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Fully bayesian regression
We remind that, in fully bayesian regression, no specific model parameters w∗ are identified, to be applied in prediction
as

y = w∗ϕ(x)

Instead the distribution p(y|x) is derived, under the assumption of gaussianity, with

p(y|x, t,Φ, α, β) = N (y|m(x), σ2(x))
and

m(x) = βϕ(x)T SNΦT t
and variance

σ2(x) = 1

β
+ ϕ(x)T SNϕ(x)

Equivalent kernel

• The prediction y(x) can be returned here as the expectation of the predictive distribution

y(x) = βϕ(x)T SNΦT t =
n∑

i=1

βϕ(x)T SNϕ(xi)ti

• The prediction is not computed by referring to a set of parameters derived by optimization of a loss function.
Instead, it can be seen as a linear combination of the target values ti of all items in the training set, with weights
dependent from the item values xi (and from x)

y(x) =
n∑

i=1

κ(x, xi)ti

The weight function κ(x, x′) = βϕ(x)T SNϕ(x′) is said equivalent kernel

Right: plot on the plane (x, xi) of a sample equivalent kernel, in the case of gaussian basis functions.

Left: plot as a function of xi for three different values of x
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In deriving y, the equivalent kernel tends to assign greater relevance to the target values ti corresponding to items
xi near to x.

The same localization property holds also for different base functions.
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Left, κ(0, x′) in the case of polynomial basis functions.

Right, κ(0, x′) in the case of gaussian basis functions.

• The covariance between y(x) and y(x′) is given by

cov(x, x′) = cov(ϕ(x)T w,wTϕ(x′)) = Φ(x)T SNϕ(x′) =
1

β
κ(x, x′)

predicted values are highly correlated at nearby points.

• Instead of introducing base functions which results into a kernel, we may define a localized kernel directly and
use it to make predictions

Kernel regression

• In kernel regression methods, the target value corresponding to any item x is predicted by referring to items in
the training set, and in particular to the items which are closer to x.

• This is controlled by referring to a kernel function κh(x), which is non zero only in an interval around 0

• h is the bandwidth of the kernel, which controls the width of κh(x)

A possible, common kernel, is the gaussian (or RBF) kernel

g(x) = e
− ∥x∥2

2h2

In regression, we are interested in estimating the conditional expectation

f(x) = E[t|x] =
∫

p(t|x)tdt =
∫

p(x, t)
p(x) tdt =

∫
p(x, t)tdt

p(x) =

∫
p(x, t)tdt∫
p(x, t)dt
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The joint distribution p(x, t) is approximated by means of a kernel function as

p(x, t) ≈ 1

n

n∑
i=1

κh(x − xi)κh(t− ti)

This results into

f(x) =

∫
1

n

n∑
i=1

κt(x − xi)κh(t− ti)tdt∫
1

n

n∑
i=1

κh(x − xi)κh(t− ti)dt

=

∑n
i=1 κh(x − xi)

∫
κh(t− ti)tdt∑n

i=1 κh(x − xi)

∫
κh(t− ti)dt

If we assume that the kernel κ(x) is a probability distribution with 0 mean, it results
∫

κh(t − ti)dt = 1 and∫
tκh(t− ti)dt = ti, we get

f(x) =
∑n

i=1 κh(x − xi)ti∑n
i=1 κh(x − xi)

By setting
wi(x) =

κh(x − xi)∑n
j=1 κh(x − xj)

we can write
f(x) =

n∑
i=1

wi(x)ti

that is, the predicted value is computed as a normalized linear combination of all target values, weighted by kernels
(Nadaraya-Watson)

Locally weighted regression
In Nadaraya-Watson model, the prediction is performed by means of a normalized weighted combination of constant
values (target values in the training set).

Locally weighted regression (LOESS) improves that approach by referring to a weighted version of the sum of
squared differences loss function used in regression.

If a value t has to be predicted for an item x, a “local” version of the loss function is considered, with weight
κi(x).

L(x) =
n∑

i=1

κi(x)(wT xi − ti)
2 =

n∑
i=1

κh(x − xi)(wT xi − ti)
2

Weights κi(x) are dependent from the “distance” between x and xi, as measured by the kernel function

κi(x) = κh(x − xi)

The minimization of this loss function

ŵ(x) = argmin
w

n∑
i=1

κi(x)(wT xi − ti)
2
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has solution
ŵ(x) = (XT

Ψ(x)X)−1XT
Ψ(x)t

where Ψ(x) is a diagonal n× n matrix with Ψ(x)ii = κi(x).

The prediction is then performed as usual, as

y = ŵ(x)T x

Local logistic regression
The same approach applied in the case of local regression can be applied for classification, by defining a weighted
loss function to be minimized, with weights dependent from the item whose target must be predicted.

In this case, a weighted version of the cross entropy function is considered, which has to be maximized

L(x) =
n∑

i=1

κh(x − xi)(ti log pi − (1− ti) log(1− pi))

with pi = σ(wT xi), as usual.

The loss function minimization can be performed, for example, by applying a suitable modification of the IRLS
algorithm for logistic regression

Recap: some properties of Gaussian distribution
In order to introduce Gaussian processes and how they can be exploited for regression, let us first provide a short
reminder on some properties of multivariate gaussian distributions.

Let x = (x1, . . . , xn)
T be a random vector with gaussian distribution p(x) = N (µ,Σ) and let x = (xA, xB) be a

partition of the components x such that:

• xA = (x1, . . . , xr)
T

• xB = (xr+1, . . . , xn)
T

Then, the marginal densities p(xA) and p(xB) are both gaussian with means µA,µB and covariance matrices
ΣA,ΣB which can be derived from µ,Σ by observing that

µ = (µA,µB)
T Σ =

(
ΣA ΣAB

ΣT
AB ΣB

)

In the same situation, the conditional densities p(xA|xB) and p(xB |xA) are also gaussian with means

µA|B = µA +ΣABΣ
−1
B (xB − µB)

µB|A = µB +ΣBAΣ
−1
A (xA − µA)

and covariance matrices

ΣA|B = ΣA − ΣABΣ
−1
B ΣBA

ΣB|A = ΣB − ΣBAΣ
−1
A ΣAB

Gaussian processes

4



• Multivariate gaussians on random vectors are useful for modeling finite collections of real-valued variables. They
have nice analytical properties (see previous slides).

• Gaussian processes: extension of multivariate gaussians to infinite-sized collections of real-valued variables.

• We may think of gaussian processes as distributions not just over random vectors but over random real functions.

Probability distributions over functions with finite domains
Let us first consider the case of functions defined over finite vectors.

• Let X = (x1, . . . , xm) be a vector of m points in IRd, and let H be the set of functions f : IRd 7→ IR

– any such functions assigns a value f(xi) to each xi ∈ X and can be described by the vector (f(x1), . . . , f(xm))

– at the same time, any vector y = (y1, . . . , ym) can be seen as the description of a function f ∈ H, the one
with f(xi) = yi

– hence, the set H is in 1-to-1 correspondence with the set of vectors in IRm

• A probability distribution p(y), y ∈ IRm is also a distribution p(f) of functions in H

Gaussian distributions over functions with finite domains
We assume that p(y) (or, equivalently, p(f)) is a (multivariate, m-dimensional) Gaussian distribution with mean 0
and diagonal covariance matrix σ2I, that is

p(f |X;σ2) = N (f |X; 0, σ2I) =
m∏
i=1

1√
2πσ

e
− f(xi)

2

2σ2

• This is equivalent to assuming that each function value yi = f(xi) has normal distribution with mean 0 and
variance σ2, and that values are independent

• A dependence between function values at different points could be modeled through a non-diagonal covariance
matrix

Gaussian distributions over functions with finite domains
In the figure below, a possible situation is given with d = 1, m = 4: three functions in H are reported.

Gaussian distributions over functions with finite domains

• Assume now that the targets t = (t1, . . . , tm) corresponding to points in X are available.
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• Observe that p(f |X;σ2) is only dependent on the set of items X, and does not take into account the corresponding
targets t. We may than consider it as a prior distribution of functions, with respect to the observation of the
targets t associated to X

Gaussian distributions over functions with finite domains

• By applying Bayes rule, we may derive the posterior (with respect to t) distribution p(f |X, t) of functions. To
this aim, a likelihood model has to be defined

p(X, t|f) =
m∏
i=1

p(xi, ti|f(xi)) =

m∏
i=1

p(ti|xi, f(xi))p(xi|f(xi)) ∝
m∏
i=1

p(ti|xi, f(xi))

• we refer to the usual gaussian likelihood introduced for probabilistic modeling linear regression p(t|x, y, β) =
N (t|f(x), β), which results into

p(X, t|f, β) ∝
m∏
i=1

N (ti|f(xi), β)

• the posterior distribution is then

p(f |X, t, β, σ2) ∝
m∏
i=1

N (ti|f(xi), β)p(f |σ2)

Gaussian distributions over functions with finite domains
Both the prior and the posterior distributions of f are gaussian: this implies that the predictive distribution

p(t|x,X, t, β, σ2) =

∫
p(t|x, f, β)p(f |X, t, β, σ2)df

is itself a gaussian.

That would the case also in the more general case when some dependency between function points is assumed.
In this case, a general covariance matrix Σ is defined for the prior distribution

p(y; Σ) = N (y|0,Σ)

that is,
p(f |X; Σ) = N (y|X; 0,Σ)

Gaussian distributions over functions with infinite domains

• In the case of an infinite domain χ, we have to deal with an infinite collection of random variables.

• In this case, the role of multidimensional distributions is covered by stochastic processes.

– A stochastic process is a collection of random variables, {f(x) : x ∈ χ}, indexed by elements from some set
X, known as the index set.

• A Gaussian process is a stochastic process such that for any finite subset X = {x1, . . . , xn} of χ, the function
values f(x1), . . . , f(xn) have joint multivariate Gaussian distribution

Gaussian distributions over functions with infinite domains
In order to specify the gaussian process, we must introduce two rules which, for any set of points X = {x1, . . . , xn},
define the distribution p(y) of the corresponding values y1, . . . , yn = f(x1), . . . , f(xn).
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• We already know that, by assumption, p(f) = p(y) is a multivariate normal distribution, hence characterized
by a mean vector µ(X) and covariance matrix Σ(X)

• We assume that µ(X) is indeed a constant independent from X. In particular, µ(X) = 0

• The covariance matrix derives from the application of a predefined covariance function κ : χ × χ 7→ IR which
associates a real value to any pair of points in χ and, in particular, to any pair in X, hence to all elements of Σ

Kernels in gaussian processes
The covariance function κ is assumed to be a positive definite kernel.

• This means that for any set of distinct points x1, . . . , xn it must be
n∑

i=1

n∑
j=1

cicjκ(xi, xj) > 0

for any choice of the constants c1, . . . , cn such that not all ci are equal to 0.

• Equivalently, the square Gram matrix G defined as

G =


κ(x1, x1) κ(x1, x2) · · · κ(x1, xn)
κ(x2, x1) κ(x2, x2) · · · κ(x2, xn)

· · · · · · · · · · · ·
κ(xn, x1) κ(xn, x2) · · · κ(xn, xn)


must have positive eigenvalues.

• A collection of positive definite kernels is known in the literature and can be constructed by applying suitable
rules.

Gaussian processes
Given a gaussian process p(f) = GP(m,κ), then for any set of items X = {x1, . . . , xn}, the distribution of f(x1), . . . , f(xn)
is a gaussian

(f(x1), . . . , f(xn)) ∼ N (µ(X)|Σ(X))

where

• µ(X) = (m(x1), . . . ,m(xn))
T

• Σ(X) is the Gram matrix wrt x1, . . . , xn of a kernel function κ(x, x′)

As stated before, it is usually assumed that the mean vector is 0: different processes are then characterized only
by their covariance kernel κ.

Sampling functions from gaussian processes
Given X = {x1, . . . , xn}, a probability distribution on f(x1), . . . , f(xn) is then defined, as

p(f |X) = N (f |0,Σ(X))

where, as stated before

Σ(X)ij = κ(xi, xj)

For any finite subset X = (x1, . . . , xn) of χ it is possible to sample from p(f) the values of f(x1), . . . , f(xm) by
gaussian sampling from N (f |0,Σ(X))

RBF kernel
Clearly, different kernels provide different processes.
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• One of the most applied kernel is the RBF kernel

κ(x1, x2) = σ2e
− ||x1−x2||2

2τ2

which tends to assign higher covariance between f(x1) and f(x2) if x1 and x2 are nearby points.

• Functions drawn from a Gaussian process with RBF kernel tend to be smooth, since values computed for nearby
points tend to be similar. Smoothing is larger for larger τ .

RBF kernel
Samples of functions from p(f). RBF kernel, larger τ and smoothing

RBF kernel
Samples of functions from p(f). RBF kernel, smaller τ and smoothing

Gaussian process regression: no noise

• By the gaussian process definition, f is distributed as a multivariate gaussian such that the mean of any value
f(x) is m(x) = 0 and the covariance of any pair f(x), f(x′) is κ(x, x′)

• as a consequence, for any finite set of points X, we have that f(X) is distributed as a multivariate gaussian with
mean µ(X) defined as µ(X)i = m(xi) = 0 and covariance matrix Σ(X), defined as Σ(X)i,j = κ(xi, xj)
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Gaussian process regression: no noise

• Let us now assume that for a set of points X = (x1, . . . , xn)
T the corresponding values t = (t1, . . . , tn)

T are
known

• that is, we assume that a training set X, t is available, and we assume that the target values in the training set
correspond exactly to the function value ti = f(xi), that is, there is no noise in the observations

• Note that in the probabilistic model of regression this is not true, since a (gaussian) error is assumed

Gaussian process regression: no noise
By the model assumptions, if we consider an additional set of points X = (x1, . . . , xm)T , the joint distribution of
f(X) and f(X) is a multivariate gaussian distribution with a certain mean µ(X,X) and covariance Σ(X,X) that, by
the properties of gaussian distributions are

µ(X,X) = (µ(X),µ(X))T

Σ(X,X) =

(
Σ(X) Σ(X,X)

Σ(X,X)T Σ(X)

)
where

Σ(X,X) =


κ(x1, x1) κ(x1, x2) · · · κ(x1, xn)
κ(x2, x1) κ(x2, x2) · · · κ(x2, xn)

...
...

. . .
...

κ(xm, x1) κ(xm, x2) · · · κ(xm, xn)



Gaussian process regression: no noise
The posterior distribution of y = f(X), given X, t can be derived by the gaussian distribution properties recalled
above, and turns out to be a m-dimensional gaussian distribution itself with mean and covariance defined as

• µp = µ(y|X, t) = µ(X) + Σ(x,X)Σ(X)−1(t − µ(X))

• Σp = Σ(X)− Σ(x,X)Σ(X)−1Σ(x,X)T

Gaussian process regression: no noise
Sample of functions from the posterior distribution
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Gaussian process regression: no noise
In particular, for the prediction of a single test point x, the joint distribution of (t, f(x)) is a multivariate gaussian
distribution with mean µ(X, x) and covariance Σ(X, x)

µ(X, x) = (µ(X), µ(x))T

Σ(X, x) =
(

Σ(X) Σ(x,X)
Σ(x,X)T Σ(x, x)

)
where

Σ(x,X) = (κ(x, x1), κ(x, x2), . . . , κ(xn, xn))
T

and
Σ(x, x) = κ(x, x)

Gaussian process regression: no noise
As a consequence, the predictive distribution of y = f(x) is

mp(y|X, f) = m(x) + Σ(x,X)Σ(X)−1(t − µ(X))

σ2 = Σp(x, x) = κ(x, x)− Σ(x,X)Σ(X)−1Σ(x,X)T

Gaussian process regression: no noise
In this case, an interpolation of the given values has been performed: f(xi) = ti for all possible functions, sampled
from f(x|X, f).

10



It results, in fact, for all xi ∈ X,

m(xi|X, f) = ti

σ2 = 0

Gaussian process regression: gaussian noise
Let us now assume, as usual, that p(ti|f, xi) = N (f(xi), σ

2
f )

That is, the value ti observed for variable xi differs from the one obtained as f(xi) by a gaussian and independent
noise

ti = f(xi) + ε p(ε) = N (ε|0, σ2
f )

that is, p(t|f) = N (t|f, σ2I)

Gaussian process regression: gaussian noise

• f is now distributed as a multivariate gaussian with known mean µ(X) = (m(xi), . . . ,m(xn))
T and covariance

matrix Σ̂(X) = Σ(X) + σ2
f I, defined by κ and σ2

f

Gaussian process regression: gaussian noise

• Let us now assume that a training set X, t is available such that the target values in the training set correspond
approximately to the function value ti = f(xi) + ε.

• In this case, for any new set of points X, the joint distribution of (t, f(X)) is a multivariate gaussian distribution
with mean µ(X,X) and covariance Σ(X,X)

µ(X,X) = (µ(X),µ(X))T

Σ(X,X) =

(
Σ̂(X) Σ(X,X)

Σ(X,X)T Σ(X)

)

where in particular Σ̂(X) =


κ(x1, x1) + σ2

f κ(x1, x2) · · · κ(x1, xn)
κ(x2, x1) κ(x2, x2) + σ2

f · · · κ(x2, xn)
...

...
. . .

...
κ(xn, x1) κ(xn, x2) · · · κ(xn, xn) + σ2

f
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Gaussian process regression: gaussian noise
The posterior distribution of y = f(X), given X,X, t can be again derived by the gaussian distribution properties,
and turns out again to be a gaussian distribution with mean and covariance defined as

• µp = µ(X) + Σ(x,X)Σ̂(X)−1(t − µ(X))

• Σ = Σ(X)− Σ(x,X)Σ̂(X)−1Σ(x,X)T

Gaussian process regression: gaussian noise
In particular, for a single test point x, we have now that the corresponding predictive distribution is

mp(y|X, f) = m(x) + Σ(x,X)Σ̂(X)−1(t − µ(X))

σ2 = κp(x, x) = κ(x, x)− Σ(x,X)Σ̂(X)−1Σ(x,X)T

Estimating kernel parameters
The predictive performance of gaussian processes depends exclusively on the suitability of the chosen kernel.

Let us consider the case of an RBF kernel. Then,

κ(xi, xj) = σ2
fe

− 1
2
(xi−xj)T M(xi−xj) + σ2

yδij

M can be defined in several ways: the simplest one is M = l−2I.

Even in this simple case, varying the values of σf , σy, l returns quite different results.
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(figure from K.Murphy “Machine learning: a probabilistic perspective” p. 519, with (l, σf , σy) equal to (1, 1, 0.1), (0.3, 1.08, 0.00005), (3.0, 1.16, 0.89))
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