
I(X.Y) = KL(p(X.Y)[[p(X).p(V)) = ~ 33 ol ) In 22

additional encoding length if independence is assumed

¢ We have:

p(x)p(y)
ZZP z,y)1 (m 0
_ 1n P@ply)
B ZZP p(zy)p(y)
= — X n )
=22 @) ol
I—ZZp(xylnp +ZZP z,y) lnp(zly) = H(X) - H(X[Y)

e Similarly, it derives I(X,Y) = H(Y) — H(Y|X)
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