
Linear regression
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1 Basic definitions

A linear model is a linear combination of the features x1, . . . , xd of the input element x

y(x,w)
∆
=

d∑
j=1

wjxj + w0

The values of a set of d+1 coefficients w0, w1, . . . , wd completely defines the model. Clearly, it is a linear function of
both the parameters w and the features x.

In vector form, the model can be defined as

y(x,w) = wT x

with
y(x,w)

1×1

= wT

1×(d+1)

× x
(d+1)×1

where x = (1, x1, . . . , xd)
T =


1
x1

...
xd

 and wT = (w0, w1, . . . , wd)

An extension of this definition can be obtained by introducing a set of basis functions ϕ1, . . . , ϕm defined on IRd

and considering a linear combination of the results ϕ1(x), . . . , ϕm(x) obtained by applying the basis function to the
item x considered.

y(x,w)
∆
=

m∑
j=1

wjϕj(x)

More compactly, we may consider the vector of functions

ϕ
∆
=

 ϕ1

...
ϕm


which maps any point in x ∈ IRd to a point

ϕ(x) =

 ϕ1(x)
...

ϕm(x)

 ∈ IRm

That is, applying ϕ maps the problem from a d-dimensional to an m-dimensional space (usually with m > d).
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The introduction of ϕ allows to define the prediction function in vector form as

y(x,w) = wTϕ(x)

Finding a number m of basis functions and their definitions in order to improve the quality of the predictions
performed by the model (modeled in terms of some quality measure) is the objective of the feature engineering
process.

Examples of basis functions types on a single feature are:

• Polynomial
ϕj(x) = xj

• Gaussian
ϕj(x) = exp

(
− (x− µj)

2

2s2

)
• Sigmoid

ϕj(x) = σ
(x− µj

s

)
=

1

1 + e−
x−µj

s

• Hyperbolic tangent

ϕj(x) = tanh(x) = 2σ(x)− 1 =
1− e−

x−µj
s

1 + e−
x−µj

s

This schemes can be easily extended to multiple features. Notice that gaussian, sigmoid and hyperbolic tangent
functions are local, in the sense that they are not (almost) constant only in a limited interval of values.

In summary, given the feature matrix X in the training set T ,

X =

 – x1 –
...

– xn –

 =


x11 · · · x1d

x21 · · · x2d

...
. . .

...
xn1 · · · xnd


applying a set of basis functions ϕ1, . . . ,ϕm to the elements x1, . . . , xn in IRd results into a new set of feature values,
represented by the following n×m matrix

Φ =


ϕ1(x1) ϕ2(x1) · · · ϕm(x1)
ϕ1(x2) ϕ2(x2) · · · ϕm(x2)

...
...

. . .
...

ϕ1(xn) ϕ2(xn) · · · ϕm(xn)


A special case here is when m = d+ 1 and ϕi(x) = xi for i = 1, . . . , d and ϕd+1(x) = 1, which clearly corresponds to
the extension of x to x showed above.

Given a set of values w̃ of the coefficients, the set Y(X, w̃) values predicted for all elements in the training set can
be computed as

Y(X, w̃) = Φw̃
with

Y(X, w̃)
n×1

= Φ
n×m

× w̃
m×1
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2 Parameter learning

The values assigned to coefficients should minimize the empirical risk computed wrt some error function (a.k.a. cost
function), when applied to data in the training set (then, to X, t and w).

A most widely adopted error function is the quadratic loss (yi−ti)
2, which results into the least squares approach,

i.e. minimizing the sum, for all items in the training set, of the (squared) difference between the value returned by
the model and the target value.

E(w) =
1

2

n∑
i=1

(y(xi,w)− ti)
2 =

1

2

n∑
i=1

(
m∑

j=1

wjϕj(xi)− ti

)2

or, in matrix form,
E(w) =

1

2
(Φw − t)T (Φw − t)

with
E(w)
1×1

=
1

2
× (Φw − t)T

1×n

× (Φw − t)
n×1

In order to minimize E(w), set its gradient to 0. That is, set

∂E(w)

∂wk
= 0 k = 1, . . . ,m

We observe that

• the quadratic loss (y − t)2 is a convex function, which implies that only one (global) minimum is defined

• E(w) is convex itself, being the sum of n convex functions (y(xk,w)− tk)
2

• in particular, E(w) quadratic implies that its derivative is linear, hence that it is zero for a unique value w∗

• the resulting prediction function is y(x,w∗)

The set of equations obtained by setting ∇wE(w) = 0 results into a linear system :

∂E(w)

∂wk
=

1

2

∂

∂wk

n∑
i=1

(
m∑

j=1

wjϕj(xi)− ti

)2

=

n∑
i=1

(
m∑

j=1

wjϕj(xi)− ti

)
ϕk(xi)

=

n∑
i=1

(y(xi,w)− ti)ϕk(xi) = 0

In matrix-vector form,
∇wE(w) = ΦT (Φw − t) = 0

Each of the m equations is linear w.r.t. each coefficient in w. A linear system results, with m equations and m
unknowns w1, . . . , wm, which, in general and with the exceptions of degenerate cases, has precisely one solution.

In this case, the solution is defined in closed form by the normal equations for least squares

w∗ = (ΦTΦ)−1ΦT t

where
w∗

m×1

=
(
ΦT

m×n

× Φ
n×m

)−1

× ΦT

m×n

× t
n×1

= (ΦTΦ)−1

m×m

× ΦT

m×n

× t
n×1

3



2.1 Gradient descent

The minimum of E(w) can be computed numerically, by means of gradient descent methods

• Start from an initial assignment w(0) = (w
(0)
1 , w

(0)
2 , . . . , w

(0)
m ), with a corresponding error

E(w(0)) =
1

2

n∑
i=1

(y(xi,w(0))− ti)
2 =

1

2

n∑
i=1

(
m∑

j=1

w
(0)
j ϕj(xi)− ti

)2

• Iteratively, at step i, the current value w(i−1) is modified in the direction of steepest descent of E(w), that is
the one corresponding to the negative of the gradient ∇w(E(w)) evaluated at w(i−1)

w(i) = w(i−1) − η∇wE(w)
∣∣∣
w(i−1)

• At step i, w(i−1)
k is updated as follows:

w
(i)
k = w

(i−1)
k − η

∂E(w)

∂wk

∣∣∣∣∣
w(i−1)

= w
(i−1)
k − η

n∑
i=1

(y(xi,w(i−1))− ti)ϕk(xi)

= w
(i−1)
k − η

n∑
i=1

(
m∑

j=1

w
(i−1)
j ϕj(xi)− ti

)
ϕk(xi)

In matrix notation:
w(i) = w(i−1) − ηΦT (Φw(i−1) − t)

3 Example

Assume a set of n observations of two variables x, t ∈ IR: (x1, t1), . . . , (xn, tn)) is available. We wish to exploit these
observations to predict, for any value x̃ of x, the corresponding unknown value of the target variable t. The training
set T is a pair of vectors x = (x1, . . . , xn)

T and t = (t1, . . . , tn)
T , and we assume that pairs xi, ti are related through

an unknown rule (function)

Figure 1: Observed dataset

In this case, we assume that the (unknown) relation between x and t in the training set is provided by the function
t = sin(2πx), with an additional gaussian noise having mean 0 and variance σ2. Hence, ti = sin(2πxi) + εi, with
εi ∼ N (0, σ2).
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Figure 2: Observed dataset with underlying function

Our purpose is guessing, or approximating as well as possible, the deterministic relation t = sin(x) cos2(x), on the
basis of the analysis of data in the training set.

The approach we consider here is approximating the unknown function through a polynomial of suitable degree
m > 0

y(x,w) = w0 + w1x+ w2x
2 + . . .+ wmxm =

m∑
j=0

wjx
j

whose coefficients w = (w0, w1, . . . , wm)T are to be computed.

This corresponds to applying m+ 1 basis functions ϕj(x) = xj , for j = 0, . . . ,m, to the unique feature x

y(x,w) =

m∑
j=0

wjϕj(x)

observe that when basis functions are applied, y(x,w) is a nonlinear function of x, but it is still a linear function
(model) of w.

In this case, the error function is defined as

E(w) =
1

2

n∑
i=1

(y(xi,w)− ti)
2 =

1

2

n∑
i=1

(
ti −

m∑
j=0

wjx
j
i

)2

t

x

y(xn,w)

tn

xn

The solution in closed form is given by
w∗ = (XT X)−1XT t
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where

X =


1 x1 x2

1 · · · xm
1

1 x2 x2
2 · · · xm

2

...
...

...
. . .

...
1 xn x2

n · · · xm
n



3.1 Polynomial degree

Selecting the degree of the polynomial is a case of model selection: assigning a value to m determines the precise
model to be used, since the choice of m implies the number of coefficients to be estimated.

Clearly, increasing m allows to better approximate the items in the training set, decreasing the overall error. As
a limit, if m+ 1 = n the model allows to obtain a null error on the training set itself.

Figure 3: Approximation with m = 0

Figure 4: Approximation with m = 1

This may result in overfitting if the function y(x,w) derived from items in the training set, fails to provide good
predictions for other items. That is, if fails to provide a suitable generalization to all items in the whole domain.

In general, if y(x,w) is derived as a too much accurate depiction of the training set, it in fact results into an
unsuitable generalization to items not in the training set.

3.2 Evaluation of the generalization

• Assume a test set Ttest of 100 new items, generated by uniformly sampling x in [0, 1] and ε from N (0, σ2), and
computing t = sin 2πx+ ε
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Figure 5: Approximation with m = 3

Figure 6: Approximation with m = n− 1 = 9

• For each m ∈ {0, . . . , n}:

– derive w∗ from the training set Ttrain

– compute the root mean square error ERMS(w∗, Ttest) on the test set, defined as

ERMS(w∗, Ttest) =

√
E(w∗, Ttest)

|Ttest|
=

√
1

2|Ttest|
∑

(x,t)∈Ttest

(y(x,w∗)− t)2

• compare the RMS error for different values of m. A smaller value of ERMS(w∗,Xtest) denotes a better gener-
alization

In the case considered here, n = 9. In figure 7, a typical plot of ERMS w.r.t. m, on the training set and on the
test set.

• As m increases, the error on the training set tends to 0.

• On the test set, the error initially decreases, since the higher complexity of the model allows to better represent
the characteristics of the data set. Next, the error increases, since the model becomes too dependent from the
training set: the noise component in t is also represented.

An immediate consequence of all this, is that, for a given model complexity (such as the degree in our example),
overfitting decreases as the dimension of the dataset increases.

The larger the dataset, the higher the acceptable complexity of the model.
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3.3 Limiting the complexity of the model

Model complexity can be limited through regularization

• A regularization term is introduced in the cost function

ED(w) + λEW (w)

ED(w) dependent from the dataset (and the parameters), EW (w) dependent from the parameters alone.

• The regularization coefficient controls the relative importance of the two terms.

Regularized least squares

• Simple form

EW (w) =
1

2
wT w =

1

2

m∑
i=1

w2
i

• Sum-of squares cost function: ridge regression

E(w) =
1

2

n∑
i=1

(ti − wTϕ(xi))
2 +

λ

2
wT w =

1

2
(Φw − y)T (Φw − y) + λ

2
wT w
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x

t

N = 100

0 1

−1

0

1

with solution
w = (λI +ΦTΦ)−1ΦT t

Regularization

• A more general form

E(w) =
1

2

n∑
i=1

(ti − wTϕ(xi))
2 +

λ

2

m∑
j=1

|wj |q

• The case q = 1 is denoted as lasso: sparse models are favored

Example: polynomial regression
Use of regularization to limit complexity and overfitting.

• inclusion of a penalty term in the error function

• purpose: limiting the possible values of coefficients

• usually: limiting the absolute value of the coefficients

Ẽ(w) =
1

2

n∑
i=1

(y(xi,w)− ti)
2 +

λ

2

M∑
k=0

w2
k =

1

2

n∑
i=1

(y(xi,w)− ti)
2 +

λ

2
||w||2

Dependance from the value of the hyperparameter λ.

x

t

ln λ = −18

0 1

−1

0

1
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ln λ = 0
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Example: polynomial regression
Plot of the error w.r.t λ, ridge regression.
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• Small λ: overfitting. Small error on the training set, large error on the test set.

• Large λ: the effect of data values decreases. Large error on both test and training sets.

• Intermediate λ. Intermediate error on training set, small error on test set.

Example: polynomial regression

• Consider the case of function y = sin 2πx and assume L = 100 training sets T1, . . . , TL are available, each of
size n = 25.

• Given m = 24 gaussian basis functions ϕ1(x), . . . , ϕm(x), from each training set Ti a prediction function yi(x)
is derived by minimizing the regularized cost function

E(w) =
1

2
(Φw − t)T (Φw − t) + λ

2
wT w

Example: polynomial regression

x

t

ln λ = 2.6

0 1

−1

0

1

x

t

0 1

−1

0

1
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Left, a possible plot of prediction functions yi(x) (i = 1, . . . , 100), as derived, respectively, by training sets Ti, i =
1, . . . , 100 setting lnλ = 2.6. Right, their expectation, with the unknown function y = sin 2πx.

The prediction functions yi(x) do not differ much between them (small variance), but their expectation is a bad
approximation of the unknown function (large bias).

Example: polynomial regression

x

t

ln λ = −0.31

0 1

−1

0

1

x

t

0 1

−1

0

1

Plot of the prediction functions obtained with lnλ = −0.31.

Example: polynomial regression

x

t

ln λ = −2.4

0 1

−1

0

1

x

t

0 1

−1

0

1

Plot of the prediction functions obtained with lnλ = −2.4. As λ decreases, the variance increases (prediction functions
yi(x) are more different each other), while bias decreases (their expectation is a better approximation of y = sin 2πx).

Example: polynomial regression

• Plot of (bias)2, variance and their sum as functions of λ: las λ increases, bias increases and varinace decreases.
Their sum has a minimum in correspondance to the optimal value of λ.

• The term Ex[σ
2
y|x] shows an inherent limit to the approximability of y = sin 2πx.

Probabilistic model for regression
Assume that, given an item x, the corresponding unknown target t is normally distributed around the value returned
by the model wT x, with a given variance σ2 = β−1:

p(t|x,w, β) = N (t|y(x,w), β−1)
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xx0

2σy(x0,w)

y(x,w)

p(t|x0,w, β)

Probabilistic model for regression
An estimate of both βML and the coefficients wML can be performed on the basis of the likelihood w.r.t. the assumed
normal distribution:

L(t|X,w, β) = p(t|X,w, β) =

n∏
i=1

N (ti|y(xi,w), β−1)

Parameters w and β can be estimated as the values which maximize the data likelihood, or its logarithm

l(t|X,w, β) = log p(t|X,w, β) =

n∑
i=1

logN (ti|y(xi,w), β−1)

which results into

l(t|X,w, β) =

n∑
i=1

log
( √

β√
2π

e−
β
2
(ti−y(xi,w))2

)

= −
n∑

i=1

β

2
(ti − y(xi,w))2 +

n

2
logβ − n

2
log(2π)

= −β

2

n∑
i=1

(ti − y(xi,w))2 +
n

2
logβ + cost

Probabilistic model for regression
The maximization w.r.t. w is performed by determining a maximum w.r.t. w of the function

−1

2

n∑
i=1

(ti − y(xi,w))2

this is equivalent to minimizing the least squares sum.

The maximization w.r.t. the precision β is done by setting to 0 the corresponding derivative

∂l(t|X,w, β)

∂β
= −1

2

n∑
i=1

(ti − y(xi,w))2 +
n

2β

which results into
β−1
ML =

1

n

n∑
i=1

(ti − y(xi,w))2
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Probabilistic model for regression
As a side result, the parameter estimate provides a predictive distribution of t given x, that is the (gaussian) distri-
bution of the target value for a given item x.

p(t|x;w, β) = N (t|y(x,w), β−1) =

√
βML

2π
e−

βML
2

(t−y(x,wML))2

Probabilistic model for regression

• In the maximum likelihood framework parameters are considered as (unknown) values to determine with the
best possible precision (frequentist approach).

• Applying maximum likelihood to determine the values of model parameters is prone to overfitting: need of a
regularization term E(w).

• In order control model complexity, a bayesian approach assumes a prior distribution of parameter values.

• The bayesian framework looks at parameters as random variables, whose probability distribution has to be
derived.

Probabilistic model for regression
Prior distribution of parameters: gaussian with mean 0 and diagonal covariance matrix with variance equal to the
inverse of hyperparameter α

p(w|α) = N (w|0, α−1I) =
( α

2π

)m+1
2

e−
α
2

wT w

w0

w
1

Why a gaussian prior?
Posterior proportional to prior times likelihood: likelihood is gaussian (gaussian noise).

p(t|Φ,w, β) =

n∏
i=1

N (ti|wTϕ(xi), β
−1) =

n∏
i=1

e−
β
2
(ti−wTϕ(xi))

2

Given the prior p(w|α), the posterior distribution for w derives from Bayes’ rule

p(w|t,Φ, α, σ) = p(t|Φ,w, σ)p(w|α)
p(t|Φ, α, σ) ∝ p(t|Φ,w, σ)p(w|α)

Why a gaussian prior?
In general, conjugate of gaussian is gaussian: choosing a gaussian prior distribution of w

p(w) = N (w|m0,Σ0)
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results into a gaussian posterior distribution

p(w|t,Φ) = N (w|mp,Σp)

where

Σp = (Σ−1
0 + βΦTΦ)−1

mp = Σp(Σ
−1
0 m0 + βΦT t)

Why a gaussian prior?
Here, we have

p(w) = N (w|0, α−1I) p(t|w,Φ) = N (t|wTΦ, β−1I)
and the posterior distribution is gaussian

p(w|t,Φ, α, σ) = N (w|mp,Σp)

with

Σp = (αI + βΦTΦ)−1 mp = βΣpΦ
T t

Why a gaussian prior?
Note that as α → 0 the prior tends to have infinite variance, and we have minimum information on w before the
training set is considered. In this case,

mp → (ΦTΦ)−1(ΦT t)
that is wML, the ML estimation of w.

Maximum a Posteriori

• Given the posterior distribution p(w|Φ, t, α, β), we may derive the value of wMAP which makes it maximum
(the mode of the distribution)

• This is equivalent to maximizing its logarithm

log p(w|Φ, t, α, β) = log p(t|w,Φ, β) + log p(w|α)− log p(t|Φ, β)

and, since p(t|Φ, β) is a constant wrt w

wMAP = argmax
w

log p(w|Φ, t, α, β) = argmax
w

(log p(t|w,Φ, β) + log p(w|α))

that is,
wMAP = argmin

w
(− log p(t|Φ,w, β)− log p(w|α))

Maximum a Posteriori
In this case

p(w|X, t;α, β) ∝ p(t|X,w;β)p(w|α)

=

n∏
i=1

( √
β√
2π

e−
β
2
(ti−y(xi,w))2

)( α

2π

)M+1
2

e−
α
2

wT w

The maximization of the posterior distribution (MAP) is equivalent to the maximization of the corresponding
logarithm

−β

2

n∑
i=1

(ti − y(xi,w))2 +
n

2
logβ − α

2
wT w +

m+ 1

2
log α

2π
+ cost
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The value wMAP which maximize the probability (mode of the distribution) also minimizes

β

2

n∑
i=1

(ti − y(xi,w))2 +
α

2
wT w = β

(
1

2

n∑
i=1

(ti − y(xi,w))2 +
α

2β
||w||2

)

The ratio α
β

corresponds to a regularization hyperparameter.

Maximum a Posteriori
The same considerations of ML appy here for what concerns deriving the predictive distribution of t given x, which
results now

p(t|x;w, βMAP ) = N (t|y(x,w), β−1
MAP ) =

√
βMAP

2π
e−

βMAP
2

(t−y(x,wMAP ))2

where, as it is easy to see, βMAP = βML

Sequential learning

• The posterior after observing T1 can be used as a prior for the next training set acquired.

• In general, for a sequence T1, . . . , Tn of training sets,

p(w|T1, . . . Tn) ∝ p(Tn|w)p(w|T1, . . . Tn−1)

p(w|T1, . . . Tn−1) ∝ p(Tn−1|w)p(w|T1, . . . Tn−2)

. . .

p(w|T1) ∝ p(T1|w)p(w)

Example

• Input variable x, target variable t, linear regression y(x,w0, w1) = w0 + w1x.

• Dataset generated by applying function y = a0 + a1x (with a0 = −0.3, a1 = 0.5) to values uniformly sampled
in [−1, 1], with added gaussian noise (µ = 0, σ = 0.2).

• Assume the prior distribution p(w0, w1) is a bivariate gaussian with µ = 0 and Σ = σ2I = 0.04I

Left, prior distribution of w0, w1; right, 6 lines sampled from the distribution.

Example
After observing item (x1, y1) (circle in right figure).
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Left, posterior distribution p(w0, w1|x1, y1); right, 6 lines sampled from the distribution.

Example
After observing items (x1, y1), (x2, y2) (circles in right figure).

Left, posterior distribution p(w0, w1|x1, y1, x2, y2); right, 6 lines sampled from the distribution.

Example
After observing a set of n items (x1, y1), . . . , (xn, yn) (circles in right figure).

Left, posterior distribution p(w0, w1|xi, yi, i = 1, . . . , n); right, 6 lines sampled from the distribution.

Example

• As the number of observed items increases, the distribution of parameters w0, w1 tends to concentrate (variance
decreases to 0) around a mean point a0, a1.

• As a consequence, sampled lines are concentrated around y = a0 + a1x.

Approaches to prediction in linear regression
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Classical

• A value wLS for w is learned through a point estimate, performed by minimizing a quadratic cost function,
or equivalently by maximizing likelihood (ML) under the hypothesis of gaussian noise; regularization can be
applied to modify the cost function to limit overfitting

• Given any x, the obtained value wLS is used to predict the corresponding t as y = xT wLS , where xT = (1, x)T ,
or, in general, as y = ϕ(x)T wLS

Approaches to prediction in linear regression

Bayesian point estimation

• The posterior distribution p(w|t,Φ, α, β) is derived and a point estimate is performed from it, computing the
mode wMAP of the distribution (MAP)

• Equivalent to the classical approach, as wMAP corresponds to wLS if λ =
α

β

• The prediction, for a value x, is a gaussian distribution p(y|ϕ(x)T wMAP , β) for y, with mean ϕ(x)T wMAP and
variance β−1

• The distribution is not derived directly from the posterior p(w|t,Φ, α, β): it is built, instead, as a gaussian with
mean depending from the expectation of the posterior, and variance given by the assumed noise.

Approaches to prediction in linear regression

Fully bayesian

• The real interest is not in estimating w or its distribution p(w|t,Φ, α, β), but in deriving the predictive distribu-
tion p(y|x). This can be done through expectation of the probability p(y|x,w, β) predicted by a model instance
wrt model instance distribution p(w|t,Φ, α, β), that is

p(y|x, t,Φ, α, β) =
∫

p(y|x,w, β)p(w|t,Φ, α, β)dw

• p(y|x,w, β) is assumed gaussian, and p(w|t,Φ, α, β) is gaussian by the assumption that the likelihood p(t|w,Φ, β)
and the prior p(w|α) are gaussian themselves and by their being conjugate

p(y|x,w, β) = N (y|wTϕ(x), β)
p(w|t,Φ, α, β) = N (w|βSNΦT t, SN )

where SN = (αI + βΦTΦ)−1

Approaches to prediction in linear regression

Fully bayesian

Under such hypothesis, p(y|x) is gaussian

p(y|x, t,Φ, α, β) = N (y|m(x), σ2(x))
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with mean
m(x) = βϕ(x)T SNΦT t

and variance
σ2(x) = 1

β
+ ϕ(x)T SNϕ(x)

• 1

β
is a measure of the uncertainty intrinsic to observed data (noise)

• ϕ(x)T SNϕ(x) is the uncertainty wrt the values derived for the parameters w

• as the noise distribution and the distribution of w are independent gaussians, their variances add

Example

• predictive distribution for y = sin 2πx, applying a model with 9 gaussian basis functions and training sets of 1,
2, 4, 25 items, respectively

• left: items in training sets (sampled uniformly, with added gaussian noise); expectation of the predictive dis-
tribution (red), as function of x; variance of such distribution (pink shade within 1 standard deviation from
mean), as a function of x

• right: items in training sets, 5 possible curves approximating y = sin 2πx, derived through sampling from the
posterior distribution p(w|t,Φ, α, β)

Example

n = 1

n = 2

Example
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n = 4

n = 25

Fully bayesian regression and hyperparameter marginalization

• In a fully bayesian approach, also the hyper-parameters α, β are marginalized

p(t|x, t,Φ) =
∫

p(t|x,w, β)p(w|t,Φ, α, β)p(α, β|t,Φ)dwdαdβ

where, as seen before,

– p(t|x,w, β) = N (t|wTϕ(x), β)
– p(w|t,Φ, α, β) = N (w|mN , SN ), with SN = (αI + βΦTΦ)−1 e mN = βSNΦT t

this marginalization wrt w, α, β is analytically intractable

• we may consider approximation methods
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